Volume and Ehrhart polynomials of polytopes

by Fu Liu
U.C. Davis

March 14th, 2007

Outline

- Preliminaries
- Ehrhart polynomials of cyclic polytopes and lattice-face polytopes
- Formula for the volume of the Birkhoff polytope

PART I:

Preliminaries

Summary: We will go over some basic definitions and theory we need for this talk.

Basic definitions related to polytopes

Definition 1 (\mathcal{V}-representation). A convex polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,
$P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}:\right.$ all $\lambda_{i} \geq 0$, and $\left.\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\}$.

Basic definitions related to polytopes

Definition $1(\mathcal{V}$-representation). A convex polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,
$P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}:\right.$ all $\lambda_{i} \geq 0$, and $\left.\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\}$.

There is an alternative definition of polytopes in terms of halfspaces.
Definition 2 (\mathcal{H}-representation). A convex polytope $P \subset \mathbb{R}^{d}$ is a bounded intersection of halfspaces:

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{d}: A \mathbf{x} \leq \mathbf{z}\right\},
$$

for some $A \in \mathbb{R}^{m \times d}, \mathbf{z} \in \mathbb{R}^{m}$.

The set of all affine combinations of points in some set $S \subset \mathbb{R}^{d}$ is called the affine hull of S, and denoted as aff (S) :

$$
\operatorname{aff}(S)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: v_{1}, v_{2}, \ldots, v_{n} \in S, \text { all } \lambda_{i} \in \mathbb{R}, \text { and } \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

The set of all affine combinations of points in some set $S \subset \mathbb{R}^{d}$ is called the affine hull of S, and denoted as aff (S) :

$$
\operatorname{aff}(S)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: v_{1}, v_{2}, \ldots, v_{n} \in S, \text { all } \lambda_{i} \in \mathbb{R}, \text { and } \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a polytope of dimension d in some $\mathbb{R}^{e}(e \geq d)$.

The set of all affine combinations of points in some set $S \subset \mathbb{R}^{d}$ is called the affine hull of S, and denoted as aff (S) :

$$
\operatorname{aff}(S)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: v_{1}, v_{2}, \ldots, v_{n} \in S, \text { all } \lambda_{i} \in \mathbb{R}, \text { and } \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a polytope of dimension d in some $\mathbb{R}^{e}(e \geq d)$.

Definition 3. Let $P \subset \mathbb{R}^{d}$ be a convex polytope. A linear inequality $\mathbf{c x} \leq c_{0}$ is valid for P if it is satisfied for all points $\mathbf{x} \in P$. A face of P is any set of the form

$$
F=P \cap\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{c x}=c_{0}\right\}
$$

where $\mathbf{c x} \leq c_{0}$ is a valid inequality for P. The dimension of a face is the dimension of its affine hull: $\operatorname{dim}(F):=\operatorname{dim}(\operatorname{aff}(F))$.

The faces of dimension 0,1 , and $\operatorname{dim}(P)-1$ are called vertices, edges, and facets, respectively.

Lattice points

The d-dimensional lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$ is the collection of all points with integer coordinates. Any point in a lattice is called a lattice point.

Lattice points

The d-dimensional lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$ is the collection of all points with integer coordinates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.

Lattice points

The d-dimensional lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$ is the collection of all points with integer coordinates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.
For any region $R \subset \mathbb{R}^{d}$, we denote by $\mathcal{L}(R):=R \cap \mathbb{Z}^{d}$ the set of lattice points in R.

Lattice points

The d-dimensional lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$ is the collection of all points with integer coordinates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.
For any region $R \subset \mathbb{R}^{d}$, we denote by $\mathcal{L}(R):=R \cap \mathbb{Z}^{d}$ the set of lattice points in R.

Definition 4. For any polytope $P \subset \mathbb{R}^{d}$ and some positive integer $m \in \mathbb{N}$, the mth dilated polytope of P is $m P=\{m \mathbf{x}: \mathbf{x} \in P\}$. We denote by

$$
i(m, P)=|\mathcal{L}(m P)|
$$

the number of lattice points in $m P$.

