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Ehrhart Folynomials of Convex Polytopes, /-Vectors
of Simplicial Complexes, and Nonsing»lar
Projective Toric Varieties

TAKAYUKI HIBI

ABSTRACT. We develop the theory of combinatorics on Ehrhart polynomi-
als of convex polytor: - by means of some fundamental results on Cohen-
Macaulay rings and . as ngular projective toriz varieties.

Introduct:

Let & = R" be a rational convex poi ope. i.e.. a2 convex polytope, any
of whose vertices has raticnal coordinates. Given a positive integer n we
write (&, n) for the number of those rationa! points (@), ay, ..., ay) In
&’ such that each na, is an integer. In other words,

o , N
A i =#aPNZL Y.

Here no = {na:a € %} and # %) is the cardinality of a finite set X .

Even though the history of the research on enumeration of certain rational
potnts in convex polvtopes goes back to the nineteenih century, the systematic
study of (%, n) originated in the work of Ehrhart {who was a teacher in
a [ycée) beginning around 1955. The monograph [Ehrl] is an exposition
of Ehrhart’s research over a period of many years. Since Ehrhart built up
the foundation on (.2, n), this interesting topic has been studied by, e.g.,
Macdonald [Macl 3ac2]. McMullen {Mcl. Mc2]. and Stanley [Stad].

Nowadays, the technique of commuiative algebra and algebraic geometry
is recognized as one of the basic and powerful tools for the siudy of combi-
natorics. Consult, e.g.. [Hoc2, Rei. Sta2, Stas, Sta9, Stall, Stal3, Bil, B-R,
H1]. Such algebraic technique can be alsc applied to the investigation of
i(% . n). In particular, the theory of canonical modules [Sta3] of Cohen-
Macaulay rings generated by monomials [Heel] plays an important role ‘n
our study of (&P, n.
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The purpose of this paper is to ir:vite the reader 1o a short tour for a survey
ot recent development on (7. n) with some concrete problems that might
stimulate further study of the topic. Our treatment will be rather sketchy; in
¢ subsequent paper, a more comprehensive account will be given.

Our main research object is the functions (%, n) of integral convex poly-
topes # (i.e.. convex polytopes % such that each vertex of 57 has integer
coordinates). Ehrhart established that, when & is integral, the function
(LA n) possesses the following fundamental properties:

(0.1y (2. n) is a polynomial in n of degree d(= dim~"). (Thus
/ie# . n) can be defined for every integer n.)

0.2y i, 0)=1.

(0.3) ot « 2 réciprocite” (Ehr2)) (- 1)?i(5 . —n) = #(n(P - 02) n ZY)
for ever nteger n > 0.

W say tuat (P, n) is the Ehrhart polvnomial of % . Consult. e.g.. [Sta8,
pp. 235-241] for an introduction to Ehrhart polynomials.

We organize this paper as follows. i“irst, in §1. we define a certain com-
binatorial sequence §(°) == {0y 0y.....0,) € 7% called the d-vector of
. arising from the gene' ing function fc  i(? . n, of an integral convex
polytope & of dimensic { (see equatio:. (1)). We consider what ca: be
said about the J-vector of - arbitrary integral convex polytope (cf. Thec zm
1.3)} and then turn to the problenr of finding integral convex polvtopes that
possess symmetric J-vectors (cf. Theorem (1.4)). On tke other hand. the
purpose of §2 is to discuss a relation between 6(.%" and the h-vector h(A)
of some triangulation A of the boundary 9.7 o1 4. Finally. in §3, we

tudy a class of integral convex polytope that are related with finite partialls

-rdered sets (cf. equas on (7)). Via the t..eory of nonsingular projective toric
va ieties (e.g., [StaS, i ), we prove that certain combinatorial sequences
arising from enumeratioa on linear extensions of finite partially ordered sets
are unimodal : Corollary (3.4)).

The author wouid like to thank Pro 2ssor Richard P. Stanley for exciting
discussions on i(.#°, n) and « me related topics while the author was staying
at Massachusetts Institute of . echrology during the 1988-89 academic year.

