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Abstract The recent demonstration that biochemical pathways
from diverse organisms are arranged in scale-free, rather than
random, systems [Jeong et al., Nature 407 (2000) 651^654],
emphasizes the importance of developing methods for the
identification of biochemical nexuses ^ the nodes within
biochemical pathways that serve as the major input/output hubs,
and therefore represent potentially important targets for
modulation. Here we describe a bioinformatics approach that
identifies candidate nexuses for biochemical pathways without
requiring functional gene annotation; we also provide proof-of-
principle experiments to support this technique. This approach,
called Nexxus, may lead to the identification of new signal
transduction pathways and targets for drug design. ß 2001
Published by Elsevier Science B.V. on behalf of the Federation
of European Biochemical Societies.
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1. Introduction

During evolution, living organisms have developed intricate
molecular mechanisms to respond to diverse environmental
conditions. Virtually every cellular function in multicellular
organisms is thought to be dependent on signaling molecules
[2,3], and therefore on signal transduction pathways. In order
to understand fully the molecular mechanisms involved in
biological processes, it is necessary to identify each molecule
participating in the mechanisms. Addressing the complexity of
biological systems, high-throughput approaches have emerged
in the past decade, intended to determine the molecular details
of the cellular responses to diverse stimuli. Some of these
approaches are intended to analyze the most well-studied bio-
molecules (i.e. nucleic acids and proteins), and accordingly are
classi¢ed as genomics [4] and proteomics [5]. By using these
approaches, we now have access for the ¢rst time to the full
list of genes present in diverse organisms, as well as protein^
protein interaction maps for some of them [6]. Determination

of how those genes/proteins work coordinately, and which are
the crucial genes/proteins in the phenomena studied, are im-
portant goals of functional genomics/proteomics, and should
help lead to a better understanding of cellular mechanisms,
allowing (among other things) the design of novel therapeu-
tics.

Previous studies in proteomics have been carried out to
trace protein interaction maps, but the limitation of those
approaches is the interpretation of the maps generated [6].
That is, given that di¡erent protein interactors are detected
for a protein, this does not necessarily mean that they all act
in a protein complex. Alternatively, in the genomics ¢eld,
microarray technology provides a tool to detect genes/proteins
involved in the transcriptional response of a cell to a partic-
ular stimulus (or set of stimuli). From cluster analysis [7] it is
possible to detect those genes participating in a common
mechanism. The limitation of this approach is that, although
clusters of genes may be identi¢ed, the mechanisms by which
these genes function together, and the determination of which
of the associated gene products are optimal for potential drug
discovery programs, are not addressed by cluster analysis.
Additionally, the functional analysis of genomics and proteo-
mics data usually depends on the annotated function of the
genes and proteins. Although this is a powerful way of ana-
lyzing data, it has certain limitations: for example, many
genes have no currently assigned function (and to establish
gene function is often laborious).

Recognizing these limitations, we sought to develop a bio-
informatics approach and a conceptual framework for pre-
dicting genes/proteins controlling biomolecular mechanisms.
We refer to this approach as Nexxus, and it is designed to
detect key proteins controlling biochemical mechanisms,
where regulation of protein^protein interactions is crucial
for the system studied, by combining data from genomics
(microarray technology) and proteomics (protein^protein in-
teractions). This approach is based on the prediction of pro-
tein paths using a mathematical algorithm derived from the
theory of graphs [8] and intended to search for the shortest
path connecting two vertices in a graph. In this way, we re-
construct the minimum protein^protein interaction map that
includes the genes detected in a microarray experiment (see
Fig. 1C). Since these paths are not necessarily the ones present
in the cellular event studied (see below), any prediction based
on the proteins constituting the paths that were not detected
in the microarray experiment may lead to false predictions.
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Alternatively, we considered the paths as an indication that
two proteins can be linked through protein^protein interac-
tions.