Examples of integral polytopes

Examples of integral polytopes

(i) When $d=1, P$ is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $m P=[m a, m b]$ and

$$
i(P, m)=(b-a) m+1
$$

Examples of integral polytopes

(i) When $d=1, P$ is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $m P=[m a, m b]$ and

$$
i(P, m)=(b-a) m+1
$$

(ii) When $d=2, P$ is an integral polygon, and so is $m P$. By Pick's theorem:

$$
\begin{aligned}
i(P, m) & =\operatorname{area}(m P)+\frac{1}{2}\left|\partial(m P) \cap \mathbb{Z}^{d}\right|+1 \\
& =\operatorname{area}(P) m^{2}+\frac{1}{2}\left|\partial(P) \cap \mathbb{Z}^{d}\right| m+1
\end{aligned}
$$

Examples of integral polytopes

(i) When $d=1, P$ is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $m P=[m a, m b]$ and

$$
i(P, m)=(b-a) m+1
$$

(ii) When $d=2, P$ is an integral polygon, and so is $m P$. By Pick's theorem:

$$
\begin{aligned}
i(P, m) & =\operatorname{area}(m P)+\frac{1}{2}\left|\partial(m P) \cap \mathbb{Z}^{d}\right|+1 \\
& =\operatorname{area}(P) m^{2}+\frac{1}{2}\left|\partial(P) \cap \mathbb{Z}^{d}\right| m+1
\end{aligned}
$$

(iii) For any d, let P be the convex hull of the set $\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{i}=\right.$ 0 or 1$\}$, i.e. P is the unit cube in \mathbb{R}^{d}. Then it is obvious that

$$
i(P, m)=(m+1)^{d}
$$

Theorem of Ehrhart

Theorem 5. (Ehrhart) Let P be a d-dimensional integral polytope, then $i(P, m)$ is a polynomial in m of degree d.

Therefore, we call $i(P, m)$ the Ehrhart polynomial of P.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m)$?

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m)$?

The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m)$?

The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
|nW The second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m)$?

The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
InI The second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
|"IIt The constant term of $i(P, m)$ is always 1 .

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m)$?

Nult The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
IIILT The second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

Int The constant term of $i(P, m)$ is always 1 .
|III No results for other coefficients for general polytopes.

PART II:

Ehrhart polynomials of cyclic polytopes
 and lattice-face polytopes

Summary: In this part, we introduce families of polytopes, the coefficients of whose Ehrhart polynomials can be described in terms of volumes.

Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given $T=\left\{t_{1}, \ldots, t_{n}\right\}<$ a linearly ordered set, a d-dimensional cyclic polytope $C_{d}(T)=C_{d}\left(t_{1}, \ldots, t_{n}\right)$ is the convex hull $\operatorname{conv}\left\{v_{d}\left(t_{1}\right), v_{d}\left(t_{2}\right), \ldots, v_{d}\left(t_{n}\right)\right\}$ of $n>d$ distinct points $\nu_{d}\left(t_{i}\right), 1 \leq i \leq n$, on the moment curve.

The moment curve (also known as rational normal curve) in \mathbb{R}^{d} is defined by

$$
\nu_{d}: \mathbb{R} \rightarrow \mathbb{R}^{d}, t \mapsto \nu_{d}(t)=\left(\begin{array}{c}
t \\
t^{2} \\
\vdots \\
t^{d}
\end{array}\right)
$$

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)$ is the convex polytope whose vertices are $\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)$.

Theorem 6. For any d-dimensional integral cyclic polytope $C_{d}(T)$,

$$
i\left(C_{d}(T), m\right)=\operatorname{Vol}\left(m C_{d}(T)\right)+i\left(C_{d-1}(T), m\right)
$$

Hence,

$$
\begin{aligned}
i\left(C_{d}(T), m\right) & =\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(m C_{k}(T)\right) \\
& =\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(C_{k}(T)\right) m^{k}
\end{aligned}
$$

where $\operatorname{Vol}_{k}\left(m C_{k}(T)\right)$ is the volume of $m C_{k}(T)$ in k-dimensional space, and by convention we let $\operatorname{Vol}_{0}\left(m C_{0}(T)\right)=1$.

