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Outline

• Preliminaries

• Ehrhart polynomials of cyclic polytopes and lattice-face polytopes

• Formula for the volume of the Birkhoff polytope
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PART I:

Preliminaries

Summary: We will go over some basic definitions and theory we need for this talk.
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Basic definitions related to polytopes

Definition 1 (V-representation). A convex polytope P in the d-dimensional Euclidean

space R
d is the convex hull of finitely many points V = {v1, v2, . . . , vn} ⊂ R

d. In

other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.
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Basic definitions related to polytopes

Definition 1 (V-representation). A convex polytope P in the d-dimensional Euclidean

space R
d is the convex hull of finitely many points V = {v1, v2, . . . , vn} ⊂ R

d. In

other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.

There is an alternative definition of polytopes in terms of halfspaces.

Definition 2 (H-representation). A convex polytope P ⊂ R
d is a bounded intersection

of halfspaces:

P = {x ∈ R
d : Ax ≤ z},

for some A ∈ R
m×d, z ∈ R

m.
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The set of all affine combinations of points in some set S ⊂ R
d is called the affine

hull of S, and denoted as aff(S) :

aff(S) = {λ1v1+λ2v2+· · ·+λnvn : v1, v2, . . . , vn ∈ S, all λi ∈ R, and

n
∑

i=1

λi = 1}.
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The set of all affine combinations of points in some set S ⊂ R
d is called the affine

hull of S, and denoted as aff(S) :

aff(S) = {λ1v1+λ2v2+· · ·+λnvn : v1, v2, . . . , vn ∈ S, all λi ∈ R, and

n
∑

i=1

λi = 1}.

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a

polytope of dimension d in some R
e (e ≥ d).
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The set of all affine combinations of points in some set S ⊂ R
d is called the affine

hull of S, and denoted as aff(S) :

aff(S) = {λ1v1+λ2v2+· · ·+λnvn : v1, v2, . . . , vn ∈ S, all λi ∈ R, and

n
∑

i=1

λi = 1}.

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a

polytope of dimension d in some R
e (e ≥ d).

Definition 3. Let P ⊂ R
d be a convex polytope. A linear inequality cx ≤ c0 is valid

for P if it is satisfied for all points x ∈ P. A face of P is any set of the form

F = P ∩ {x ∈ R
d : cx = c0},

where cx ≤ c0 is a valid inequality for P. The dimension of a face is the dimension of

its affine hull: dim(F ) := dim(aff(F )).

The faces of dimension 0, 1, and dim(P )−1 are called vertices, edges, and facets,

respectively.
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Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in a lattice is called a lattice point.
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Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.
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Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.

For any region R ⊂ R
d, we denote by L(R) := R ∩ Z

d the set of lattice points in

R.

U.C.Davis, 2007 Page 6



Volume and Ehrhart polynomials of polytopes Fu Liu

Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.

For any region R ⊂ R
d, we denote by L(R) := R ∩ Z

d the set of lattice points in

R.

Definition 4. For any polytope P ⊂ R
d and some positive integer m ∈ N, the mth

dilated polytope of P is mP = {mx : x ∈ P}. We denote by

i(m, P ) = |L(mP )|

the number of lattice points in mP.
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Examples of integral polytopes
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb] and

i(P, m) = (b − a)m + 1.
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb] and

i(P, m) = (b − a)m + 1.

(ii) When d = 2, P is an integral polygon, and so is mP. By Pick’s theorem:

i(P, m) = area(mP ) +
1

2
|∂(mP ) ∩ Z

d| + 1

= area(P )m2 +
1

2
|∂(P ) ∩ Z

d|m + 1
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb] and

i(P, m) = (b − a)m + 1.

