
Example with 12-gon inside of 6-gon (aka “13 holes”)

Cindy Traub

A triangulation of a point set X ∈ R2 is a maximal set T of non-intersecting straight line segments
connecting pairs of points in X. By maximal, we mean that any other set S which also contains such
segments will have the property that S ⊆ T . Such a set T is considered to be maximal with respect to
inclusion. A triangulation may be specified by either a listing of the edges used or by a listing of the
triangles. When we speak of the combinatorial type of a triangulation, we mean the listing of the triangles
used in that triangulation, or, equivalently, a listing of the edges. We define the length or weight of a
triangulation of X to be the sum of the lengths of the edges used in the triangulation. A minimum weight
triangulation of a point set X is a triangulation which has length less than or equal to the length of every
other triangulation of X. We note that such a triangulation is not necessarily unique.

Now we move into notation and terms which may not be as standard. Denote the weight of the minimum
weight triangulation of X by mwt(X). We say that a point set X is reducible if there exists a point p =
(x, y) /∈ X such that mwt(X∪{p}) < mwt(X). Such a point p is said to reduce the length of the triangulation,
and we refer to p as a reducing point. For a given point set, we are concerned with the region of the plane
consisting of all reducing points, which we refer to as the reducing region. We seek to prove that this region
may have arbitrarily complex topology. One step on the road to that result is to show that some sets of
points admit reducing regions with holes. This paper will present a point set whose reducing region contains
at least 13 holes.

We consider the point set: P = S ∪ T, where
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Figure 1: Our original point set, P = S ∪ T
We label the points of S by A, . . . , F , for values of k = 1..6. We similarly label the points of T by

G, . . . , R, for values of k = 1..12.

Notice that our point set is preserved under the standard group action of D6, the dihedral group of order
12. We will utilize this symmetry of our point set to reduce the number of cases we much consider. We
may claim that certain cases are unique “up to symmetry” - by this we will mean that we are avoiding the
consideration of duplicate cases that arise by the action of some element of D6 which leaves the elements of
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our hypotheses fixed. We will say that edge ST is symmetric to edge UV if both segments are in the same
orbit under the action of D6.

When we refer to triangles in our triangulation, we mean triangles that contain no point from our original
set. We will sometimes speak of “visibility constraints” or claim that certain results are forced “by visibility.”
This should be taken to mean that all other choices of triangles would either contain points from our set
or would intersect some edge which must belong to the triangulation. As shown in Figure 2 below, if AC
belongs to our triangulation, the we say that visibility constraints imply that either 4ACI or 4ACJ must
belong to our triangulation. Moreover, those two cases are the same, up to symmetry: reflecting along the
line BE will fix AC and map 4ACI to 4ACJ.
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Figure 2: Triangle 4ACH is disallowed by visibility, since point I is in its interior.

We will rely heavily on proofs by contradiction when making claims about the structure of a given
triangulation. Once we know (or if we assume) that a certain edge is included in the triangulation, then
visibility constraints will give a set of possible triangulations that used the specified edge. We will seek to
find local contradictions to minimality if possible: for example, pairs of triangles which share an edge that
is the long diagonal of the 4-gon formed by their union. If, however, we assume that a certain edge is not
present, then we know that some edge used in the triangulation must cross that segment. Let us state and
prove that formally.

Claim 1 If edge ST does not belong to a triangulation, then some edge in the triangulation intersects ST
in its interior.

Proof : Assume this is not the case. Then edge ST is not present, and segment ST is not crossed by any
other edge of the triangulation. This contradicts our definition of a triangulation as a maximal
set of non-intersecting straight line segments connecting pairs of points in our point set.

We now establish, for our particular point set, a subset of the minimum weight triangulation that will
simplify our task of finding the overall minimal triangulation of P.

Claim 2 The minimum weight triangulation of P includes a minimum weight triangulation of the 12-gon
formed by the points of T.