Example: $T=\{1,2,3,4\}, d=3$:

Example: $T=\{1,2,3,4\}, d=3$:

$$
\begin{aligned}
& \text { (1世 } C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
8
\end{array}\right),\left(\begin{array}{c}
3 \\
9 \\
27
\end{array}\right),\left(\begin{array}{c}
4 \\
16 \\
64
\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+ \\
& 4 m^{2}+3 m+1 .
\end{aligned}
$$

Example: $T=\{1,2,3,4\}, d=3$:
(n+ $C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+$
$4 m^{2}+3 m+1$.
$C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=$ $4 m^{2}+3 m+1$.

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+$ $4 m^{2}+3 m+1$.
(1) $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=$ $4 m^{2}+3 m+1$.

IIt $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+$ $4 m^{2}+3 m+1$.
(IIT $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=$ $4 m^{2}+3 m+1$.

IIt $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.
"LI $C_{d-3}(T)=\mathbb{R}^{0}: i\left(C_{d-3}(T), m\right)=1$.

Example: $T=\{1,2,3,4\}, d=3$:
(Int $C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+$ $4 m^{2}+3 m+1$.
|u|t $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=$ $4 m^{2}+3 m+1$.

IIt $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.
"||l| $C_{d-3}(T)=\mathbb{R}^{0}: i\left(C_{d-3}(T), m\right)=1$.
Int 2, 4, 3 and 1 are the volumes of $C_{3}(T), C_{2}(T), C_{1}(T)$ and $C_{0}(T)$, respectively.

Note that if we define $\pi^{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^{k}\left(C_{d}(T)\right)=C_{d-k}(T)$. So when $P=C_{d}(T)$ is an integral cyclic polytope, we have that

$$
\begin{equation*}
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k} \tag{7}
\end{equation*}
$$

where $\operatorname{Vol}_{k}(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^{k}.

Note that if we define $\pi^{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^{k}\left(C_{d}(T)\right)=C_{d-k}(T)$. So when $P=C_{d}(T)$ is an integral cyclic polytope, we have that

$$
\begin{equation*}
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k} \tag{7}
\end{equation*}
$$

where $\operatorname{Vol}_{k}(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^{k}.
Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as cyclic polytopes? In other words, what kind of integral d-polytopes P are there whose Ehrhart polynomials will be in the form of (7)?

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$. In other words, after dropping the last coordinate of the lattice of $\operatorname{aff}(U)$, we get the $(d-1)$-dimensional lattice.

$$
\text { Example of condition b): } \pi(\mathcal{L}(\mathrm{aff}(U)))=\mathbb{Z}^{d-1}
$$

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

$$
P=C_{2}(\{1,2,3,4\})=
$$

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

$$
P=C_{2}(\{1,2,3,4\})=
$$

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

Remark: Condition \mathbf{b}) is equivalent to saying that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap \operatorname{aff}(U)$, the intersection of $\operatorname{aff}(U)$ with the inverse image of y under π, is a lattice point.

Example of condition b): $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$

Example: $T=\{1,2,3,4\}, d=2, T^{\prime}=\{1,3\}, U=\{(1,1),(3,9)\}$.

Remark: Condition \mathbf{b}) is equivalent to saying that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap \operatorname{aff}(U)$, the intersection of $\operatorname{aff}(U)$ with the inverse image of y under π, is a lattice point.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$.

Lemma 8. Any integral cyclic polytope is a lattice-face polytope.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi(\mathcal{L}(\operatorname{aff}(U)))=\mathbb{Z}^{d-1}$.

Lemma 8. Any integral cyclic polytope is a lattice-face polytope.

Lemma 9. Any lattice-face polytope is an integral polytope.

Examples of 2-polytopes

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z}
\end{aligned}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(2, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\{2\} .
\end{aligned}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(2, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\{2\} .
\end{aligned}
$$

P_{1} is NOT a lattice-face polytope.