(ii) When d = 2, P is an integral polygon, and so is mP. By Pick’s theorem:

i(P, m) = area(mP ) +
1

2
|∂(mP ) ∩ Z

d| + 1

= area(P )m2 +
1

2
|∂(P ) ∩ Z

d|m + 1

(iii) For any d, let P be the convex hull of the set {(x1, x2, . . . , xd) ∈ R
d : xi =

0 or 1}, i.e. P is the unit cube in R
d. Then it is obvious that

i(P, m) = (m + 1)d.
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Theorem of Ehrhart

Theorem 5. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a

polynomial in m of degree d.

Therefore, we call i(P, m) the Ehrhart polynomial of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart

polynomial i(P, m)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.

➠ The constant term of i(P, m) is always 1.

U.C.Davis, 2007 Page 9



Volume and Ehrhart polynomials of polytopes Fu Liu

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.

➠ The constant term of i(P, m) is always 1.

➠ No results for other coefficients for general polytopes.
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PART II:

Ehrhart polynomials of cyclic polytopes

and lattice-face polytopes

Summary: In this part, we introduce families of polytopes, the coefficients of whose

Ehrhart polynomials can be described in terms of volumes.
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Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has

a simple formula.

Recall that given T = {t1, . . . , tn}< a linearly ordered set, a d-dimensional cyclic

polytope Cd(T ) = Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)}

of n > d distinct points νd(ti), 1 ≤ i ≤ n, on the moment curve.

The moment curve (also known as rational normal curve) in R
d is defined by

νd : R → R
d, t 7→ νd(t) =

















t

t2

...

td

















.
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Example: T = {1, 2, 3, 4}, d = 3 :

Cd(T ) is the convex polytope whose vertices are
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Theorem 6. For any d-dimensional integral cyclic polytope Cd(T ),

i(Cd(T ), m) = Vol(mCd(T )) + i(Cd−1(T ), m).

Hence,

i(Cd(T ), m) =
d

∑

k=0

Volk(mCk(T ))

=
d

∑

k=0

Volk(Ck(T ))mk,

where Volk(mCk(T )) is the volume of mCk(T ) in k-dimensional space, and by

convention we let Vol0(mC0(T )) = 1.

U.C.Davis, 2007 Page 13



Volume and Ehrhart polynomials of polytopes Fu Liu

Example: T = {1, 2, 3, 4}, d = 3 :
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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} : i(Cd−1(T ), m) =

4m2 + 3m + 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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4



 ,





3

9



 ,
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16



} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

U.C.Davis, 2007 Page 14



Volume and Ehrhart polynomials of polytopes Fu Liu

Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

➠ Cd−3(T ) = R
0 : i(Cd−3(T ), m) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{











1

1

1











,











2

4

8











,











3

9

27











,











4

16

64











} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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 ,
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} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

➠ Cd−3(T ) = R
0 : i(Cd−3(T ), m) = 1.

➠ 2, 4, 3 and 1 are the volumes of C3(T ), C2(T ), C1(T ) and C0(T ), respectively.
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Note that if we define πk : R
d → R

d−k to be the map which ignores the last k

coordinates of a point, then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an

integral cyclic polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk, (7)

where Volk(P ) is the volume of P in k-dimensional Euclidean space R
k.
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Note that if we define πk : R
d → R

d−k to be the map which ignores the last k

coordinates of a point, then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an

integral cyclic polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk, (7)

where Volk(P ) is the volume of P in k-dimensional Euclidean space R
k.

Question: Are there other integral polytopes which have the same form of Ehrhart

polynomials as cyclic polytopes? In other words, what kind of integral d-polytopes P

are there whose Ehrhart polynomials will be in the form of (7)?
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T
′) be the corresponding d-subset

of the vertex set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T
′)) = Cd−1(T

′) is an integral cyclic polytope, and

b) π(L(aff(U))) = Z
d−1. In other words, after dropping the last coordinate of the

lattice of aff(U), we get the (d − 1)-dimensional lattice.
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Example of condition b): π(L(aff(U))) = Z
d−1
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(aff(U)) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(aff(U)) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(L(aff(U))) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(aff(U)) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(L(aff(U))) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z