Based on earlier work [1] it is reasonable to hypothesize
that in protein graphs, nexuses play a key role in maintaining
the organization and function of the molecular network de-
scribed by each graph. Studying diverse biological systems, it
has been shown that biochemical pathways are not arranged
with random numbers of connectivities; instead, they display
a scale-free character [1]. A crucial characteristic of this type
of system is that it is largely controlled by a few hubs or
nexuses, which dominate the overall connectivity and stability
of the graph. By implication, identifying these nexuses is likely
to represent an important step in functional genomic studies.
When all of the cellular proteins are considered to generate a
protein graph, nexuses can be detected that are likely to be
important evolutionarily and functionally [9]. However, cell
specialization may create subsets of these rather complete
protein graphs. In these subsets, di¡erent nexuses may be

detected (see Fig. 1B,C). We therefore introduce the notion
of dynamic nexuses (DN) in order to: (a) de¢ne the nexuses
used in a particular cellular state; (b) distinguish DN from
static nexuses (SN) detected from the complete protein^pro-
tein interaction map of an organism. Our approach, Nexxus,
is intended to detect both DN and SN without relying on the
annotated function of the genes/proteins, instead utilizing the
data provided by microarray (gene expression) and protein^
protein interaction maps. As protein interaction maps and
microarray studies become more extensive, the predictive
power of Nexxus, as well as the accuracy of the predictions
generated, should increase concomitantly.

Considering the nature of the data used in this work (pro-
tein^protein interactions and gene expression patterns), Nex-
xus is expected to be useful in the analysis of systems in which
the regulation of protein^protein interactions is critical (i.e.
signal transduction), but is less likely to be useful in detecting
proteins involved in critical enzymatic reactions (e.g. proteol-
ysis, metabolism).

Fig. 1. Protein^protein interaction maps as graphs. A protein^protein interaction map is depicted using lines and circles to indicate protein^pro-
tein interactions and proteins, respectively. This representation can be classi¢ed as a graph (A) or a tree (D). A red circle represents a protein
nexus (A, C). Proteins detected from a microarray are represented in blue (B). The red lines indicate the di¡erent protein paths that can be
traced connecting the circles in blue. The smallest protein^protein interaction map (C) produced from B with the corresponding protein paths
is also indicated.
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2. Materials and methods

2.1. Protein^protein interaction data
Two data sets of protein^protein interactions were used in this

study. The ProNet database (http://pronet.doubletwist.com) was
used to trace protein complexes/paths in the ischemia model. Alter-
natively, the protein^protein interactions reported in the PathCalling
Yeast Interaction database (http://portal.curagen.com) [10] were used
for detecting nexuses in yeast. In this latter case, every protein^protein
interaction reported at this site was downloaded, consisting of 2547
protein^protein interactions and 1376 proteins.

The ProNet database contains information on protein^protein in-
teractions that have been described in the published literature for
human proteins identi¢ed using the yeast two-hybrid system. We ob-
tained a list of all of the protein^protein pairs that could be linked to
the set of gene products regulated during the ischemia experiment.
These included 820 protein^protein interactions and 611 proteins.

2.2. Detecting static nexuses from the connectivity distribution P(k) of
protein interaction maps

For each protein, the number of interactors was determined (k) and
then the numbers of proteins having k = 0,1,2T number of interactors
were determined. Dividing each value obtained in this way by the
total number of proteins in the graph provided the value P(k), or
the probability that the protein will have a number k of interactors.
SN are proteins with the larger k values. These are referred to as static
because these can be detected without tracing paths.

2.3. Detecting dynamic nexuses
In order to predict protein paths based on protein^protein interac-

tions, we adapted a previously described algorithm [11] to detect the
shortest path connecting two vertices. In this way we traced the mini-
mum protein^protein interaction map that includes the gene products
detected by the microarray experiments and protein^protein interac-
tion data (see Fig. 1C).

Given a minimum protein^protein interaction map, DN can be
detected. DN are proteins connecting the largest number of protein
paths. This de¢nition di¡ers from the one used to de¢ne SN in the
sense that the connectivity in DN refers to paths rather than to in-
dividual proteins in the graph. Two types of DN can be identi¢ed.
One is determined considering only the genes detected in the micro-
array experiment, and the other type is obtained when considering all
of the proteins predicted in the paths. We refer here to DN as the ¢rst
type. It was initially conceivable that this approach would detect only
those proteins with the most protein interactors reported in the pro-
tein^protein interaction maps. In order to exclude this possibility, we
reported the number of interactors for each protein included in de-
tecting DN (see Tables 1A,B and 2).

3. Results and discussion

In proof-of-principle experiments, we ¢rst determined the
topology of the protein graphs used in these studies, derived

from studies of apoptosis [12] and yeast [10]. Fig. 2A,B shows
that in both cases, the protein^protein interaction maps dis-
play a characteristic distribution of the heterogeneous class of
graphs referred to as scale-free, for which the connectivity
distribution P(k) follows a power law, P(k)Wk3Q [1]. The
estimated Q values for apoptosis and yeast graphs were 2.41
and 2.28, respectively.