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

P_{1} is NOT a lattice-face polytope.
Example: Let P_{2} be the polytope with vertices $v_{1}=(0,0), v_{2}=(3,0)$, and $v_{3}=(2,2)$.

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

P_{1} is NOT a lattice-face polytope.
Example: Let P_{2} be the polytope with vertices $v_{1}=(0,0), v_{2}=(3,0)$, and $v_{3}=(2,2)$.

$$
U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(2, x) \mid x \in \mathbb{R}\} \text {. So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\{2\} .
\end{aligned}
$$

P_{1} is NOT a lattice-face polytope.
Example: Let P_{2} be the polytope with vertices $v_{1}=(0,0), v_{2}=(3,0)$, and $v_{3}=(2,2)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=\mathbb{Z}
\end{aligned}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(2, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\{2\} .
\end{aligned}
$$

P_{1} is NOT a lattice-face polytope.
Example: Let P_{2} be the polytope with vertices $v_{1}=(0,0), v_{2}=(3,0)$, and $v_{3}=(2,2)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=\mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(x, 6-2 x) \mid x \in \mathbb{R}\} . \\
& \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\mathbb{Z}
\end{aligned}
$$

Examples of 2-polytopes

Example: Let P_{1} be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(2,1)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(2 x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=2 \mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(2, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\{2\} .
\end{aligned}
$$

P_{1} is NOT a lattice-face polytope.
Example: Let P_{2} be the polytope with vertices $v_{1}=(0,0), v_{2}=(3,0)$, and $v_{3}=(2,2)$.

$$
\begin{aligned}
& U_{1}=\left\{v_{1}, v_{2}\right\}, \operatorname{aff}\left(U_{1}\right) \text { is }\{(x, 0) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{1}\right)\right)\right)=\mathbb{Z} . \\
& U_{2}=\left\{v_{1}, v_{3}\right\}, \operatorname{aff}\left(U_{2}\right) \text { is }\{(x, x) \mid x \in \mathbb{R}\} . \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{2}\right)\right)\right)=\mathbb{Z} \\
& U_{3}=\left\{v_{2}, v_{3}\right\}, \operatorname{aff}\left(U_{3}\right) \text { is }\{(x, 6-2 x) \mid x \in \mathbb{R}\} . \\
& \text { So } \pi\left(\mathcal{L}\left(\operatorname{aff}\left(U_{3}\right)\right)\right)=\mathbb{Z}
\end{aligned}
$$

For each U_{i}, condition $\left.a\right)$ is always satisfied.
P_{2} is a lattice-face polytope.

How big is the family of lattice-face polytopes?

The family of lattice-face polytopes is much bigger than that of cyclic polytopes. Cyclic polytopes are all simplicial polytopes, while lattice-face polytopes can be of any combinatorial type.

Theorem 10. Let P be a lattice-face d-polytope, then

$$
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k}
$$

Theorem 10. Let P be a lattice-face d-polytope, then

$$
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k}
$$

Example: Let $d=3$, let P be the polytope with the vertex set $V=\left\{v_{1}=\right.$ $\left.(0,0,0), v_{2}=(4,0,0), v_{3}=(3,6,0), v_{4}=(2,2,10)\right\}$. One can check that P is a lattice-face polytope.

$$
\begin{aligned}
& \operatorname{Vol}(P)=40 \\
& \pi(P)=\operatorname{conv}\{(0,0),(4,0),(3,6)\}, \text { and } \operatorname{Vol}(\pi(P))=12 \\
& \pi^{2}(P)=[0,4], \text { and } \operatorname{Vol}\left(\pi^{2}(P)\right)=4
\end{aligned}
$$

Thus, by the theorem, the Ehrhart polynomial of P is

$$
i(P, m)=40 m^{3}+12 m^{2}+4 m+1
$$

PART III:

Formula for the Volume of the Birkhoff polytope

Summary: We give a formula for the volume of the Birkhoff polytope obtained by a calculation of its Ehrhart polynomial. This is joint work with Jesus De Loera and Ruriko Yoshida.