Remark: Condition b) is equivalent to saying that for any lattice point y ∈ Z
d−1, we have that

π−1(y) ∩ aff(U), the intersection of aff(U) with the inverse image of y under π, is a lattice point.
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Example of condition b): π(L(aff(U))) = Z
d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(aff(U)) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(L(aff(U))) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z

Remark: Condition b) is equivalent to saying that for any lattice point y ∈ Z
d−1, we have that

π−1(y) ∩ aff(U), the intersection of aff(U) with the inverse image of y under π, is a lattice point.

y

π−1(y)
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(aff(U))) = Z
d−1.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(aff(U))) = Z
d−1.

Lemma 8. Any integral cyclic polytope is a lattice-face polytope.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(aff(U))) = Z
d−1.

Lemma 8. Any integral cyclic polytope is a lattice-face polytope.

Lemma 9. Any lattice-face polytope is an integral polytope.
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Examples of 2-polytopes

U.C.Davis, 2007 Page 19



Volume and Ehrhart polynomials of polytopes Fu Liu

Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)
U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(L(aff(U1))) = Z.
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)
U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(L(aff(U1))) = Z.

U2 = {v1, v3}, aff(U2) is {(2x, x) | x ∈ R}. So π(L(aff(U2))) = 2Z
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Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(L(aff(U1))) = Z.

U2 = {v1, v3}, aff(U2) is {(x, x) | x ∈ R}. So π(L(aff(U2))) = Z.

U3 = {v2, v3}, aff(U3) is {(x, 6 − 2x) | x ∈ R}.

So π(L(aff(U3))) = Z.
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
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(2, 1)
U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(L(aff(U1))) = Z.
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U3 = {v2, v3}, aff(U3) is {(2, x) | x ∈ R}. So π(L(aff(U3))) = {2}.

P1 is NOT a lattice-face polytope.

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(L(aff(U1))) = Z.

U2 = {v1, v3}, aff(U2) is {(x, x) | x ∈ R}. So π(L(aff(U2))) = Z.

U3 = {v2, v3}, aff(U3) is {(x, 6 − 2x) | x ∈ R}.

So π(L(aff(U3))) = Z.

For each Ui, condition a) is always satisfied.

P2 is a lattice-face polytope.
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How big is the family of lattice-face polytopes?

The family of lattice-face polytopes is much bigger than that of cyclic polytopes.

Cyclic polytopes are all simplicial polytopes, while lattice-face polytopes can be of any

combinatorial type.
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Theorem 10. Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk.
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Theorem 10. Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk.

Example: Let d = 3, let P be the polytope with the vertex set V = {v1 =

(0, 0, 0), v2 = (4, 0, 0), v3 = (3, 6, 0), v4 = (2, 2, 10)}. One can check that P

is a lattice-face polytope.

Vol(P ) = 40.

π(P ) = conv{(0, 0), (4, 0), (3, 6)}, and Vol(π(P )) = 12.

π2(P ) = [0, 4], and Vol(π2(P )) = 4.

Thus, by the theorem, the Ehrhart polynomial of P is

i(P, m) = 40m3 + 12m2 + 4m + 1.
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PART III:

Formula for the Volume of the Birkhoff polytope

Summary: We give a formula for the volume of the Birkhoff polytope obtained by a

calculation of its Ehrhart polynomial. This is joint work with Jesus De Loera and Ruriko

Yoshida.
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Birkhoff polytope

Definition 11. The Birkhoff polytope, denoted by Bn, is the convex polytope of n × n

doubly-stochastic matrices; that is, the set of real nonnegative matrices with all row and

column sums equal to one.

We consider Bn in the n2-dimensional space R
n2

= {n×n real matrices }. Below

are some basic facts about Bn :

• The vertices of Bn are the n × n permutation matrices.