The scale-free character of these graphs implies that nodes
of highest connectivity should be identi¢able. Beyond simple
connectivity, we analyzed all possible protein interaction
paths to identify the proteins most frequently involved in
these paths. These proteins were dubbed nexuses. In order
to identify DN, i.e. those derived by tracing protein interac-
tion paths using the algorithm described herein, and SN,
which are the proteins with highest reported simple connec-
tivity, we used the yeast as a model. In the group of genes
regulated in the S phase of the yeast cell cycle [7] (65 proteins,
15 of which have known interactors), we identi¢ed CDC5 and
MOB1 as DN. In the groups of genes regulated during phos-
phate metabolism [13] (37 proteins, eight of which have
known interactors), we identi¢ed PHO85 and MSN5 as DN
(see Table 1A,B). DN are proposed to play key roles in the
mechanism that utilizes the network in which these are lo-
cated. Proteins posited to be critical in the S phase or phos-
phate metabolism are thus hypothesized to be associated with
an inviable null phenotype. In agreement with this hypothesis,
the null phenotypes for the DN detected were indeed inviable
[14,15] : all DN predicted in these proof-of-principle experi-
ments displayed inviable null phenotypes. Conversely, all pro-
teins not predicted to be DN displayed viable null phenotypes,
implying that these are not required for survival, with a very
few exceptions ^ two of 15 for the cell cycle study, and zero of
eight for the phosphate metabolism study ^ exceptions that
proved to be informative (Table 1): CDC20 was the only
protein predicted to be neither a DN nor a SN yet still dis-
played a non-viable null phenotype, but importantly the func-
tion of CDC20 is not restricted to the cell cycle. TEM1 was
the other `outlier' in that it was not predicted to be a DN;
however, it was predicted to be a SN; furthermore, it dis-
played the highest dynamic connectivity after CDC5 and
MOB1, suggesting that when complete protein interaction
maps are available, it may indeed prove to be a DN.

Table 1A
Detecting protein nexuses for cell cycle-regulated genes in S phase

Protein name DC SC Null phenotype

MET28 11 2 viable
NUM1 11 3 viable
KIP2 11 1 viable
ACE2 0 1 viable
MET17 11 1 viable
MET14 0 1 viable
MYO1 11 2 viable
CDC5 14 3 inviable
SWI5 11 4 viable
CDC20 11 2 inviable
MOB1 14 4 inviable
TEM1 12 24 inviable
CLB2 11 8 viable
CLB1 11 2 viable
HST3 0 1 viable

Table 1B
Detecting protein nexuses for regulated genes in phosphate metabo-
lism

Protein name DC SC Null phenotype

PHO4 1 2 not reported
PHO85 6 11 inviable
PHO80 1 1 viable
PSE1 5 11 viable
MSN5 6 5 viable/inviable
PHO13 5 1 viable
PHO12 5 1 not reported
CTF19 5 1 viable

Protein name: the name used to identify the gene product in the
PathCalling database. DC: dynamic connectivity, i.e. the number of
protein interactors found in the protein paths predicted by Nexxus.
Those proteins with the greatest dynamic connectivity are predicted
to be DN. SC: static connectivity, i.e. the number of protein inter-
actors reported in the PathCalling database for each protein. Those
proteins with the greatest static connectivity are predicted to be SN.
Null phenotype: as described in the PathCalling database.
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These initial studies therefore suggested that it is likely to be
important to identify both DN and SN. It is important to
note that CDC5 and MOB1 did not demonstrate high simple
connectivity (number of interactors) and were therefore not
predicted to be SN, yet were predicted to be DN based on the
path tracing algorithm, and indeed proved to be required for
yeast survival. Our results may be used to enhance the under-
standing of the relationship between the physical connectivity
and lethal functionality of proteins [9]. Overall, then, combin-
ing the cell cycle study with the phosphate metabolism study,
¢ve of six non-viable null phenotypes were predicted by con-
sidering dynamic and static connectivity, with the one not
predicted (CDC20) functioning outside the cellular systems
studied; and 14 of 15 viable phenotypes were predicted on
the basis of lower connectivities (PSE1 displayed high static
connectivity (Table 1) yet was reported to be viable; note that
PHO4 and PHO12 were reported to be neither viable nor non-
viable). To estimate the statistical signi¢cance of these results,
we determined the 95% con¢dence interval (CI) for Nexxus in

detecting critical genes based on these initial studies. This
calculation was made with the assumption that the data
were independent of each other. The CI was 80^100% for
speci¢city; that is, with 95% con¢dence, Nexxus will detect
in s 80% of the cases non-critical genes as non-critical. Due
to the lower number of non-viable phenotypes in these initial
studies, the 95% CI for sensitivity was larger ^ 37^100% ^ and
additional studies will be required to narrow this interval.