Birkhoff polytope

Definition 11. The Birkhoff polytope, denoted by B_{n}, is the convex polytope of $n \times n$ doubly-stochastic matrices; that is, the set of real nonnegative matrices with all row and column sums equal to one.

We consider B_{n} in the n^{2}-dimensional space $\mathbb{R}^{n^{2}}=\{n \times n$ real matrices $\}$. Below are some basic facts about B_{n} :

- The vertices of B_{n} are the $n \times n$ permutation matrices.
- B_{n} has n^{2} facets: for each pair of (i, j) with $1 \leq i, j \leq n$, the doubly-stochastic matrices with (i, j) entry equal to 0 is a facet.

Birkhoff polytope

Definition 11. The Birkhoff polytope, denoted by B_{n}, is the convex polytope of $n \times n$ doubly-stochastic matrices; that is, the set of real nonnegative matrices with all row and column sums equal to one.

We consider B_{n} in the n^{2}-dimensional space $\mathbb{R}^{n^{2}}=\{n \times n$ real matrices $\}$. Below are some basic facts about B_{n} :

- The vertices of B_{n} are the $n \times n$ permutation matrices.
- B_{n} has n^{2} facets: for each pair of (i, j) with $1 \leq i, j \leq n$, the doubly-stochastic matrices with (i, j) entry equal to 0 is a facet.

It is a wide open problem to compute the volume of the Birkhoff polytopes. We only know the volume of B_{n} for $n \leq 10$. Our goal is to give a combinatorial formula of $\operatorname{Vol}\left(B_{n}\right)$.

Multivariate generating function

For any polyhedron $P \in \mathbb{R}^{d}$, we define the multivariate generating function (MGF) of P as

$$
f(P, \mathbf{z})=\sum_{\alpha \in P \cap \mathbb{Z}^{d}} \mathbf{z}^{\alpha},
$$

where $\mathbf{z}^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{d}^{\alpha_{d}}$.
One sees that by setting $\mathbf{z}=(1,1, \ldots, 1)$, we get the number of lattice points in P if P is a polytope.

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$.

$$
P: \underbrace{f(P, \mathbf{z})}_{(0,1)} \begin{aligned}
& =z_{1}^{0} z_{2}^{0}+z_{1}^{1} z_{2}^{0}+z_{1}^{2} z_{2}^{0}+z_{1}^{0} z_{2}^{1}+z_{1}^{1} z_{2}^{1}+z_{1}^{0} z_{2}^{2} \\
& =1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}
\end{aligned}
$$

Why MGF?

Lemma 12 (Brion, 1988; Lawrence, 1991). Let P be a rational polyhedron and let $V(P)$ be the vertex set of P. Then,

$$
f(P, \mathbf{z})=\sum_{v \in V(P)} f(C(P, v), \mathbf{z})
$$

where $C(P, v)$ is the supporting cone of P at v, i.e., the smallest cone with vertex v containing P.

If K is a d-dimensional cone in \mathbb{R}^{e}, generated by vectors $\left\{r_{i}\right\}_{1 \leq i \leq d}$ such that the r_{i} 's form a \mathbb{Z}-basis of the lattice $\operatorname{span}\left(\left\{r_{i}\right\}\right) \cap \mathbb{Z}^{e}$, then we say K is a unimodular cone.
Lemma 13. If K is a d-dimensional unimodular cone at an integral vertex v generated by the vectors $\left\{r_{i}\right\}_{1 \leq i \leq d}$, then we have

$$
f(K, \mathbf{z})=\mathbf{z}^{v} \prod_{i=1}^{d} \frac{1}{1-\mathbf{z}^{r_{i}}}
$$

Example of the lemmas

Example of the lemmas

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$. Recall that $f(P, \mathbf{z})=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}$.

Example of the lemmas

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$.
Recall that $f(P, \mathbf{z})=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}$.
$C\left(P, v_{1}\right): \underbrace{\uparrow}_{(0,0)}$
A unimodular cone generated by vectors $r_{1}=(1,0)$ and $r_{2}=(0,1)$.

$$
f\left(C\left(P, v_{1}\right), \mathbf{z}\right)=\mathbf{z}^{(0,0)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}^{r_{i}}}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}
$$

Example of the lemmas

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$.
Recall that $f(P, \mathbf{z})=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}$.

