
GAMS/DICOPT: A Discrete Continuous

Optimization Package

IGNACIO E. GROSSMANN∗

JAGADISAN VISWANATHAN∗ ALDO VECCHIETTI∗

RAMESH RAMAN† ERWIN KALVELAGEN†

May 10, 2002

1 Introduction

DICOPT is a program for solving mixed-integer nonlinear programming (MINLP)
problems that involve linear binary or integer variables and linear and nonlinear
continuous variables. While the modeling and solution of these MINLP opti-
mization problems has not yet reached the stage of maturity and reliability as
linear, integer or non-linear programming modeling, these problems have a rich
area of applications. For example, they often arise in engineering design, man-
agement sciences, and finance. DICOPT (DIscrete and Continuous OPTimizer)
was developed by J. Viswanathan and Ignacio E. Grossmann at the Engineering
Design Research Center (EDRC) at Carnegie Mellon University. The program
is based on the extensions of the outer-approximation algorithm for the equal-
ity relaxation strategy. The MINLP algorithm inside DICOPT solves a series
of NLP and MIP sub-problems. These sub-problems can be solved using any
NLP (Nonlinear Programming) or MIP (Mixed-Integer Programming) solver
that runs under GAMS.

Although the algorithm has provisions to handle non-convexities, it does not
necessarily obtain the global optimum.

The GAMS/DICOPT system has been designed with two main goals in
mind:

• to build on existing modeling concepts and to introduce a minimum of
extensions to the existing modeling language and provide upward com-
patibility to ensure easy transition from existing modeling applications to
nonlinear mixed-integer formulations

∗Engineering Research Design Center, Carnegie Mellon University, Pittsburgh, PA
†GAMS Development Corporation, Washington D.C.

1

• to use existing optimizers to solve the DICOPT sub-problems. This allows
one to match the best algorithms to the problem at hand and guarantees
that any new development and enhancements in the NLP and MIP solvers
become automatically and immediate available to DICOPT.

2 Requirements

In order to use DICOPT you will need to have access to a licensed GAMS BASE
system as well as at least one licensed MIP solver and one licensed NLP solver.
For difficult models it is advised to have access to multiple solvers. Free stu-
dent/demo systems are available from GAMS Development Corporation. These
systems are restricted in the size of models that can be solved.

3 How to run a model with GAMS/DICOPT

DICOPT is capable of solving only MINLP models. If you did not specify
DICOPT as the default solver, then you can use the following statement in
your GAMS model:

option minlp = dicopt;

It should appear before the solve statement. DICOPT automatically uses
the default MIP and NLP solver to solve its sub-problems. One can override
this with the GAMS statements like:

option nlp = conopt2; { or any other nlp solver }
option mip = cplex; { or any other mip solver }

These options can also be specified on the command line, like:

> gams mymodel minlp=dicopt nlp=conopt2 mip=cplex

In the IDE (Integrated Development Enviroment) the command line option can
be specified in the edit line in the right upper corner of the main window.

Possible NLP solvers include minos5, minos, conopt, conopt2, and snopt.
Possible MIP solvers are cplex, osl, osl2, osl3, xpress, and xa.

With an option file it is even possible to use alternate solvers in different
cycles. Section 8 explains this is in detail.

4 Overview of DICOPT

DICOPT solves models of the form:

2

MINLP min or max f(x, y)
subject to g(x, y) ∼ b

`x ≤ x ≤ ux

y ∈ d`ye, ..., buyc

where x are the continuous variables and y are the discrete variables. The
symbol ∼ is used to denote a vector of relational operators {≤,=,≥}. The
constraints can be either linear or non-linear. Bounds ` and u on the variables
are handled directly. dxe indicates the smallest integer, greater than or equal
to x. Similarly, bxc indicates the largest integer, less than or equal to x. The
discrete variables can be either integer variables or binary variables.

5 The algorithm

The algorithm in DICOPT is based on three key ideas:

• Outer Approximation

• Equality Relaxation

• Augmented Penalty

Outer Approximation refers to the fact that the surface described by a con-
vex function lies above the tangent hyper-plane at any interior point of the
surface. (In 1-dimension, the analogous geometrical result is that the tangent
to a convex function at an interior point lies below the curve). In the algorithm
outer-approximations are attained by generating linearizations at each itera-
tions and accumulating them in order to provide successively improved linear
approximations of nonlinear convex functions that underestimate the objective
function and overestimate the feasible region.

Equality Relaxation is based on the following result from non-linear pro-
gramming. Suppose the MINLP problem is formulated in the form:

minimize or maximize f(x) + cT y

subject to G(x) + Hy ∼ b

` ≤ x ≤ u

y ∈ {0, 1}

(1)

i.e. the discrete variables are binary variables and they appear linearly in the
model.

If we reorder the equations into equality and inequality equations, and con-
vert the problem into a minimization problem, we can write:

3

minimize cT y + f(x)
subject to Ay + h(x) = 0

By + g(x) ≤ 0
` ≤ x ≤ u

y ∈ {0, 1}

(2)

Let y(0) be any fixed binary vector and let x(0) be the solution of the corre-
sponding NLP subproblem:

minimize cT y(0) + f(x)

subject to Ay(0) + h(x) = 0

By(0) + g(x) ≤ 0
` ≤ x ≤ u

(3)

Further let

T (0) = diag(ti,i)
ti,i = sign(λi)

(4)

where λi is the Lagrange multiplier of the i-th equality constraint.
If f is pseudo-convex, h is quasi-convex, and g is quasi-convex, then x0 is

also the solution of the following NLP:

minimize cT y(0) + f(x)

subject to T (0)(Ay(0) + h(x)) ≤ 0

By(0) + g(x) ≤ 0
` ≤ x ≤ u

(5)

In colloquial terms, under certain assumptions concerning the convexity of
the nonlinear functions, an equality constraint can be “relaxed” to be an inequal-
ity constraint. This property is used in the MIP master problem to accumulate
linear approximations.