• Bn has n2 facets: for each pair of (i, j) with 1 ≤ i, j ≤ n, the doubly-stochastic

matrices with (i, j) entry equal to 0 is a facet.
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Birkhoff polytope

Definition 11. The Birkhoff polytope, denoted by Bn, is the convex polytope of n × n

doubly-stochastic matrices; that is, the set of real nonnegative matrices with all row and

column sums equal to one.

We consider Bn in the n2-dimensional space R
n2

= {n×n real matrices }. Below

are some basic facts about Bn :

• The vertices of Bn are the n × n permutation matrices.

• Bn has n2 facets: for each pair of (i, j) with 1 ≤ i, j ≤ n, the doubly-stochastic

matrices with (i, j) entry equal to 0 is a facet.

It is a wide open problem to compute the volume of the Birkhoff polytopes. We only

know the volume of Bn for n ≤ 10. Our goal is to give a combinatorial formula of

Vol(Bn).
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Multivariate generating function

For any polyhedron P ∈ R
d, we define the multivariate generating function (MGF)

of P as

f(P, z) =
∑

α∈P∩Zd

z
α,

where z
α = zα1

1 zα2

2 · · · zαd

d .

One sees that by setting z = (1, 1, . . . , 1), we get the number of lattice points in P

if P is a polytope.

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

(0, 0) (2, 0)

(0, 2)

(1, 0)

(0, 1) (1, 1)

f(P, z) = z0
1z

0
2 + z1

1z
0
2 + z2

1z
0
2 + z0

1z
1
2 + z1

1z
1
2 + z0

1z
2
2

= 1 + z1 + z2
1 + z2 + z1z2 + z2

2 .
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Why MGF?

Lemma 12 (Brion, 1988; Lawrence, 1991). Let P be a rational polyhedron and let

V (P ) be the vertex set of P . Then,

f(P, z) =
∑

v∈V (P )

f(C(P, v), z),

where C(P, v) is the supporting cone of P at v, i.e., the smallest cone with vertex v

containing P.

If K is a d-dimensional cone in R
e, generated by vectors {ri}1≤i≤d such that the

ri’s form a Z-basis of the lattice span({ri}) ∩ Z
e, then we say K is a unimodular

cone.

Lemma 13. If K is a d-dimensional unimodular cone at an integral vertex v generated

by the vectors {ri}1≤i≤d, then we have

f(K, z) = z
v

d
∏

i=1

1

1 − zri
.
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Example of the lemmas
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Example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

Recall that f(P, z) = 1 + z1 + z2
1 + z2 + z1z2 + z2

2.
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Example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

Recall that f(P, z) = 1 + z1 + z2
1 + z2 + z1z2 + z2

2.

C(P, v1) : -6

(0, 0)

A unimodular cone generated by vectors r1 = (1, 0) and r2 = (0, 1).

f(C(P, v1), z) = z
(0,0)

∏2
i=1

1
1−zri

= 1
(1−z1)(1−z2)

.
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Example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).
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1 + z2 + z1z2 + z2

2.

C(P, v1) : -6

(0, 0)

A unimodular cone generated by vectors r1 = (1, 0) and r2 = (0, 1).

f(C(P, v1), z) = z
(0,0)

∏2
i=1

1
1−zri

= 1
(1−z1)(1−z2)

.

C(P, v2) : �I

(2, 0)

A unimodular cone generated by vectors r1 = (−1, 0) and r2 = (−1, 1).

f(C(P, v2), z) = z
(2,0)

∏2
i=1

1
1−zri

= z2

1

(1−z−1

1
)(1−z−1

1
z2)

= z4

1

(z1−1)(z1−z2)
.
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1−zri
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1

(1−z−1

1
)(1−z−1

1
z2)

= z4

1

(z1−1)(z1−z2)
.