Proof : We note that if all edges of the convex hull of T are present in the minimum weight triangulation,
then our claim must hold, for the interior of the 12-gon will be triangulated minimally. Assume
that some edge of the 12-gon is not present. There are two types of edges in the convex hull of
the 12-gon: those symmetric to GH (edges IJ , KL, MN , OP , and QR) and those symmetric
to HI (edges JK, LM , NO, PQ, and RG).
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Assume towards a contradiction that edge GH is not in the minimum weight triangulation.
Then by Claim 1 there must be some edge that passes between G and H. There are three such
possible edges, up to symmetry: AM, BR and AD. Assume AM is in the minimum weight
triangulation. Then it must belong to two triangles. Visibility constraints then require that
4AHM will then be in the minimum weight triangulation, and also one of 4AGM , 4AMN .
Now, if4AGM is in the triangulation as shown in the left side of Figure 3, then AGHM will use
diagonal AM instead of the shorter GH, a contradiction. Likewise, the use of 4AMN forces
AHMN to use diagonal AM instead of the shorter HN . Thus AM does not belong to the
minimum weight triangulation. Now assume that BR is in the minimum weight triangulation.
Then 4BGR is forced to belong to the triangulation, as is 4BHR. This means that BGRH
uses BR instead of the shorter GH, a contradiction. (See the right side of Figure 3.)
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Figure 3: Edges AM and BR do not belong to the minimum weight triangulation of P.

Lastly, assume that AD is in the minimum weight triangulation. This forces triangles which in
turn give two possible quadrilaterals (up to symmetry) which would be triangulated by AD in
the minimum weight triangulation: AHDG and AHDN. See Figure 4 below.

Note that AD is longer than GH and HN , the other diagonals of those 4-gons. This implies
that AD does not belong to any minimal triangulation.

It follows that edge GH must belong to the minimum weight triangulation of P, and by sym-
metry, so must edges IJ , KL, MN , OP , and QR.

Now we assume, also towards a contradiction, that edge HI is not in the minimum weight
triangulation. Then there must be a segment that passes between H and I. The only two
possible such edges are AL and BQ, which are symmetric to one another. Assume then,
that AL is in the minimum weight triangulation. This forces the inclusion of 4AIL in the
triangulation, as well as forcing 4AHL. Then AILH uses AL and not the shorter HI. It
follows that edges HI, JK, LM , NO, PQ, and RG are in the minimum weight triangulation
of P. We have established that the edges in the convex hull of T are also edges of the minimum
weight triangulation of P.

We now note that the following sets of segments are orbits under the action of D6, and therefore define
equivalence classes based on length.

Γ := {AG, AH, BI, BJ, CK, CL, DM, DN, EO, EP, FQ, FR}

Φ := {AR, AI, BH, BK, CJ, CM, DL, DO, EN, EQ, FP, FG}

Ψ := {AQ, AJ, BG, BL, CI, CN, DK, DP, EM, ER, FO, FH}
All segments in Γ have length
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Figure 4: Edge AD does not belong to the minimum weight triangulation of P.

and segments in Ψ have length
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Claim 3 A minimal triangulation of P includes all edges in the set Γ and one edge each from the following
six pairs of edges: (AI, BH), (BK, CJ), (CM, DL), (DO, EN), (EQ, FP ), (FG, AR).

Proof : Other potential edges in a triangulation of P are: AC (or one of the symmetric edges BD, CE,
DF , AE, BF ) and AQ (or one of the symmetric edges from set Ψ). If we can show that none
of these two equivalence classes of edges are used, then our above claim about the structure of
the minimal triangulation will be true. Our proofs will continue to be structured to look for
contradictions of the form of a quadrilateral which uses the long diagonal instead of the short
diagonal.

Assume that edge AC is in a minimum weight triangulation of point set P. Then AC forms a
triangle also with one of I, J . WLOG, assume 4ACI is in this triangulation of P. (Note that
4ACI is symmetric to 4ACJ .) Then ABCI is triangulated with AC instead of the shorter
diagonal BI, a contradiction. It follows that neither AC nor any edges symmetric to AC belong
to the minimum weight triangulation of P.
Similarly, assume AQ is in a minimum weight triangulation of P. This edge must belong to
two triangles. The only two possible such triangles are 4AQR and 4AFQ. (Note the use of
4AEQ would imply the use of edge AE, which is symmetric to AC and therefore not in any
minimum weight triangulation by the above argument.) This means AFQR uses diagonal AQ
and not the shorter FR. It follows that neither AQ nor any edges symmetric to AQ belong to
the minimum weight triangulation of P.
We have therefore established that one minimum weight triangulation of P uses the following
edge set between the convex hulls of S and T:

Ω := {AG, AH, AI, BI, BJ, BK, CK, CL, CM, DM, DN, DO, EO, EP, EQ, FQ, FR, FG}.
We now seek to establish several convex regions, the union of which will be a planar region with at least

13 holes. There are five regions, up to symmetry, which we must consider. These regions are bounded by
lines extended from the edges of the interior 12-gon. This line arrangement defines zones of visibility for
our new point Z that is to be added. We have established that the 12-gon which is the convex hull of T is
included in the minimum weight triangulation of P. A new point Z can only be connected to points that do
not require segments to intersect conv(T). Recall that a point of T that does not require the ray to Z to
intersect the 12-gon is said to be visible to Z.

The convexity of these regions will be established by the following lemma.
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Figure 5: P with minimally triangulated 12-gon.

Lemma 4 Let z = (x, y) be a point in R2 and P = {(xi, yi)}n
i=1 a set of n distinct points in R2−{z}. Then

the function
P

p∈P dist(z, p) is convex.

Proof : We pick two distinct points qα = (xα, yα), qβ = (xβ , yβ) in R2 − P and show that a point
z = (x, y) on the segment qαqβ will haveX

p∈P

dist(z, p) ≤ max

 X
p∈P

dist(qα, p),
X
p∈P

dist(qβ , p)

!
.

Let the points on the segment be denoted by qt = (xt, yt) :=
�
txα + (1− t)xβ , tyα + (1− t)yβ

�
for 0 ≤ t ≤ 1. Note that q0 = qβ and q1 = qα.

Now a comment about some unfortunate notational duplication. Please forgive my insistence
that (x1, y1) be the name for two distinct points - the point in P with index i = 1, and when
t = 1, the parameterized point q1, which we recall is actually point qα. In the following proof I
do not refer to (x1, y1) explicitly, so the point to which I am referring should be clear by context.
I do mean for these points to be distinct from one another.

Now, onto the proof!

We define

g(t) =
X
p∈P

dist(qt, p)

=

nX
i=1

dist
�
qt, (xi, yi)

�
=

nX
i=1

p
(txα + (1− t)xβ − xi)2 + (tyα + (1− t)yβ − yi)2

If we can show that g(t) is concave up for 0 ≤ t ≤ 1, then the lemma will hold. Without further
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Figure 6: P triangulated minimally with the edges in Ω.

ado, we take some derivatives.

g′(t) =
d

dt

h nX
i=1

dist
�
qt, (xi, yi)

�i
=

nX
i=1

d

dt

h
dist

�
qt, (xi, yi)

�i
=

nX
i=1

d

dt

hp
(xt − xi)2 + (yt − yi)2

i
=

nX
i=1

1

2

h
(xt − xi)

2 + (yt − yi)
2
i− 1

2
h d

dt
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2
�i

=
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2
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2
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2
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2(xt − xi)
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dt
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�
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dt
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i 1
2
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i
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i2h
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i 3
2

We now ask if g′′(t) ≥ 0. This will certainly be the case if each term in the sum is greater than
or equal to 0.

We note that the ith term
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(xα − xβ)2 + (yα − yβ)2h
(xt − xi)2 + (yt − yi)2

i 1
2
−

h
(xt − xi)(xα − xβ) + (yt − yi)(yα − yβ)

i2h
(xt − xi)2 + (yt − yi)2

i 3
2

≥ 0

if and only if

(xα − xβ)2 + (yα − yβ)2h
(xt − xi)2 + (yt − yi)2

i 1
2

≥

h
(xt − xi)(xα − xβ) + (yt − yi)(yα − yβ)

i2h
(xt − xi)2 + (yt − yi)2

i 3
2h

(xα − xβ)2 + (yα − yβ)2
ih

(xt − xi)
2 + (yt − yi)

2
i

≥
h
(xt − xi)(xα − xβ) + (yt − yi)(yα − yβ)

i2
(1)

Now for the sake of simplifying notation, we make the following substitutions:

A = (xα − xβ)2

B = (yα − yβ)2

C = (xt − xi)
2

D = (yt − yi)
2

This turns inequality (1) into

(A2 + B2)(C2 + D2) ≥ [AC + BD]2

A2C2 + A2D2 + B2C2 + B2D2 ≥ A2C2 + 2ABCD + B2D2

A2D2 + B2C2 ≥ 2ABCD

A2D2 − 2ABCD + B2C2 ≥ 0

(AD −BC)2 ≥ 0,

which is always true.