Augmented Penalty refers to the introduction of (non-negative) slack vari-
ables on the right hand sides of the just described inequality constraints and the
modification of the objective function when assumptions concerning convexity
do not hold.

The algorithm underlying DICOPT starts by solving the NLP in which the
0-1 conditions on the binary variables are relaxed. If the solution to this prob-
lem yields an integer solution the search stops. Otherwise, it continues with
an alternating sequence of nonlinear programs (NLP) called subproblems and

4

mixed-integer linear programs (MIP) called master problems. The NLP sub-
problems are solved for fixed 0-1 variables that are predicted by the MIP master
problem at each (major) iteration. For the case of convex problems, the mas-
ter problem also provides a lower bound on the objective function. This lower
bound (in the case of minimization) increases monotonically as iterations pro-
ceed due to the accumulation of linear approximations. Note that in the case
of maximization this bound is an upper bound. This bound can be used as a
stopping criterion through a DICOPT option stop 1 (see section 8). Another
stopping criterion that tends to work very well in practice for non-convex prob-
lems (and even on convex problems) is based on the heuristic: stop as soon as
the NLP subproblems start worsening (i.e. the current NLP subproblem has an
optimal objective function that is worse than the previous NLP subproblem).
This stopping criterion relies on the use of the augmented penatly and is used
in the description of the algorithm below. This is also the default stopping cri-
terion in the implementation of DICOPT. The algorithm can be stated briefly
as follows:

1. Solve the NLP relaxation of the MINLP program. If y(0) = y is integer,
stop(“integer optimum found”). Else continue with step 2.

2. Find an integer point y(1) with an MIP master problem that features an
augmented penalty function to find the minimum over the convex hull
determined by the half-spaces at the solution (x(0), y(0)).

3. Fix the binary variables y = y(1) and solve the resulting NLP. Let (x(1), y(1))
be the corresponding solution.

4. Find an integer solution y(2) with a MIP master problem that corresponds
to the minimization over the intersection of the convex hulls described by
the half-spaces of the KKT points at y(0) and y(1).

5. Repeat steps 3 and 4 until there is an increase in the value of the NLP
objective function. (Repeating step 4 means augmenting the set over
which the minimization is performed with additional linearizations - i.e.
half-spaces - at the new KKT point).

In the MIP problems integer cuts are added to the model to exclude previ-
ously determined integer vectors y(1), y(2), ..., y(K).

For a detailed description of the theory and references to earlier work, see
[5, 3, 1].

The algorithm has been extended to handle general integer variables and
integer variables appearing nonlinearly in the model.

5

6 Modeling

6.1 Relaxed model

Before solving a model with DICOPT, it is strongly advised to experiment with
the relaxed model where the integer restrictions are ignored. This is the RMINLP
model. As the DICOPT will start solving the relaxed problem and can use an
existing relaxed optimal solution, it is a good idea to solve the RMINLP always
before attempting to solve the MINLP model. I.e. the following fragment is not
detrimental with respect to performance:

model m /all/;
option nlp=conopt2;
option mip=cplex;
option rminlp=conopt2;
option minlp=dicopt;

*
* solve relaxed model
*

solve m using rminlp minimizing z;
abort$(m.modelstat > 2.5) "Relaxed model could not be solved";

*
* solve minlp model
*

solve m using minlp minimizing z;

The second SOLVE statement will only be executed if the first SOLVE was
succesful, i.e. if the model status was one (optimal) or two (locally optimal).

In general it is not a good idea to try to solve an MINLP model if the
relaxed model can not be solved reliably. As the RMINLP model is a normal
NLP model, some obvious points of attention are:

• Scaling. If a model is poorly scaled, an NLP solver may not be able find
the optimal or even a feasible solution. Some NLP solvers have automatic
scaling algorithms, but often it is better to attack this problem on the
modeling level. The GAMS scaling facility can help in this respect.

• Starting point. If a poor starting point is used, the NLP solver may not
be able to find a feasible or optimal solution. A starting point can be set
by setting level values, e.g. X.L = 1;. The GAMS default levels are zero,
with is often not a good choice.

• Adding bounds. Add bounds so that all functions can be properly evalu-
ated. If you have a function

√
x or log(x) in the model, you may want to

add a bound X.LO=0.001;. If a function like log(f(x)) is used, you may
want to introduce an auxiliary variable and equation y = f(x) with an
appropriate bound Y.LO=0.001;.

In some cases the relaxed problem is the most difficult model. If you have
more than one NLP solver available, you may want to try a sequence of them:

6

model m /all/;
option nlp=conopt2;
option mip=cplex;
option rminlp=conopt2;
option minlp=dicopt;

*
* solve relaxed model
*

solve m using rminlp minimizing z;
if (m.modelstat > 2.5,

option rminlp=minos;
solve m using rminlp minimizing z;

);
if (m.modelstat > 2.5,

option rminlp=snopt;
solve m using rminlp minimizing z;

);

*
* solve minlp model
*

solve m using minlp minimizing z;

In this fragment, we first try to solve the relaxed model using CONOPT2. If
that fails we try MINOS, and if that solve also fails, we try SNOPT.

It is worthwhile to spend some time in getting the relaxed model to solve
reliably and speedily. In most cases, modeling improvements in the relaxed
model, such as scaling, will also benefit the subsequent NLP sub-problems. In
general these modeling improvements turn out to be rather solver independent:
changes that improve the performance with CONOPT will also help solving the
model with MINOS.

6.2 OPTCR and OPTCA

The DICOPT algorithm assumes that the integer sub-problems are solved to
optimality. The GAMS options for OPTCR and OPTCA are therefore ignored:
subproblems are solved with both tolerances set to zero. If you really want to
solve a MIP sub-problem with an optimality tolerance, you can use the DICOPT

option file to set OPTCR or OPTCA in there. For more information see section 8.
For models with many discrete variables, it may be necessary to introduce

an OPTCR or OPTCA option in order to solve the model in acceptable time. For
models with a limited number of integer variables the default to solve MIP
sub-models to optimality may be acceptable.