C(P, v3) : ? R

(0, 2)

A unimodular cone generated by vectors r1 = (0,−1) and r2 = (1,−1).

f(C(P, v3), z) = z
(0,2)

∏2
i=1

1
1−zri

= z2

2

(1−z−1

2
)(1−z1z

−1

2
)
= z4

2

(z2−1)(z2−z1)
.
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Example of the lemmas
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= z4

1

(z1−1)(z1−z2)
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C(P, v3) : ? R

(0, 2)

A unimodular cone generated by vectors r1 = (0,−1) and r2 = (1,−1).

f(C(P, v3), z) = z
(0,2)

∏2
i=1

1
1−zri

= z2

2

(1−z−1

2
)(1−z1z

−1

2
)
= z4

2

(z2−1)(z2−z1)
.

∑3
i=1 f(C(P, vi), z) = (z1−z2)−z4

1
(1−z2)+z4

2
(1−z1)

(1−z1)(1−z2)(z1−z2)
= 1 + z1 + z2

1 + z2 + z1z2 + z2
2= f(P, z).
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Barvinok’s algorithm

• Barvinok gave an algorithm to decompose a cone C as a signed sum of simple

unimodular cones.

• Using the Brion’s polarization trick, we can ignore the lower dimensional cones. This

trick involves using the dual cone of C instead.
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Barvinok’s algorithm

• Barvinok gave an algorithm to decompose a cone C as a signed sum of simple

unimodular cones.

• Using the Brion’s polarization trick, we can ignore the lower dimensional cones. This

trick involves using the dual cone of C instead.

Algorithm: Input a cone C with vertex v

i. Find a dual cone K to C .

ii. Apply the Barvinok decomposition to K and get a set of unimodular cones Ki.

iii. Find dual cone Ci of each Ki. (Note Ci is unimodular as well.)

iv. f(C, z) =
∑

i f(Ci, z).
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Barvinok’s algorithm

• Barvinok gave an algorithm to decompose a cone C as a signed sum of simple

unimodular cones.

• Using the Brion’s polarization trick, we can ignore the lower dimensional cones. This

trick involves using the dual cone of C instead.

Algorithm: Input a cone C with vertex v

i. Find a dual cone K to C .

ii. Apply the Barvinok decomposition to K and get a set of unimodular cones Ki.

iii. Find dual cone Ci of each Ki. (Note Ci is unimodular as well.)

iv. f(C, z) =
∑

i f(Ci, z).

We will use this idea to find the MGF of the Birkhoff polytopes.
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Apply the algorithm to Bn

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of

its vertices. We will do it at the vertex associated to the identity permutation matrix,

denoted by I.
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Apply the algorithm to Bn

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of

its vertices. We will do it at the vertex associated to the identity permutation matrix,

denoted by I.

ii. We denote by Cn the supporting cone of Bn at I and find the dual cone Kn of Cn.
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Apply the algorithm to Bn

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of

its vertices. We will do it at the vertex associated to the identity permutation matrix,

denoted by I.

ii. We denote by Cn the supporting cone of Bn at I and find the dual cone Kn of Cn.

iii. We show that any triangulation of Kn gives a set of unimodular cones. Instead of

using Barvinok’s method, we use the idea of Gröbner bases of toric ideals to produce

triangulations. For any ℓ ∈ [n] = {1, 2, . . . , n}, we can give a triangulation

Triℓ of Cn into nn−2 cones. In fact, the set of cones in Triℓ is in bijection with

Arb(ℓ, n), the set of all ℓ-arborescences on the nodes [n].

An ℓ-arborescence is a directed tree with all arcs pointing away from a root ℓ.
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Apply the algorithm to Bn

i. By the symmetry of the Birkhoff polytope, we only need to find the MGF for one of

its vertices. We will do it at the vertex associated to the identity permutation matrix,

denoted by I.

ii. We denote by Cn the supporting cone of Bn at I and find the dual cone Kn of Cn.

iii. We show that any triangulation of Kn gives a set of unimodular cones. Instead of

using Barvinok’s method, we use the idea of Gröbner bases of toric ideals to produce

triangulations. For any ℓ ∈ [n] = {1, 2, . . . , n}, we can give a triangulation

Triℓ of Cn into nn−2 cones. In fact, the set of cones in Triℓ is in bijection with

Arb(ℓ, n), the set of all ℓ-arborescences on the nodes [n].