So g is concave up as desired.

The strength of this lemma is that we may now find sets of points which reduce with a certain combina-
torial type, and then know that the convex hull of those points will also reduce.

Corollary 5 Reducing regions for a fixed combinatorial type of triangulation are convex if no obstructions
to visibility exist.

Proof : The reducing point is connected to some set of

We define region 1 to be the bounded chamber formed by lines HI, GH, KL, and JK. (See left side of
Figure 7.) Let

J1 = HI ∩ JK ≈ (0, 22.30710),

K1 = GH ∩ JK ≈ (7.07107, 26.38958),

A1 = GH ∩ (y = 30.675) ≈ (4.59688, 30.675),

T = (y = 30.675) ∩ JK ≈ (−4.59688, 30.675), and

O1 = HI ∩K ≈ (−7.07107, 26.38958).

We claim that the interior of the convex hull of Ā = {J1, K1, A1, T, O1} is a reducing region when a new
point Z is connected to points in A := {A, B, C, H, I, J, K}. The edges ZA, ZB, ZC, ZH, ZI, ZJ, ZK will
replace edges AI, BI, BJ, BK from the original triangulation, which have a summed length of 268.374. Let
dA(Z) be the sum over points P ∈ A of the distance from P to Z.
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Then we have

dA(J1) = 254.103,

dA(K1) = 264.081,

dA(A1) = 268.349,

dA(T ) = 268.349, and

dA(O1) = 264.081.

Since all five of the above values are less than 268.374, any point added within the convex hull of
Ā = {J1, K1, A1, T, O1} will indeed reduce the length of the minimum weight triangulation.
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Figure 7: Regions 1 and 2 and their location within P.

We define region 2 to be the bounded chamber formed by lines GH, IJ, GR, and JK. (See right side of
Figure 7.) Let

B1 = JK ∩ (y = −0.58307x + 41.77457) ≈ (16.77621, 31.99285),

C1 = GR ∩ (y = −0.58307x + 41.77457) ≈ (19.31852, 30.51051),

K1 = GH ∩ JK ≈ (7.07107, 26.38958),

R1 = GH ∩ IJ ≈ (11.15355, 19.31852), and

S1 = GR ∩ IJ ≈ (19.31852, 19.31852).

We claim that the convex hull of B̄ = {B1, C1, K1, R1, S1} is a reducing region when a new point Z
is connected to points in B := {A, B, G, H, I, J}. The edges ZA, ZB, ZG, ZH, ZI, ZJ will replace edges
AH, AI, BI from the original triangulation, which have a summed length of 198.079. Let dB(Z) be the sum
over points P ∈ B of the distance from P to Z.

Then we have

dB(B1) = 197.124,

dB(C1) = 197.097,

dB(K1) = 183.697,

dB(R1) = 173.916, and

dB(S1) = 183.697.
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Since all five of the above values are less than 198.079, any point added within the convex hull of
B1, C1, K1, R1, S1 will indeed reduce the length of the minimum weight triangulation.

We define region 3 to be the bounded chamber formed by lines GH, KL, GR, and JK. (See left side of
Figure 8.) Let

D1 = KL ∩ (y = −0.24958x + 41.81550) ≈ (1.60397, 41.41519),

E1 = GR ∩ (y = −0.24958x + 41.81550) ≈ (19.31852, 36.99399),

K1 = GH ∩ JK ≈ (7.07107, 26.38958),

P1 = GH ∩KL ≈ (0.00000, 38.63703), and

Q1 = GR ∩ JK ≈ (19.31852, 33.46065).