6.3 Integer formulations

A number of MIP formulations are not very obvious and pose a demand on the
modeler with respect to knowledge and experience. A good overview of integer
programming modeling is given in [6].

Many integer formulations use a so-called big-M construct. It is important
to choose small values for those big-M numbers. As an example consider the
fixed charge problem where yi ∈ {0, 1} indicate if facility i is open or closed, and

7

where xi is the production at facility i. Then the cost function can be modeled
as:

Ci = fiyi + vixi

xi ≤ Miyi

yi ∈ {0, 1}
0 ≤ xi ≤ capi

(6)

where fi is the fixed cost and vi the variables cost of operating facility i. In
this case Mi should be chosen large enough that xi is not restricted if yi = 1.
On the other hand, we want it as small as possible. This leads to the choice to
have Mi equal to the (tight) upperbound of variable xi (i.e. the capacity capi

of facility i).

6.4 Non-smooth functions

NLP modelers are alerted by GAMS against the use of non-smooth functions
such as min(), max(), smin(), smax() and abs(). In order to use these func-
tions, a non-linear program needs to be declared as a DNLP model instead of a
regular NLP model:

option dnlp=conopt2;
model m /all/;
solve m minimizing z using dnlp;

This construct is to warn the user that problems may arise due to the use
of non-smooth functions.

A possible solution is to use a smooth approximation. For instance, the func-
tion f(x) = |x| can be approximated by g(x) =

√
x2 + ε for some ε > 0. This

approximation does not contain the point (0, 0). An alternative approximation
can be devised that has this property:

f(x) ≈ 2x

1 + e−x/h
− x (7)

For more information see [2].
For MINLP models, there is not such a protection against non-smooth func-

tions. However, the use of such functions is just as problematic here. However,
with MINLP models we have the possibility to use discrete variables, in order
to model if-then-else situations. For the case of the absolute value for instance
we can replace x by x+ − x− and |x| by x+ + x− by using:

8

x = x+ − x−

|x| = x+ + x−

x+ ≤ δM

x− ≤ (1− δ)M

x+, x− ≥ 0
δ ∈ {0, 1}

(8)

where δ is a binary variable.

7 GAMS Options

GAMS options are specified in the GAMS model source, either using the option
statement or using a model suffix.

7.1 The OPTION statement

An option statement sets a global parameter. An option statement should
appear before the solve statement, as in:

model m /all/;
option iterlim=100;
solve m using minlp minimizing z;

Here follows a list of option statements that affect the behavior of DICOPT:

option domlim = n;
This option sets a limit on the total accumulated number of non-linear
function evaluation errors that are allowed while solving the NLP sub-
problems or inside DICOPT itself. An example of a function evaluation
error or domain error is taking the square root of a negative number. This
situations can be prevented by adding proper bounds. The default is zero,
i.e. no function evaluation errors are allowed.

In case a domain error occurs, the listing file will contain an appropriate
message, including the equation that is causing the problem, for instance:

**** ERRORS(S) IN EQUATION loss(cc,sw)
2 instance(s) of - UNDEFINED REAL POWER (RETURNED 0.0E+00)

If such errors appear you can increase the DOMLIM limit, but often it is
better to prevent the errors to occur. In many cases this can be accom-
plished by adding appropriate bounds. Sometimes you will need to add
extra variables and equations to accomplish this. For instance with an
expression like log(x−y), you may want to introduce a variable z > ε and
an equation z = x− y, so that the expression can be rewritten as log(z).

9

option iterlim = n;
This option sets a limit on the total accumulated (minor) iterations per-
formed in the MIP and NLP subproblems. The default is 1000.

option minlp = dicopt;
Selects DICOPT to solve MINLP problems.

option mip = s;
This option sets the MIP solver to be used for the MIP master problems.
Note that changing from one MIP solver to another can lead to different
results, and may cause DICOPT to follow a different path.

option nlp = s;
This option sets the NLP solver to be used for the NLP sub-problems.
Note that changing from one NLP solver to another can lead to different
results, and may cause DICOPT to follow a different path.

option optca = x;
This option is ignored. MIP master problems are solved to optimality
unless specified differently in the DICOPT option file.

option optcr = x;
This option is ignored. MIP master problems are solved to optimality
unless specified differently in the DICOPT option file.

option reslim = x;
This option sets a limit on the total accumulated time (in seconds) spent
inside DICOPT and the subsolvers. The default is 1000 seconds.

option sysout = on;
This option will print extra information to the listing file.

In the list above (and in the following) n indicates an integer number. GAMS

will also accept fractional values: they will be rounded. Options marked with
an x parameter expect a real number. Options with an s parameter, expect a
string argument.

7.2 The model suffix

Some options are set by assigning a value to a model suffix, as in:

model m /all/;
m.optfile=1;
solve m using minlp minimizing z;

Here follows a list of model suffices that affect the behavoir of DICOPT:

m.dictfile = 1;
This option tells GAMS to write a dictionary file containing information

10

about GAMS identifiers (equation and variables names). This information
is needed when the DICOPT option nlptracelevel is used. Otherwise
this option can be ignored.

m.iterlim = n;
Sets the total accumulated (minor) iteration limit. This option overrides
the global iteration limit set by an option statement. E.g.,

model m /all/;
m.iterlim = 100;
option iterlim = 1000;
solve m using minlp minimizing z;

will cause DICOPT to use an iteration limit of 100.

m.optfile = 1;
This option instructs DICOPT to read an option file dicopt.opt. This file
should be located in the current directory (or the project directory when
using the GAMS IDE). The contents of the option file will be echoed to
the listing file and to the screen (the log file):

--- DICOPT: Reading option file D:\MODELS\SUPPORT\DICOPT.OPT
> maxcycles 10
--- DICOPT: Starting major iteration 1