Example of the lemmas

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$.
Recall that $f(P, \mathbf{z})=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}$.

A unimodular cone generated by vectors $r_{1}=(1,0)$ and $r_{2}=(0,1)$.

$$
f\left(C\left(P, v_{1}\right), \mathbf{z}\right)=\mathbf{z}^{(0,0)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}^{r_{i}}}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}
$$

$C\left(P, v_{2}\right)$:
A unimodular cone generated by vectors $r_{1}=(-1,0)$ and $r_{2}=(-1,1)$. $f\left(C\left(P, v_{2}\right), \mathbf{z}\right)=\mathbf{z}^{(2,0)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}_{i}^{r}}=\frac{z_{1}^{2}}{\left(1-z_{1}^{-1}\right)\left(1-z_{1}^{-1} z_{2}\right)}=\frac{z_{1}^{4}}{\left(z_{1}-1\right)\left(z_{1}-z_{2}\right)}$.

A unimodular cone generated by vectors $r_{1}=(0,-1)$ and $r_{2}=(1,-1)$.
$f\left(C\left(P, v_{3}\right), \mathbf{z}\right)=\mathbf{z}^{(0,2)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}_{i}^{r}}=\frac{z_{2}^{2}}{\left(1-z_{2}^{-1}\right)\left(1-z_{1} z_{2}^{-1}\right)}=\frac{z_{2}^{4}}{\left(z_{2}-1\right)\left(z_{2}-z_{1}\right)}$.

Example of the lemmas

Example: Let P be the polytope with vertices $v_{1}=(0,0), v_{2}=(2,0)$ and $v_{3}=(0,2)$.
Recall that $f(P, \mathbf{z})=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}$.

A unimodular cone generated by vectors $r_{1}=(1,0)$ and $r_{2}=(0,1)$.

$$
f\left(C\left(P, v_{1}\right), \mathbf{z}\right)=\mathbf{z}^{(0,0)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}^{r_{i}}}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}
$$

$C\left(P, v_{2}\right)$:
A unimodular cone generated by vectors $r_{1}=(-1,0)$ and $r_{2}=(-1,1)$. $f\left(C\left(P, v_{2}\right), \mathbf{z}\right)=\mathbf{z}^{(2,0)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}_{i}^{r}}=\frac{z_{1}^{2}}{\left(1-z_{1}^{-1}\right)\left(1-z_{1}^{-1} z_{2}\right)}=\frac{z_{1}^{4}}{\left(z_{1}-1\right)\left(z_{1}-z_{2}\right)}$.

A unimodular cone generated by vectors $r_{1}=(0,-1)$ and $r_{2}=(1,-1)$. $f\left(C\left(P, v_{3}\right), \mathbf{z}\right)=\mathbf{z}^{(0,2)} \prod_{i=1}^{2} \frac{1}{1-\mathbf{z}^{r}}=\frac{z_{2}^{2}}{\left(1-z_{2}^{-1}\right)\left(1-z_{1} z_{2}^{-1}\right)}=\frac{z_{2}^{4}}{\left(z_{2}-1\right)\left(z_{2}-z_{1}\right)}$. $\sum_{i=1}^{3} f\left(C\left(P, v_{i}\right), \mathbf{z}\right)=\frac{\left(z_{1}-z_{2}\right)-z_{1}^{4}\left(1-z_{2}\right)+z_{2}^{4}\left(1-z_{1}\right)}{\left(1-z_{1}\right)\left(1-z_{2}\right)\left(z_{1}-z_{2}\right)}=1+z_{1}+z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{2}^{2}=f(P, \mathbf{z})$.

Barvinok's algorithm

- Barvinok gave an algorithm to decompose a cone C as a signed sum of simple unimodular cones.
- Using the Brion's polarization trick, we can ignore the lower dimensional cones. This trick involves using the dual cone of C instead.