We next carried out a microarray experiment to detect SN
and DN from upregulated apoptosis-associated genes during
an in vivo global cerebral ischemia experiment [7]. We were
able to trace protein paths connecting eight genes out of 36
upregulated genes. The protein E2F1 was predicted to be a
DN (see Table 2). None of the other upregulated genes de-
tected in the microarray experiment were predicted to be DN
or SN (data not shown). Interestingly, previous studies have
shown that an increased level of protein E2F1 is observed
during neuronal cell death after an ischemic insult [16]. In
that study it was reported that inhibiting an upstream e¡ector
of E2F1 reduced protein levels of E2F1 and reduced cell death
by 80%, supporting a key role for E2F1 in ischemic cell death.

In summary, Nexxus is a bioinformatics approach that uti-
lizes microarray and protein^protein interaction data to iden-
tify proteins with key roles in biomolecular mechanisms (SN
and DN) in which regulation of protein^protein interactions is
crucial. One advantage of this approach is the ability to detect
genes crucial for biomolecular mechanisms from microarray
data without any knowledge about their functions. In proof-
of-principle studies, we have demonstrated the use of this

Table 2
Predicting functional nexuses from microarray data generated by
studies of cerebral ischemia

ProNet name DC SC Function

E2F1 10 3 transcription factor
Bcl2-K 8 15 Bcl-2, alt. transcript K (239)
CASP3 6 1 caspase 3
JUN 5 7 proto-oncogene c-Jun
RB1 6 7 retinoblastoma 1
VDR 4 7 vitamin D3 receptor
CASH-K 6 5 caspase-like, alt. transcript 1
NCOA1a(v) 8 4 nuclear receptor coactivator 1
CDK2 4 4 cyclin-dependent kinase
UBE3A 1 2 E6-AP ubiquitin-protein ligase
F1A-K 6 1 F1A-K
NFKB1 6 2 transcription factor
TRIP11 6 1 thyroid receptor interactor 11
PGR 1 1 progesterone receptor
SMN1 6 4 survival of motor neuron 1
TP53BP2 5 4 tumor protein p53-binding

protein 2
AF 6 2 antisecretory factor 1
TP53 5 9 tumor protein p53
UBE2I 10 11 ubiquitin-conjugating enzyme
LYL1 6 1 lymphoblastic leukemia

sequence 1
RBL2 4 6 retinoblastoma-like protein 2
XPB 6 1 xeroderma pigmentosum gene
14-3-3e 2 3 14-3-3 protein, O
TNFR1 6 7 tumor necrosis factor receptor 1
14-3-3b 6 5 14-3-3 protein, L
GADD34 0 1 growth arrest and DNA

damage-inducible
UBE2L1 1 3 ubiquitin-conjugating enzyme
E2A(E12) 6 3 transcription factor
PTP1E 2 2 tyrosine phosphatase
BCR 6 1 breakpoint cluster region
RAD23B 6 2 xeroderma pigmentosum, repair
c-Cbl 1 9 proto-oncogene c-Cbl
FADD 6 4 FADD
RXRa 6 22 retinoid X receptor, K
DP1 6 5 transcription factor
c-Raf1 5 15 viral oncogene homolog C1
E2F5 1 2 transcription factor
APO-1 6 3 apoptosis antigen 1

ProNet name: the name used to identify the gene product in the
ProNet database. DC: dynamic connectivity, as described above.
SC: static connectivity, as described above. Function: the function
assigned to the protein in the ProNet database.

Fig. 2. Topology of protein^protein interaction maps. Connectivity
distributions (Log(P(k)) vs. Log(k)) for the apoptotic (A) and yeast
(B) protein^protein interaction maps.
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approach by determining static and dynamic connectivities,
thus detecting SN and DN in three di¡erent cellular roles.
As information on gene expression and protein^protein inter-
actions accumulates, the accuracy and completeness of anal-
ysis by Nexxus should increase concomitantly, making Nex-
xus an increasingly valuable tool for the identi¢cation of
nodal control points in biochemical pathways.
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