If the option file does not exist, the algorithm will proceed using its default
settings. An appropriate message will be displayed in the listing file and
in the log file:

--- DICOPT: Reading option file D:\MODELS\SUPPORT\DICOPT.OPT
--- DICOPT: File does not exist, using defaults...
--- DICOPT: Starting major iteration 1

m.optfile = n;
If n > 1 then the option file that is read is called dicopt.opn (for n =
2, ..., 9) or dicopt.on (for n = 10, ..., 99). E.g. m.optfile=2; will cause
DICOPT to read dicop.op2.

m.prioropt = 1;
This option will turn on the use of priorities on the discrete variables.
Priorities influence the branching order chosen by the MIP solver during
solution of the MIP master problems. The use of priorities can greatly
impact the performance of the MIP solver. The priorities themselves have
to be specified using the .prior variables suffix, e.g. x.prior(i,j) =
ord(i);. Contrary to intuition, variables with a lower value for their
priority are branched on before variables with a higher priority. I.e. the
most important variables should get lower priority values.

m.reslim = x;
Sets the total accumulated time limit. This option overrides the global
time limit set by an option statement.

11

8 DICOPT options

This sections describes the options that can be specified in the DICOPT option
file. This file is usually called dicopt.opt. In order to tell DICOPT to read this
file, you will need to set the optfile model suffix, as in:

model m /all/;
m.optfile=1;
solve m using minlp minimizing z;

The option file is searched for in the current directory, or in case the IDE
(Integrated Development Environment) is used, in the project directory.

The option file is a standard text file, with a single option on each line. All
options are case-insensitive. A line is a comment line if it starts with an asterisk,
*, in column one. A valid option file can look like:

* stop only on infeasible MIP or hitting a limit
stop 0
* use minos to solve first NLP sub problem
* and conopt2 for all subsequent ones
nlpsolver minos conopt2

Here follows a list of available DICOPT options:

continue n
This option can be used to let DICOPT continue in case of NLP solver
failures. The preferred approach is to fix the model, such that NLP sub-
problems solve without problems. However, in some cases we can ignore
(partial) failures of an NLP solver in solving the NLP subproblems as DI-

COPT may recover later on. During model debugging, you may therefore
add the option continue 0, in order for DICOPT to function in a more
finicky way.

continue 0
Stop on solver failure. DICOPT will terminate when an NLP sub-
problem can not be solved to optimality. Some NLP solvers termi-
nate with a status other than optimal if not all of the termination
criteria are met. For instance, the change in the objective function
is negligable (indicating convergence) but the reduced gradients are
not within the required tolerance. Such a solution may or may not
be close the (local) optimum. Using continue 0 will cause DICOPT

not to accept such a solution.

continue 1
NLP subproblem failures resulting in a non-optimal but feasible so-
lutions are accepted. Sometimes an NLP solver can not make fur-
ther progress towards meeting all optimality conditions, although the
current solution is feasible. Such a solution can be accepted by this
option.

12

continue 2
NLP subproblem failures resulting in a non-optimal but feasible so-
lution are accepted (as in option continue 1). NLP subproblem
failures resulting in an infeasible solution are ignored. The corre-
sponding configuration of discrete variables is forbidden to be used
again. An integer cut to accomplish this, is added to subsequent
MIP master problems. Note that the relaxed NLP solution should
be feasible. This setting is the default.

domlim i1 i2 . . . in
Sets a limit of the number of function and derivative evaluation errors for
a particular cycle. A number of −1 means that the global GAMS option
domlim is used. The last number in sets a domain error limit for all cycles
n, n + 1,

Example: domlim 0 100 0
The NLP solver in the second cycle is allowed to make up to 100
evaluation errors, while all other cycles must be solved without eval-
uation errors.

The default is to use the global GAMS domlim option.

epsmip x
This option can be used to relax the test on MIP objective functions.
The objective function values of the MIP master problems should form
a monotonic worsening curve. This is not the case if the MIP master
problems are not solved to optimality. Thus, if the options OPTCR or
OPTCA are set to a nonzero value, this test is bypassed. If the test fails,
DICOPT will fail with a message:

The MIP solution became better after adding integer cuts.
Something is wrong. Please check if your model is properly
scaled. Also check your big M formulations -- the value
of M should be relatively small.

This error can also occur if you used a MIP solver option
file with a nonzero OPTCR or OPTCA setting. In that case
you may want to increase the EPSMIP setting using a
DICOPT option file.

The value of
PreviousObj− CurrentObj

1 + |PreviousObj|
(9)

is compared against epsmip. In case the test fails, but you want DI-

COPT to continue anyway, you may want to increase the value of epsmip.
The current values used in the test (previous and current MIP objective,
epsmip) are printed along with the message above, so you will have infor-
mation about how much you should increase epsmip to pass the test. Nor-
mally, you should not have to change this value. The default is x = 1.0e−6.

13

epsx x
This tolerance is used to distinguish integer variables that are set to an
integer value by the user, or integer variables that are fractional. See the
option relaxed. Default: x = 1.0e− 3.

keepfiles
This option is for debugging purposes. By default DICOPT will remove
any scratch files that are written. With this option, you can tell DICOPT

not to delete those temporary files. This option is especially useful in
combination with the GAMS main driver program gamskeep, which will
not delete the GAMS scratch directory after the job has finished.

maxcycles n
The maximum number of cycles or major iterations performed by DI-

COPT. The default is n = 20.

mipiterlim i1 i2 . . . in
Sets an iteration limit on individual MIP master problems. The last num-
ber in is valid for all subsequent cycles n, n+1, A number of −1 indi-
cates that there is no (individual) limit on the corresponding MIP master
problem. A global iteration limit is maintained through the GAMS option
iterlim.

Example: mipiterlim 10000 -1
The first MIP master problem can not use more than 10000 itera-
tions, while subsequent MIP master problems are not individually
restricted.

Example: mipiterlim 10000
Sets an iteration limit of 10000 on all MIP master problems.