1. Ehrhart polynomial

L2 cR' bean integral convex polytope of dimension ¢ and 9.9
the = .undary of .. We define the sequence S5+ 0, 05, ... of integers by
the formula

(1 (1= 3t {1-

Then, thanks to the basic facts (0.1) and (0.2) on (%, n), a fundamental
result on generating functions, e.g.. [Sta8, Corollary 4.3.1] guarantees that
o, =0 forevery i >d. When /4 C RY is an integral convex polyvtope
of dimension d, we say that the sequence §(#) - - (dg+ 9y +....d,1. which

1
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appears i cquation ¢ Lio1s the d-vector of 7. Thus, in particular.

~ S

5,=1 and &, =#Zn2z2")—(d+1).

One of the fundamental results on J-vectors of integral convex polytopes

obtained carlier is the following T‘(\N Qo_f
X ‘ . . ]
(1.1 ProposiTioN ([Stad, Theorem 2.1]). The J-vector J(P) = (0y. 9, Y'Nh 0,,,01
o Aot an integral convex polyiope A < BN of dimension d is nonneg- 7
aitve, ie, o, =0 forevery 0<i<d. PUM“?‘”‘J

We refer the reader to [Stad, p. 337] for a historical comment on the above
Proposition (1.1t Also. sce [B-M, p. 254].
On the other hand. it follc vs easily from (0.3) the.

X 8, =41 -0, nz).

Moreover. when N = d . the leading coefficient of (7, 1) coincides with
the volume = Lebesgue measure) vol(:#1 of #° (cf. [Sta8, Proposition
4.6.30]:. ic..

¥ (0, <, + - +0,)/d =vol(:»).

Our nnal goal for the study of Ehrhart pol: omials is to find a complete
rcombrnatorial) characterization of the J-veciors of integral convex poly-
apes.

(1.2) ExampLe. Let N =d =3 and ¢ > 0 an integer. Also, let & C R’
be the tetrahedron with the vertices (0.0.0). (g.1.0). (1.0.1), and
D1.1 . Then #2102y =4 and (/2 — 02N 72 is empty. Also. the
volume of 7 is g + 11/3!. Hence, by (2}, (3). and (4), we have () =

1.0, ¢ . Giothus, (. 0= ((g + 1)113+6n2 + (1l —-gn+6)/3".

s

When = 2. thanks to [Sce]. we can give a complete characterization of
the o-vectors of integral convex polytopes. In fact, the J-vectors arising from
mtegral convex polytopes of dimension 2 are the following: (i) (1.#n.0).
O e thon o l<n<Toand (i (L,on.m), 2<m<n<3Im+3.

Now. what can be said about the d-vector of an arbitrary integre’” convex
polvtope?

. . S . .
(1.3) THEOREM. Suppose thar ./ C R is an integral convex polviope of
dimension d owith the d-vector 3(.77) = (6,. 8, . ... . d,).
rai ([HS, Theorem A}l We have the linear inequality

h ()‘]+()1],7 | r”'vl‘-()d—z f()(‘+()] +~~‘+(SI+OHI
rorevery O<or < [id — 1142].

b tiStal;t. Proposition 4.1}) Assiume that d#0and 6, =05, .= =

d =0 Then the inequality
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6 Gy +0, = 406,<3 =06, +-+0,_, P of .
7"

holds for every 0 <1 < [j/2].

The above nequalities (5} and (6) in Theorem (1.3) are typical examples
of the combinatorial consequences of some recent algebraic works toward the Note tha:
problem of finding a combinatorial characterization of the Hilbert functions & . Mor.
ot Cohen-Macaulay integral domains. See also [H2]. Fix an

We give here a sketch of proof of Theorem (1.3) for the reader who is fa- P c R?
miliar with the theory of canonical modules of Cohen-Macaulay rings. Cor Zy(d) sud
sult [Stal4] and {H9] for the detailed information. First. let XX X, Even -
and T be indeterminates over a field A. We write A(#), for the vec- Ehrhart *
tor space over k spanned by those monomials X|' - Xy*7" such that theory ot