Barvinok's algorithm

- Barvinok gave an algorithm to decompose a cone C as a signed sum of simple unimodular cones.
- Using the Brion's polarization trick, we can ignore the lower dimensional cones. This trick involves using the dual cone of C instead.

Algorithm: Input a cone C with vertex v
i. Find a dual cone K to C.
ii. Apply the Barvinok decomposition to K and get a set of unimodular cones K_{i}.
iii. Find dual cone C_{i} of each K_{i}. (Note C_{i} is unimodular as well.)
iv. $f(C, \mathbf{z})=\sum_{i} f\left(C_{i}, \mathbf{z}\right)$.

Barvinok's algorithm

- Barvinok gave an algorithm to decompose a cone C as a signed sum of simple unimodular cones.
- Using the Brion's polarization trick, we can ignore the lower dimensional cones. This trick involves using the dual cone of C instead.

Algorithm: Input a cone C with vertex v
i. Find a dual cone K to C.
ii. Apply the Barvinok decomposition to K and get a set of unimodular cones K_{i}.
iii. Find dual cone C_{i} of each K_{i}. (Note C_{i} is unimodular as well.)
iv. $f(C, \mathbf{z})=\sum_{i} f\left(C_{i}, \mathbf{z}\right)$.

We will use this idea to find the MGF of the Birkhoff polytopes.

Apply the algorithm to B_{n}

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of its vertices. We will do it at the vertex associated to the identity permutation matrix, denoted by I.

Apply the algorithm to B_{n}

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of its vertices. We will do it at the vertex associated to the identity permutation matrix, denoted by I.
ii. We denote by C_{n} the supporting cone of B_{n} at I and find the dual cone K_{n} of C_{n}.

Apply the algorithm to B_{n}

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of its vertices. We will do it at the vertex associated to the identity permutation matrix, denoted by I.
ii. We denote by C_{n} the supporting cone of B_{n} at I and find the dual cone K_{n} of C_{n}.
iii. We show that any triangulation of K_{n} gives a set of unimodular cones. Instead of using Barvinok's method, we use the idea of Gröbner bases of toric ideals to produce triangulations. For any $\ell \in[n]=\{1,2, \ldots, n\}$, we can give a triangulation $T r i_{\ell}$ of C_{n} into n^{n-2} cones. In fact, the set of cones in $T r i_{\ell}$ is in bijection with $\operatorname{Arb}(\ell, n)$, the set of all ℓ-arborescences on the nodes $[n]$. An ℓ-arborescence is a directed tree with all arcs pointing away from a root ℓ.

Apply the algorithm to B_{n}

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of its vertices. We will do it at the vertex associated to the identity permutation matrix, denoted by I.
ii. We denote by C_{n} the supporting cone of B_{n} at I and find the dual cone K_{n} of C_{n}.
iii. We show that any triangulation of K_{n} gives a set of unimodular cones. Instead of using Barvinok's method, we use the idea of Gröbner bases of toric ideals to produce triangulations. For any $\ell \in[n]=\{1,2, \ldots, n\}$, we can give a triangulation $T r i_{\ell}$ of C_{n} into n^{n-2} cones. In fact, the set of cones in $T r i_{\ell}$ is in bijection with $\operatorname{Arb}(\ell, n)$, the set of all ℓ-arborescences on the nodes $[n]$. An ℓ-arborescence is a directed tree with all arcs pointing away from a root ℓ.
iv. By finding the dual cones to all of the cones in the $\operatorname{Tr} i_{\ell}$, we give the MGF of C_{n}.

The MGF of the dilation $m B_{n}$

The multivariate generating function of C_{n} is given by

$$
f\left(C_{n}, \mathbf{z}\right)=\sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{I} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e}}\right)}
$$

where $W^{T, e}(i, j)$ is a $(0,1,-1)$-matrix associated to the unique oriented cycle in $T \cup e$.

The MGF of the dilation $m B_{n}$

The multivariate generating function of C_{n} is given by

$$
f\left(C_{n}, \mathbf{z}\right)=\sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{I} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e}}\right)}
$$

where $W^{T, e}(i, j)$ is a $(0,1,-1)$-matrix associated to the unique oriented cycle in $T \cup e$.