When this option is used it is advised to have the option continue set
to its default of 2. The default for this option is not to restrict iteration
counts on individual solves of MIP master problems.

mipoptfile s1 s2 . . . sn

Specifies the option file to be used for the MIP master problems. Several
option files can be specified, separated by a blank. If a digit 1 is entered,
the default option file for the MIP solver in question is being used. The
digit 0 indicates: no option file is to be used. The last option file is also
used for subsequent MIP master problems.

Example: mipoptfile mip.opt mip2.opt 0
This option will cause the first MIP master problem solver to read the
option file mip.opt, the second one to read the option file mip2.opt
and subsequent MIP master problem solvers will not use any option
file.

14

Example: mipoptfile 1
This will cause the MIP solver for all MIP subproblems to read a
default option file (e.g. cplex.opt, xpress.opt, osl2.opt etc.).

Option files are located in the current directory (or the project directory
when using the IDE). The default is not to use an option file.

mipreslim x1 x2 . . . xn

Sets a resource (time) limit on individual MIP master problems. The last
number xn is valid for all subsequent cycles n, n + 1, A number −1.0
means that the corresponding MIP master problem is not individually
time restricted. A global time limit is maintained through the GAMS

option reslim.

Example: mipreslim -1 10000 -1
The MIP master problem in cycle 2 can not use more than 100 sec-
onds, while subsequent MIP master problems are not individually
restricted.

Example: mipreslim 1000
Sets a time limit on all MIP master problems of 1000 seconds.

When this option is used it is advised to have the option continue set to
its default of 2. The default for this option is not to restrict individually
the time a solver can spent on the MIP master problem.

mipsolver s1 s2 . . . sn

This option specifies with MIP solver to use for the MIP master problems.

Example: mipsolver cplex osl2
This instructs DICOPT to use Cplex for the first MIP and OSL2 for
the second and subsequent MIP problems. The last entry may be
used for more than one problem.

The names to be used for the solvers are the same as one uses in the
GAMS statement OPTION MIP=....;. The default is to use the default
MIP solver.
Note that changing from one MIP solver to another can lead to different
results, and may cause DICOPT to follow a different path.

nlpiterlim i1 i2 . . . in
Sets an iteration limit on individual NLP subproblems. The last number
in is valid for all subsequent cycles n, n+1, A number of −1 indicates
that there is no (individual) limit on the corresponding NLP subproblem.
A global iteration limit is maintained through the GAMS option iterlim.

Example: nlpiterlim 1000 -1
The first (relaxed) NLP subproblem can not use more than 1000
iterations, while subsequent NLP subproblems are not individually
restricted.

15

Example: nlpiterlim 1000
Sets an iteration limit of 1000 on all NLP subproblems.

When this option is used it is advised to have the option continue set
to its default of 2. The default is not to restrict the amount of iterations
an NLP solver can spend on an NLP subproblem, other than the global
iteration limit.

nlpoptfile s1 s2 . . . sn

Specifies the option file to be used for the NLP subproblems. Several
option files can be specified, separated by a blank. If a digit 1 is entered,
the default option file for the NLP solver in question is being used. The
digit 0 indicates: no option file is to be used. The last option file is also
used for subsequent NLP subproblems.

Example: nlpoptfile nlp.opt nlp2.opt 0
This option will cause the first NLP subproblem solver to read the
option file nlp.opt, the second one to read the option file nlp2.opt
and subsequent NLP subproblem solvers will not use any option file.

Example: nlpoptfile 1
This will cause the NLP solver for all NLP subproblems to read a
default option file (e.g. conopt2.opt, minos.opt, snopt.opt etc.).

Option files are located in the current directory (or the project directory
when using the IDE). The default is not to use an option file.

nlpreslim x1 x2 . . . xn

Sets a resource (time) limit on individual NLP subproblems. The last
number xn is valid for all subsequent cycles n, n + 1, A number −1.0
means that the corresponding NLP subproblem is not individually time
restricted. A global time limit is maintained through the GAMS option
reslim.

Example: nlpreslim 100 -1
The first (relaxed) NLP subproblem can not use more than 100 sec-
onds, while subsequent NLP subproblems are not individually re-
stricted.

Example: nlpreslim 1000
Sets a time limit of 1000 seconds on all NLP subproblems.

When this option is used it is advised to have the option continue set to
its default of 2. The default for this option is not to restrict individually
the time an NLP solver can spend on an NLP subproblem (other than the
global resource limit).

nlpsolver s1 s2 . . . sn

This option specifies which NLP solver to use for the NLP subproblems.

16

Example: nlpsolver conopt2 minos snopt
tells DICOPT to use CONOPT2 for the relaxed NLP, MINOS for the
second NLP subproblem and SNOPT for the third and subsequent
ones. The last entry is used for more than one subproblem: for all
subsequent ones DICOPT will use the last specified solver.

The names to be used for the solvers are the same as one uses in the
GAMS statement OPTION NLP=....;. The default is to use the default
NLP solver. Note that changing from one NLP solver to another can lead
to different results, and may cause DICOPT to follow a different path.

nlptracefile s
Name of the files written if the option nlptracelevel is set. Only the
stem is needed: if the name is specified as nlptracefile nlptrace, then
files of the form nlptrace.001, nlptrace.002, etc. are written. These
files contain the settings of the integer variables so that NLP subproblems
can be investigated independently of DICOPT. Default: nlptrace.

nlptracelevel n
This sets the level for NLP tracing, which writes a file for each NLP
sub-problem, so that NLP sub-problems can be investigated outside the
DICOPT environment. See also the option nlptracefile.

nlptracelevel 0
No trace files are written. This is the default.

nlptracelevel 1
A GAMS file for each NLP subproblem is written which fixes the
discrete variables.

nlptracelevel 2
As nlptracelevel 1, but in addition level values of the continuous
variables are written.

nlptracelevel 3
As nlptracelevel 2, but in addition marginal values for the equa-
tions and variables are written.