An ℓ-arborescence is a directed tree with all arcs pointing away from a root ℓ.

iv. By finding the dual cones to all of the cones in the Triℓ, we give the MGF of Cn.
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The MGF of the dilation mBn

The multivariate generating function of Cn is given by

f(Cn, z) =
∑

T∈Arb(ℓ,n)

z
I

∏

e/∈E(T )

1

(1 −
∏

zW T,e)
,

where W T,e(i, j) is a (0, 1,−1)-matrix associated to the unique oriented cycle in

T ∪ e.
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The MGF of the dilation mBn

The multivariate generating function of Cn is given by

f(Cn, z) =
∑

T∈Arb(ℓ,n)

z
I

∏

e/∈E(T )

1

(1 −
∏

zW T,e)
,

where W T,e(i, j) is a (0, 1,−1)-matrix associated to the unique oriented cycle in

T ∪ e.

Thus, we get the multivariate generating function of Bn:

f(Bn, z) =
∑

σ∈Sn

∑

T∈Arb(ℓ,n)

z
σ

∏

e/∈E(T )

1

(1 −
∏

zW T,eσ)
.
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The MGF of the dilation mBn

The multivariate generating function of Cn is given by

f(Cn, z) =
∑

T∈Arb(ℓ,n)

z
I

∏

e/∈E(T )

1

(1 −
∏

zW T,e)
,

where W T,e(i, j) is a (0, 1,−1)-matrix associated to the unique oriented cycle in

T ∪ e.

Thus, we get the multivariate generating function of Bn:

f(Bn, z) =
∑

σ∈Sn

∑

T∈Arb(ℓ,n)

z
σ

∏

e/∈E(T )

1

(1 −
∏

zW T,eσ)
.

Theorem 14. The multivariate generating function of mBn is given by

f(mBn, z) =
∑

σ∈Sn

∑

T∈Arb(ℓ,n)

z
mσ

∏

e/∈E(T )

1

(1 −
∏

zW T,eσ)
,
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From MGF to Ehrhart polynomial and volume

Corollary 15. The Ehrhart polynomial i(Bn, m) of Bn is given by the formula

i(Bn, m) =

(n−1)2
∑

k=0

mk 1

k!

∑

σ∈Sn

∑

T∈Arb(ℓ,n)

(〈c, σ〉)k td(n−1)2−k({〈c, W
T,eσ〉, e /∈ E(T )})

∏

e/∈E(T )〈c, W
T,eσ〉

.

The symbol tdj(S) is the j-th Todd polynomial evaluated at the numbers in the set S.

The vector c ∈ R
n2

is any vector such that 〈c, W T,eσ〉 is non-zero for all pairs (T, e)

of an ℓ- arborescence T and an arc e /∈ E(T ) and all σ ∈ Sn.
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From MGF to Ehrhart polynomial and volume
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∑

k=0

mk 1

k!

∑
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∑

T∈Arb(ℓ,n)

(〈c, σ〉)k td(n−1)2−k({〈c, W
T,eσ〉, e /∈ E(T )})

∏

e/∈E(T )〈c, W
T,eσ〉

.

The symbol tdj(S) is the j-th Todd polynomial evaluated at the numbers in the set S.

The vector c ∈ R
n2

is any vector such that 〈c, W T,eσ〉 is non-zero for all pairs (T, e)

of an ℓ- arborescence T and an arc e /∈ E(T ) and all σ ∈ Sn.

As a special case, the normalized volume of Bn is given by

Vol(Bn) =
1

((n − 1)2)!

∑

σ∈Sn

∑

T∈Arb(ℓ,n)

〈c, σ〉(n−1)2

∏

e/∈E(T )〈c, W
T,eσ〉

.
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