We claim that the convex hull of D1, E1, K1, P1, Q1 is a reducing region when a new point Z is connected
to points in C := {A, B, G, H, I, J, K}. That set of edges will replace the following edges from the original
triangulation: AH, AI, BI, BJ. The summed length of those four edges is 261.971. Let dC(Z) be the sum
over points P ∈ C of the distance from P to Z.

Then we have

dC(D1) = 259.236,

dC(E1) = 251.262,

dC(K1) = 208.192,

dC(P1) = 251.505, and

dC(Q1) = 241.551.

Since all five of the above values are less than 261.971, any point added within the convex hull of
D1, E1, K1, P1, Q1 will indeed reduce the length of the minimum weight triangulation.
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Figure 8: Regions 3 and 4 and their location within P.

We define region 4 to be the bounded chamber formed by lines KL, GH and convex hull edges AB, BC.
(See right side of Figure 8.) Let

F1 = GH ∩ (y = 44.6) ≈ (−3.12136, 44.6),

G1 = KL ∩ (y = 44.6) ≈ (3.12136, 44.6), and

P1 = GH ∩KL ≈ (0.00000, 38.63703).
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We claim that the convex hull of F1, G1, P1 is a reducing region when a new point Z is connected to
points in D := {A, B, C, G, H, I, J, K, L}. That set of edges will replace the following edges from the original
triangulation: AH, AI, BI, BJ, BK, CK. The summed length of those six edges is 396.158. Let dD(Z) be
the sum over points P ∈ D of the distance from P to Z.

Then we have

dD(F1) = 389.779,

dD(G1) = 389.779, and

dD(P1) = 362.079.

Since all three of the above values are less than 396.158, any point added within the convex hull of
F1, G1, P1 will indeed reduce the length of the minimum weight triangulation.

We define region 5 to be the bounded chamber formed by lines JK, GR and convex hull edge AB. Let

H1 = GR ∩ (y = −0.56463x + 50.38075) ≈ (19.31852, 39.47297),

I1 = JK ∩ (y = −0.56463x + 50.38075) ≈ (24.58335, 36.50030), and

Q1 = JK ∩GR ≈ (19.31852, 33.46065).

We claim that the convex hull of H1, I1, Q1 is a reducing region when a new point Z is connected to
points in E := {A, B, G, H, I, J, K, R}. That set of edges will replace the following edges from the original
triangulation: AG, AH, AI, BI, BJ. The summed length of those five edges is 325.863. Let dE(Z) be the
sum over points P ∈ E of the distance from P to Z.

Then we have

dE(H1) = 303.332,

dE(I1) = 303.605, and

dE(Q1) = 280.188.

Since all three of the above values are less than 325.863, any point added within the convex hull of
H1, I1, Q1 will indeed reduce the length of the minimum weight triangulation.
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Figure 9: Regions 1 through 5 and their locations within P.

We have now established a reducing region that appears to be connected but not simply connected. We
now proceed to prove the existence of 13 holes within this reducing region. We will do so by finding points
in the interior of the holes that do not reduce, combined with polygonal reducing paths around the holes.
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Claim 6 The point G2 = (0.00000, 35.08709) will not reduce.

Proof : We first must establish the minimum weight triangulation of P∪{G2}, and then we will calculate
the length of that triangulation. We claim that the minimum weight triangulation connects G2

to points A, B, C, H, I, J, K.

Note that the use of edge AC would imply that 4ABC and 4ACG2 are both in the minimum
weight triangulation, with the latter triangle forced by visibility. Edge BG2 is shorter than edge
AC, a contradiction to minimality. Thus edge AC will not be used in this minimum weight
triangulation.

We claim that edge IJ must be in the minimum weight triangulation. Otherwise, an edge from
G2 must cross it, and there is one type of such edge up to symmetry, edge PG2. The inclusion of
this edge forces triangle 4PIG2 to be in the triangulation, as well as one of 4PJG2,4POG2.
In the case where 4PJG2 is used, we have PJG2I using PG2 instead of the shorter IJ . In
the case where 4POG2 is used, we have POG2I using PG2 instead of the shorter IO. Thus it
follows that edge IJ must be included in the new minimum weight triangulation.

The edge IJ can connect to two possible points, up to symmetry: G2 and A. If IJ connects to A,
then AJ is forced by visibility to connect to G2. This implies that the shorter edge G2I should
have been used instead of AJ . Thus the triangle4IJG2 is in the minimum weight triangulation.