By including a trace file to your original problem, and changing it into an
MINLP problem, the subproblem will be solved directly by an NLP solver.
This option only works if the names in the model (names of variables and
equations) are exported by GAMS. This can be accomplished by using
the m.dictfile model suffix, as in m.dictfile=1;. In general it is more
convenient to use the CONVERT solver to generate isolated NLP models (see
section 10.4).

optca x1 x2 . . . xn

The absolute optimality criterion for the MIP master problems. The
GAMS option optca is ignored, as by default DICOPT wants to solve
MIP master problems to optimality. To allow to solve large problem, it is

17

possible to stop the MIP solver earlier, by specifying a value for optca or
optcr in a DICOPT option file. With setting a value for optca, the MIP
solver is instructed to stop as soon as the gap between the best possible
integer solution and the best found integer solution is less than x, i.e. stop
as soon as

|BestFound− BestPossible| ≤ x (10)

It is possible to specify a different optca value for each cycle. The last
number xn is valid for all subsequent cycles n, n + 1,

Example: optca 10
Stop the search in all MIP problems as soon as the absolute gap is
less than 10.

Example: optca 0 10 0
Sets a nonzero optca value of 10 for cycle 2, while all other MIP
master problems are solved to optimality.

The default is zero.

optcr x1 x2 . . . xn

The relative optimality criterion for the MIP master problems. The GAMS

option optca is ignored, as by default DICOPT wants to solve MIP master
problems to optimality. To allow to solve large problem, it is possible to
stop the MIP solver earlier, by specifying a value for optca or optcr in
a DICOPT option file. With setting a value for optcr, the MIP solver is
instructed to stop as soon as the relative gap between the best possible
integer solution and the best found integer solution is less than x, i.e. stop
as soon as

|BestFound− BestPossible|
|BestPossible|

≤ x (11)

Note that the relative gap can not be evaluated if the best possible integer
solution is zero. In those cases the absolute optimality criterion optca can
be used. It is possible to specify a different optcr value for each cycle.
The last number xn is valid for all subsequent cycles n, n + 1,

Example: optcr 0.1
Stop the search in all the MIP problems as soon as the relative gap
is smaller than 10%.

Example: optcr 0 0.01 0
Sets a nonzero optcr value of 1% for cycle 2, while all other MIP
master problems are solved to optimality.

The default is zero.

relaxed n
In some cases it may be possible to use a known configuration of the
discrete variables. Some users have very difficult problems, where the
relaxed problem can not be solved, but where NLP sub-problems with the

18

integer variables fixed are much easier. In such a case, if a reasonable
integer configuration is known in advance, we can bypass the relaxed NLP
and tell DICOPT to directly start with this integer configuration. The
integer variables need to be specified by the user before the solve statement
by assigning values to the levels, as in Y.L(I) = INITVAL(I);.

relaxed 0
The first NLP sub-problem will be executed with all integer variables
fixed to the values specified by the user. If you don’t assign a value
to an integer variable, it will retain it’s current value, which is zero
by default.

relaxed 1
The first NLP problem is the relaxed NLP problem: all integer vari-
ables are relaxed between their bounds. This is the default.

relaxed 2
The first NLP subproblem will be executed with some variables fixed
and some relaxed. The program distinguishes the fixed from the
relaxed variables by comparing the initial values against the bounds
and the tolerance allowed EPSX. EPSX has a default value of 1.e-3.
This can be changed in through the option file.

stop n
This option defines the stopping criterion to be used. The search is al-
ways stopped when the (minor) iteration limit (the iterlim option), the
resource limit (the reslim option), or the major iteration limit (see max-
cycles) is hit or when the MIP master problem becomes infeasible.

stop 0
Do not stop unless an iteration limit, resource limit, or major it-
eration limit is hit or an infeasible MIP master problem becomes
infeasible. This option can be used to verify that DICOPT does not
stop too early when using one of the other stopping rules. In gen-
eral it should not be used on production runs, as in general DICOPT

will find often the optimal solution using one of the more optimistic
stopping rules.

stop 1
Stop as soon as the bound defined by the objective of the last MIP
master problem is worse than the best NLP solution found (a “crossover”
occurred). For convex problems this gives a global solution, provided
the weights are large enough. This stopping criterion should only be
used if it is known or it is very likely that the nonlinear functions are
convex. In the case of non-convex problems the bounds of the MIP
master problem are not rigorous. Therefore, the global optimum can
be cut-off with the setting stop 1.

stop 2
Stop as soon as the NLP subproblems stop to improve. This“worsening”

19

criterion is a heuristic. For non-convex problems in which valid
bounds can not be obtained the heuristic works often very well. Even
on convex problems, in many cases it terminates the search very early
while providing an optimal or a very good integer solution. The cri-
terion is not checked before major iteration three.

stop 3
Stop as soon as a crossover occurs or when the NLP subproblems
start to worsen. (This is a combination of 1 and 2).

Note: In general a higher number stops earlier, although in some cases
stopping rule 2 may terminate the search earlier than rule 1. Section VI
shows some experiments with these stopping criteria.

weight x
The value of the penalty coefficients. Default x = 1000.0.

9 DICOPT output

DICOPT generates lots of output on the screen. Not only does DICOPT itself
writes messages to the screen, but also the NLP and MIP solvers that handle the
sub-problems. The most important part is the last part of the screen output.

In this section we will discuss the output that DICOPT writes to the screen
and the listing file using the model procsel.gms (this model is part of the GAMS

model library). A DICOPT log is written there and the reason why DICOPT

terminated.