Thus, we get the multivariate generating function of B_{n} :

$$
f\left(B_{n}, \mathbf{z}\right)=\sum_{\sigma \in S_{n}} \sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{\sigma} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e} \sigma}\right)} .
$$

The MGF of the dilation $m B_{n}$

The multivariate generating function of C_{n} is given by

$$
f\left(C_{n}, \mathbf{z}\right)=\sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{I} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e}}\right)},
$$

where $W^{T, e}(i, j)$ is a $(0,1,-1)$-matrix associated to the unique oriented cycle in $T \cup e$.

Thus, we get the multivariate generating function of B_{n} :

$$
f\left(B_{n}, \mathbf{z}\right)=\sum_{\sigma \in S_{n}} \sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{\sigma} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e} \sigma}\right)} .
$$

Theorem 14. The multivariate generating function of $m B_{n}$ is given by

$$
f\left(m B_{n}, \mathbf{z}\right)=\sum_{\sigma \in S_{n}} \sum_{T \in \mathbf{A r b}(\ell, n)} \mathbf{z}^{m \sigma} \prod_{e \notin E(T)} \frac{1}{\left(1-\prod \mathbf{z}^{W^{T, e} \sigma}\right)}
$$

From MGF to Ehrhart polynomial and volume

Corollary 15. The Ehrhart polynomial $i\left(B_{n}, m\right)$ of B_{n} is given by the formula
$i\left(B_{n}, m\right)=\sum_{k=0}^{(n-1)^{2}} m^{k} \frac{1}{k!} \sum_{\sigma \in S_{n}} \sum_{T \in \operatorname{Arb}(\ell, n)} \frac{(\langle c, \sigma\rangle)^{k} \operatorname{td}_{(n-1)^{2}-k}\left(\left\{\left\langle c, W^{T, e} \sigma\right\rangle, e \notin E(T)\right\}\right)}{\prod_{e \notin E(T)}\left\langle c, W^{T, e} \sigma\right\rangle}$.
The symbol $\operatorname{td}_{j}(S)$ is the j-th Todd polynomial evaluated at the numbers in the set S.
The vector $c \in \mathbb{R}^{n^{2}}$ is any vector such that $\left\langle c, W^{T, e} \sigma\right\rangle$ is non-zero for all pairs (T, e) of an ℓ - arborescence T and an arc $e \notin E(T)$ and all $\sigma \in S_{n}$.

From MGF to Ehrhart polynomial and volume

Corollary 15. The Ehrhart polynomial $i\left(B_{n}, m\right)$ of B_{n} is given by the formula

$$
i\left(B_{n}, m\right)=\sum_{k=0}^{(n-1)^{2}} m^{k} \frac{1}{k!} \sum_{\sigma \in S_{n}} \sum_{T \in \mathbf{A r b}(\ell, n)} \frac{(\langle c, \sigma\rangle)^{k} \operatorname{td}_{(n-1)^{2}-k}\left(\left\{\left\langle c, W^{T, e} \sigma\right\rangle, e \notin E(T)\right\}\right)}{\prod_{e \notin E(T)}\left\langle c, W^{T, e} \sigma\right\rangle}
$$

The symbol $\operatorname{td}_{j}(S)$ is the j-th Todd polynomial evaluated at the numbers in the set S.
The vector $c \in \mathbb{R}^{n^{2}}$ is any vector such that $\left\langle c, W^{T, e} \sigma\right\rangle$ is non-zero for all pairs (T, e) of an ℓ - arborescence T and an arc $e \notin E(T)$ and all $\sigma \in S_{n}$.

As a special case, the normalized volume of B_{n} is given by

$$
\operatorname{Vol}\left(B_{n}\right)=\frac{1}{\left((n-1)^{2}\right)!} \sum_{\sigma \in S_{n}} \sum_{T \in \operatorname{Arb}(\ell, n)} \frac{\langle c, \sigma\rangle^{(n-1)^{2}}}{\prod_{e \notin E(T)}\left\langle c, W^{T, e} \sigma\right\rangle}
$$