Edge G2I can connect to A, B, or H. If we connect it to A, then we have G2AI in the minimum
weight triangulation, and edge G2A must connect to B. (It cannot connect to C by an earlier
comment above.) If G2A connects to B, then the shorter edge BI should have been used instead
of G2A. Thus G2AI is not in the minimum weight triangulation. If we connect B to G2I, then
BI must connect to A or H. Connecting BI to A implies the use of 4AHI, which puts us
in an interesting position. Now, trapezoid ABIH can be triangulated with either BH or the
equal-length AI. If we flip edge AI to BH, then we are back in the above situation of using
4BHI, which gave us a contradiction. Thus we cannot connect G2I to B, so we must attach
it to H and include 4HIG2 in the minimum weight triangulation.

Edge HG2 can connect to B or to A. If it connects to A, then edge G2A must connect to
B, but we note that AG2 > BH, so we should have used BH instead of AG2. Thus triangle
4AHG2 does not belong to the minimum weight triangulation, but 4BHG2 will be in the
minimum weight triangulation. Moreover, edge BH belonged to an original minimum weight
triangulation.

Edge BG2 can connect to C, J, or K. If we connect to C and form triangle 4BG2C, then edge
G2C can connect to J, K, or D. If G2C connects to J , then we should have used the shorter
BJ instead of G2C. If G2C connects to K, then we should have used the shorter BK instead
of G2C. If we connect G2C to D, this forces 4G2DK, which implies we should have used the
shorter CK as opposed to G2D. So we should not use triangle 4BCG2. If we connect BG2 to
J , then we find ourselves considering connecting edge BJ to one of points C or K, which is a
case symmetric to our consideration of connecting edge BI to A or H. Recall from arguments
above that both of those choices led to contradictions. Thus we are forced to include triangle
4BG2K in our minimum weight triangulation. Note this also implies that triangle 4JKG2 is
in our triangulation.

Now we notice that edges BK and BH are both included in a minimum weight triangulation
of our original point set. Therefore our previous work tells us how to triangulate the rest of
the point set. We may now consider the length of this new triangulation. We compare the
length of the new edges within the non-convex pentagon BHIJK to the length of the edges
that originally triangulated BHIJK. The new edges are G2B, G2H, G2I, G2J, and G2K, and
these have a summed length of 154.2164. They replace edges BI and BJ , which have a summed
length of 127.78. Therefore the addition of point G2 does not reduce the length of the minimum
weight triangulation, as desired.

We now note that there will actually be a small neighborhood around point G2 in which no point will
reduce.
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Lemma 7 If a point p = (x, y) in the interior of a visibility region does not reduce the length of the minimum
weight triangulation, then there will be a small open neighborhood around that point in which no point will
reduce the length of the minimum weight triangulation.

Proof : Since p is in the interior of the visibility region, there must be a ball B(p, δ) of radius δ around
p, such that all points inside of B(p, δ) can be connected to the same set of points to which p
may be legally connected. An arbitrary point q within B(p, δ) may or may not give rise to the
same combinatorial type of minimum weight triangulation as the addition of p would imply.
We know that distance is a continuous function, as is the sum of multiple distance functions.
It follows that the length of the minimum weight triangulation cannot change too drastically
within B(p, δ). Specifically, there must exist an ε ≤ δ such that no point within B(p, ε) will
reduce the length of the triangulation.

The following corollary follows directly from the above lemma, and the fact that G2 is contained entirely
inside a visibility region.

Corollary 8 There is a non-reducing neighborhood around point G2.

We now work to establish a reducing polygonal path around this hole. We rely on lemma (CONVEXITY
LEMMA) to build this path. If we can find two points which reduce, then the segment between them will
also reduce.

Claim 9 The boundary of the triangle formed by points M2 = (−6.1021, 28.79429), O2 = (0, 40.61712), and
L2 = (6.1021, 28.79429) will reduce.

Proof : We must show that the points on segments M2L2, M2O2, and L2O2 all reduce. We note that
segment M2O2 is symmetric to segment L2O2, so we only have to work to show that two
segments reduce.