--- DICOPT: Checking convergence
--- DICOPT: Search stopped on worsening of NLP subproblems
--- DICOPT: Log File:
Major Major Objective CPU time Itera- Evaluation Solver
Step Iter Function (Sec) tions Errors
NLP 1 5.35021 0.05 8 0 conopt2
MIP 1 2.48869 0.28 7 0 cplex
NLP 2 1.72097< 0.00 3 0 conopt2
MIP 2 2.17864 0.22 10 0 cplex
NLP 3 1.92310< 0.00 3 0 conopt2
MIP 3 1.42129 0.22 12 0 cplex
NLP 4 1.41100 0.00 8 0 conopt2

--- DICOPT: Terminating...
--- DICOPT: Stopped on NLP worsening

The search was stopped because the objective function
of the NLP subproblems started to deteriorate.

--- DICOPT: Best integer solution found: 1.923099
--- Restarting execution
--- PROCSEL.GMS(98) 0 Mb
--- Reading solution for model process
*** Status: Normal completion

Notice that the integer solutions are provided by the NLP’s except for major
iteration one (the first NLP is the relaxed NLP). For all NLP’s except the
relaxed one, the binary variables are fixed, according to a pattern determined

20

by the previous MIP which operates on a linearized model. The integer solutions
marked with a ’<’ are an improvement. We see that the NLP in cycle 4 starts
to deteriorate, and DICOPT stops based on its default stopping rule.

It should be noted that if the criterion stop 1 had been used the search
would have been terminated at iteration 3. The reason is that the upper bound
to the profit predicted by the MIP (1.42129) exceeds the best current NLP solu-
tion (1.9231). Since it can be shown that the MINLP involves convex nonlinear
functions, 1.9231 is the global optimum and the criterion stop 1 is rigorous.

A similar output can be found in the listing file:

S O L V E S U M M A R Y

MODEL process OBJECTIVE pr
TYPE MINLP DIRECTION MAXIMIZE
SOLVER DICOPT FROM LINE 98

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 8 INTEGER SOLUTION
**** OBJECTIVE VALUE 1.9231

RESOURCE USAGE, LIMIT 0.771 1000.000
ITERATION COUNT, LIMIT 51 10000
EVALUATION ERRORS 0 0

--- DICOPT: Stopped on NLP worsening

The search was stopped because the objective function
of the NLP subproblems started to deteriorate.

--
Dicopt2x-C Jul 4, 2001 WIN.DI.DI 20.1 026.020.039.WAT
--

Aldo Vecchietti and Ignacio E. Grossmann
Engineering Design Research Center
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Erwin Kalvelagen
GAMS Development Corp.
1217 Potomac Street, N.W.
Washington DC 20007

--
DICOPT Log File
--
Major Major Objective CPU time Itera- Evaluation Solver
Step Iter Function (Sec) tions Errors
NLP 1 5.35021 0.05 8 0 conopt2
MIP 1 2.48869 0.28 7 0 cplex
NLP 2 1.72097< 0.00 3 0 conopt2
MIP 2 2.17864 0.22 10 0 cplex
NLP 3 1.92310< 0.00 3 0 conopt2
MIP 3 1.42129 0.22 12 0 cplex
NLP 4 1.41100 0.00 8 0 conopt2

--
Total solver times : NLP = 0.05 MIP = 0.72
Perc. of total : NLP = 6.59 MIP = 93.41

--

In case the DICOPT run was not successful, or if one of the subproblems
could not be solved, the listing file will contain all the status information pro-
vided by the solvers of the subproblems. Also for each iteration the configura-

21

tion of the binary variables will be printed. This extra information can also be
requested via the GAMS option:

option sysout = on ;

10 Special notes

This section covers some special topics of interest to users of DICOPT.

10.1 Stopping rule

Although the default stopping rule behaves quite well in practice, there some
cases where it terminates too early. In this section we discuss the use of the
stopping criteria.

When we run the example procsel.gms with stopping criterion 0, we see
the following DICOPT log:

--- DICOPT: Starting major iteration 10
--- DICOPT: Search terminated: infeasible MIP master problem
--- DICOPT: Log File:
Major Major Objective CPU time Itera- Evaluation Solver
Step Iter Function (Sec) tions Errors
NLP 1 5.35021 0.06 8 0 conopt2
MIP 1 2.48869 0.16 7 0 cplex
NLP 2 1.72097< 0.00 3 0 conopt2
MIP 2 2.17864 0.10 10 0 cplex
NLP 3 1.92310< 0.00 3 0 conopt2
MIP 3 1.42129 0.11 12 0 cplex
NLP 4 1.41100 0.00 8 0 conopt2
MIP 4 0.00000 0.22 23 0 cplex
NLP 5 0.00000 0.00 3 0 conopt2
MIP 5 -0.27778 0.16 22 0 cplex
NLP 6 -0.27778 0.00 3 0 conopt2
MIP 6 -1.00000 0.16 21 0 cplex
NLP 7 -1.00000 0.00 3 0 conopt2
MIP 7 -1.50000 0.22 16 0 cplex
NLP 8 -1.50000 0.00 3 0 conopt2
MIP 8 -2.50000 0.11 16 0 cplex
NLP 9 -2.50000 0.00 3 0 conopt2
MIP 9 *Infeas* 0.11 0 0 cplex

--- DICOPT: Terminating...
--- DICOPT: Stopped on infeasible MIP

The search was stopped because the last MIP problem
was infeasible. DICOPT will not be able to find
a better integer solution.

--- DICOPT: Best integer solution found: 1.923099
--- Restarting execution
--- PROCSEL.GMS(98) 0 Mb
--- Reading solution for model process
*** Status: Normal completion

This example shows some behavioral features that are not uncommon for
other MINLP models. First, DICOPT finds often the best integer solution in
the first few major iterations. Second, in many cases as soon as the NLP’s start

22

to give worse integer solution, no better integer solution will be found anymore.
This observation is the motivation to make stopping option 2 where DICOPT

stops as soon as the NLP’s start to deteriorate the default stopping rule. In this
example DICOPT would have stopped in major iteration 4 (you can verify this
in the previous section). In many cases this will indeed give the best integer
solution. For this problem, DICOPT has indeed found the global optimum.