For a point on the segment M2O2, we claim that connecting that point to the points of F =
{B, C, H, I, J, K, L} will give a reduction in the length of the triangulation. Let dF (Z) be the
sum over points P ∈ F of the distance from P to Z. We have dF (M2) = 214.5609 and dF (O2) =
258.501. We note that connecting our new point (M2 or O2) to the points of F replaces the edges
CK, BK, BJ, BI and forces edge AI to flip to BH,an edge of equal length. We are replacing
edges from our original triangulation that have summed length (3·63.8915)+70.2951 = 261.9696.
Therefore both M2 and O2 reduce with this combinatorial type of triangulation, and so must
all points on the edge M2O2 between them. By symmetry, all points on the edge L2O2 will also
reduce.

For a point on the segment M2L2, we claim that connecting to the points ofA = {A, B, C, H, I, J, K}
will give a reduction in the length of the triangulation. This will replace edges AI, BI, BJ, BK
from the original triangulation, which together have summed length (2 ·63.8915)+(2·70.2951) =
268.3732. Once again, we let dA(Z) be the sum over points P ∈ A of the distance from P to
Z. We see that dA(M2) = 266.5075, and by symmetry, dA(L2) = 266.5075. Note that this is
because

dist(A, M2) = dist(C, L2),

dist(B, M2) = dist(B, L2),

dist(C, M2) = dist(A, L2),

dist(H, M2) = dist(K, L2),

dist(I, M2) = dist(J, L2),

dist(J, M2) = dist(I, L2), and

dist(K, M2) = dist(H, L2).

It follows that both M2 and L2 reduce with this combinatorial type of triangulation, and so
must all points on the edge M2L2 between them.

Thus the boundary of triangle 4M2L2O2 will reduce as desired.

Claim 10 The point H2 = (18.47521, 32.00000) will not reduce.

Proof : We first must establish the minimum weight triangulation of P∪{H2}, and then we will calculate
the length of that triangulation. (FINISH TYPING THIS PART.)
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Claim 11 The boundary of the triangle formed by points P2 = (20.40390, 26.69670), Q2 = (13.15766, 31.08258),
and R2 = (20.40390, 35.27778) will reduce.

Proof : As above, we must show that the points on segments P2Q2, P2R2, and Q2R2 all reduce. It
will suffice to show that, pairwise, the endpoints of those segments will reduce with the same
combinatorial type.

For a point on the segment P2Q2, we claim that connecting that point to the points of B =
{A, B, G, H, I, J} will give a reduction in the length of the triangulation. As before, let dB(Z)
be the sum over points P ∈ B of the distance from P to Z. Then we have dB(P2) = 192.795 and
dB(Q2) = 192.570. We note that connecting our new point (P2 or Q2) to the points of B replaces
the edges AH, AI, BI. We are thus replacing edges from our original triangulation that have
summed length (2 · 63.8915) + 70.2951 = 198.079. Therefore both P2 and Q2 reduce with this
combinatorial type of triangulation, and so must all points on the edge P2Q2 between them.

For a point on the segment P2R2, we claim that connecting that point to the points of G =
{A, B, G, H, I, J, R} will give a reduction in the length of the triangulation. We let dG(Z) be
the sum over points P ∈ G of the distance from P to Z. Then we have dG(P2) = 224.4615
and dG(R2) = 248.5943. We note that connecting our new point (P2 or R2) to the points of G
replaces the edges AG, AH, AI, BI. We are thus replacing edges from our original triangulation
that have summed length (3 · 63.8915) + ·70.2951 = 261.971. Therefore both P2 and R2 reduce
with this combinatorial type of triangulation, and so must all points on the edge P2R2 between
them.

For a point on the segment Q2R2, we claim that a reduction in the length of the triangulation
can be obtained by connecting to the points of H = {A, B, G, H, I, J, K}. We let dH(Z) be
the sum over points P ∈ H of the distance from P to Z. Then we have dH(Q2) = 224.924 and
dH(R2) = 248.6243. We note that connecting our new point (Q2 or R2) to the points of H
replaces the edges AH, AI, BI, BJ . We are thus replacing edges from our original triangulation
that have summed length (3 · 63.8915) + 70.2951 = 261.971. Therefore both Q2 and R2 reduce
with this combinatorial type of triangulation, and so must all points on the edge Q2R2 between
them.

Thus the boundary of triangle 4P2Q2R2 will reduce as desired.

The symmetry of our point set now grants us 12 distinct holes. We now aim for the lucky 13th hole in
the center of our configuration.

Claim 12 A point added in the center of the 12-gon will not reduce.

Proof : Let Z = (0, 0) be the point in the center of the 12-gon. We now make some claims about which
edges will not be included in the triangulation.

First, we assume towards a contradiction that edge GL is in the minimum weight triangulation.
This implies that one of 4GHL or 4GIL is included in the minimum triangulation. If 4GHL
is included, then edge HL belongs to another triangle - one of 4HIL,4HJL, or 4HKL. The
combination of 4GHL and 4HIL gives GHIL triangulated by HL, which is longer than GI.
The combination of 4GHL and 4HJL gives GHJL triangulated by HL, which is longer than
GJ. If 4HKL is used, then one of 4HIK or 4HJK is used. These cases are equivalent up
to symmetry, so assume 4HIK is used. Notice that HL + HK + IK < GI + IL + IK in the
triangulation of hexagon GHIJKL. It follows that edge GL must not belong to the minimum
weight triangulation, nor may any edge symmetric to GL, such as HM, IN, JO, KP, etc.

Now we assume towards a second contradiction that edge GJ is in the minimum weight tri-
angulation. Then one of GI, HJ is also in the minimum weight triangulation, but these
cases are symmetric. Without loss of generality, we will say that GI (and therefore 4GIJ)
is in the minimum weight triangulation. Now we look at possible triangles that use edge
GJ : 4GJK,4GJL,4GJZ,4GJQ, and 4GJR, and we detail the contradictions these tri-
angles create. Quadrilateral GIJK is triangulated by GJ instead of the shorter IK. The
combination of 4GIJ and 4GJZ uses GJ instead of the shorter IZ. Next, we note that
4GJL forces 4GLZ, and then quadrilateral GJLZ uses GL instead of the shorter JZ. Simi-
larly, 4GJQ forces 4JQZ, and then quadrilateral GJQZ uses JQ instead of the shorter GZ.
Lastly, if we use 4GJR, then pentagon GHIJR should be triangulated by HJ and HR instead
of the longer pair GI and GJ. It follows that edge GJ is not used in the minimum weight
triangulation, nor is any edge symmetric to GJ.
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We note that edges GZ, HZ, IZ, etc. have the same length as edges GI, HJ, IK, etc. No
shorter edges exist in the interior of the 12-gon. Thus if a triangulation exists which uses only
edges of that length, its triangulation length must be minimal. For this example, many such
triangulations exist. Two such triangulations are:

Λ : = {GI, IK, KM, MO, OQ, GQ, GZ, IZ, KZ, MZ, OZ, QZ} and

Υ : = {GZ, HZ, IZ, JZ, KZ, LZ, MZ, NZ, OZ, PZ, QZ, RZ}.

Claim 13 The boundary of the 12-gon formed by symmetric copies of T2U2, where T2 = (0, 30) and U2 =
(14.56088, 25.22019) will reduce.

Proof : It will suffice to show that edge T2U2 reduces, then the reduction of the 12-gon will follow by
symmetry. It may be necessary to employ a third point Y2 = (7.28044, 27.61009), the midpoint
of T2U2. The hope is that T2 and Y2 will both reduce using the connectivity of region 1, and
that U2 and Y2 will both reduce using the connectivity of region 2.

Recall that points in region 1 reduced by connecting to A = {A, B, C, H, I, J, K}. We have
dA(T2) = 264.8235 and dA(Y2) = 266.2503. The length of edges we replace is 268.374, so the
segment T2Y2 reduces.

Now recall that points in region 2 reduced by connecting to B := {A, B, G, H, I, J}. We have
dB(Y2) = 186.0355. and dB(U2) = 182.5459. The length of edges we replace when using this
combinatorial type is 198.079, so segment Y2U2 reduces.

It follows that segment T2U2 reduces, and therefore there is a reducing 12-sided closed path
around the interior 12 points of our original point set P.
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