Based on experience with other models we find that the default stopping rule
(stop when the NLP becomes worse) performs well in practice. In many cases
it finds the global optimum solution, for both convex and non-convex problems.
In some cases however, it may provide a sub-optimal solution. In case you want
more reassurance that no good integer solutions are missed you can use one of
the other stopping rules.

Changing the MIP or NLP solver can change the path that DICOPT follows
since the sub-problems may have non-unique solutions. The optimum stopping
rule for a particular problem depends on the MIP and NLP solvers used.

In the case of non-convex problems the bounds of the MIP master problem
are not rigorous. Therefore, the global optimum can be cut-off with stop 1.
This option is however the best stopping criterion for convex problems.

10.2 Solving the NLP problems

In case the relaxed NLP and/or the other NLP sub-problems are very difficult,
using a combination of NLP solvers has been found to be effective. For example,
MINOS has much more difficulties to establish if a model is infeasible, so one
would like to use CONOPT for NLP subproblems that are either infeasible or
barely feasible. The nlpsolver option can be used to specify the NLP solver
to be used for each iteration.

Infeasible NLP sub-problems can be problematic for DICOPT. Those sub-
problems can not be used to form a new linearization. Effectively only the
current integer configuration is excluded from further consideration by adding
appropriate integer cuts, but otherwise an infeasible NLP sub-problem provides
no useful information to be used by the DICOPT algorithm. If your model shows
many infeasible NLP sub-problems you can try to add slack variables and add
them with a penalty to the objective function.

Assume your model is of the form:

min f(x, y)
g(x, y) ∼ b

` ≤ x ≤ u

y ∈ {0, 1}

(12)

where ∼ is a vector of relational operators {≤,=,≥}. x are continuous variables
and y are the binary variables. If many of the NLP subproblems are infeasible,
we can try the following “elastic” formulation:

23

min f(x, y) + M
∑

i

(s+
i + s−i)

y = yB + s+ − s−

g(x, y) ∼ b

` ≤ x ≤ u

0 ≤ y ≤ 1

0 ≤ s+, s− ≤ 1

yB ∈ {0, 1}

(13)

I.e. the variables y are relaxed to be continuous with bounds [0, 1], and binary
variables yB are introduced, that are related to the variables y through a set of
the slack variables s+, s−. The slack variables are added to the objective with
a penalty parameter M . The choice of a value for M depends on the size of
f(x, y), on the behavior of the model, etc. Typical values are 100, or 1000.

10.3 Solving the MIP master problems

When there are many discrete variables, the MIP master problems may become
expensive to solve. One of the first thing to try is to see if a different MIP solver
can solve your particular problems more efficiently.

Different formulations can have dramatic impact on the performance of MIP
solvers. Therefore it is advised to try out several alternative formulations. The
use of priorities can have a big impact on some models. It is possible to specify a
nonzero value for OPTCA and OPTCR in order to prevent the MIP solver to spend
an unacceptable long time in proving optimality of MIP master problems.

If the MIP master problem is infeasible, the DICOPT solver will terminate.
In this case you may want to try the same reformulation as discussed in the
previous paragraph.

10.4 Model debugging

In this paragraph we discuss a few techniques that can be helpful in debugging
your MINLP model.

• Start with solving the model as an RMINLP model. Make sure this model
solves reliably before solving it as a proper MINLP model. If you have access
to different NLP solvers, make sure the RMINLP model solves smoothly with
all NLP solvers. Especially CONOPT can generate useful diagnostics such
as Jacobian elements (i.e. matrix elements) that become too large.

• Try different NLP and MIP solvers on the subproblems. Example: use the
GAMS statement “OPTION NLP=CONOPT3;” to solve all NLP subproblem
using the solver CONOPT version 3.

24

• The GAMS option statement “OPTION SYSOUT = ON;” can generate extra
solver information that can be helpful to diagnose problems.

• If many of the NLP subproblems are infeasible, add slacks as described in
section 10.2.

• Run DICOPT in pedantic mode by using the DICOPT option: “CONTINUE
0.” Make sure all NLP subproblems solve to optimality.

• Don’t allow any nonlinear function evaluation errors, i.e. keep the DOMLIM
limit at zero. See the discussion on DOMLIM in section 7.1.

• If you have access to another MINLP solver such as SBB, try to use a
different solver on your model. To select SBB use the following GAMS

option statement: “OPTION MINLP=SBB;.”

• Individual NLP or MIP subproblems can be extracted from the MINLP by
using the CONVERT solver. It will write a model in scalar GAMS notation,
which can then be solved using any GAMS NLP or MIP solver. E.g. to
generate the second NLP subproblem, you can use the following DICOPT

option: “NLPSOLVER CONOPT2 CONVERT.” The model will be written to
the file GAMS.GMS. A disadvantage of this technique is that some precision
is lost due to the fact that files are being written in plain ASCII. The
advantage is that you can visually inspect these files and look for possible
problems such as poor scaling.

References

[1] M. A. Duran and I. E. Grossmann, An Outer-Approximation Algo-
rithm for a Class of Mixed-Integer Nonlinear Programs, Mathematical Pro-
gramming, 36 (1986), pp. 307–339.

[2] E. Kalvelagen, Model building with GAMS, to appear.

[3] G. R. Kocis and I. E. Grossmann, Relaxation Strategy for the Structural
Optimization of Process Flowsheets, Industrial and Engineering Chemistry
Research, 26 (1987), pp. 1869–1880.

[4] G. R. Kocis and I. E. Grossmann, Computational Experience with DI-
COPT solving MINLP Problems in Process Systems Engineering, Comput-
ers and Chemical Engineering, 13 (1989), pp. 307–315.

[5] J. Viswanathan and I. E. Grossmann, A combined Penalty Function
and Outer Approximation Method for MINLP Optimization, Computers
and Chemical Engineering, 14 (1990), pp. 769–782.

[6] H. P. Williams, Model Building in Mathematical Programming, 4-th edi-
tion (1999), Wiley.

25