Nees ) € RPN Z" . Alsc, set A4(F), = k. Then the direct sum (1.4) 7
AP =B, AP, of {A(P),}, o, asa vector space over k turns %(d.) is
out to be a noetherian graded ring of Krull dimension d + 1 with tre gg cE
Hilbert function H{A(P), n) = dim, A(#), = (%, n). Now, Hochster B
[Hocl] guarantees that 4(>#) is a Cohen-Macaulay ring. Moreover, by virtue The a
ot [Sta3, equation (21), p. '2]. we can describe, explicitly. a graded ideal of ratio:
=, InAP) ) Ca ) =@, 1o, of {(P) with T=K, .. compar
Here l\{] is the canonical module of -he Cohen-M..caulay ring A(#). Let If o
co=min{n: In AF), #(0)}>0) and O#aeln. tf)p. Then we have exists an
the exact sequence () 0 — A(P) —~ 1 — [/ad(P; — 0 since A(P) is o7y, ¢
an integral domain. A fundamental fact [H-K] (see also [H1, Lemma (1.7)] oi J-vec
in the theory of canonical modules of Cohen-Macaulay rings implies that dimen-ic
A4 .#1/1 is a Cohen-Macaulay ring of dimension d and that [/aA(Z%) is a the integ
Cohen-Macaulay module of dimension d over 4(). On the other hand, Since
thanks to [Sta3, equation (12}, p. 71], we can compute the Hilbert functions of we can ¢
A421/1 and I/a4(7”) by means of the Jd-vector o: %°. Then the required (1.5) fali
inequalities (3} and , 6) follow immediately from a standard (and well-known)

fact. e.g., [Sta3, Corollary 3.11] on Hilbert functions of Cohen-Macaulay rings (1.5) =
and modules. Q.E.D. vertices

Note that. in the above proof, the noetherian graded ring A4(&?) is not and (1,
necessarily generated by .4(7), . However, there exists a system of parame- the othe.
ters tor () consisting of elements of 4(), (if k is infinite). It might {(1,0, ¢
be of interest to ask when .4(_#) is generated by AP, . —-1)} in

At present. there is little hope of giving a purely combinatorial proof forj &) =
Theorem (1.3}.

We now study an analogue of the Dehn-Sommerville equations of the A- A somr
vectors of simplicial convex polytopes (see. e.g.. [B-L, Stas]) for J-vectors of when co
integral convex polytopes. the equa

In general, we say that a convex polvtope - of dimension d is of standard On th
noeaf .2 < & and the origin of R’ is contained in the interior & — 0.4 vex Sets

of /. When o = R is of standard type. the polar set (or dual polyvtope) discusse
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A7 01 s d fned to be

. .y
A {»(}E“n,\....udsémt( s BB+ ta B, <
forevery (f,, B,. ..., B,) € £P}.

Note that .~ - B is also a convex polytope of standard type and (P7) =
4. Moreover. tf . 1s rational, then 22" is also rational (cf. [Gri, p. 47]).

Fixan integer ¢ > | and let #,(d) be the set of integral convex polytopes
/72 F% of standard tvpe. Also. we write 7 "(d) for the set of those & €
<, dy such that the polar set 2" of £ is an integral convex polytope.

Zven though the following Theorem (1.4) is easy to prove (based on the
E chart law of reciprocity (0.3)). this result plays an important role in our
theory of combinatorics on d-vectors.

(1.4 THEOREM ([H6]). The J-vector §(.7) =
“ondy s symmerric, e 6, = d, . for ¢ ory 0

- -

Pl \d’ .

(0g. 0y ....0;) of P €
< i< d, if and only if

The above Theorem (1.47 can be ger-ralized for the functions { 2, n)
of rational convex polvtoper 4 (see [H ]). Also, it would be of interest to
compare our Theorem (1.4, nd [H7}) w.th [Ish, Theorem 7.7].

It~ 2" isan integral convex polvtope of dimension d, then there
exists an integral convex polvtope & C 2’ of dimension d with 5P =
det . See. e.g. [Sta8, pp. 238-239]. Hence, for the combinatorial study
of d-vectors ¢ #) = (d,. 0, . ... 0,) of integral convex polytopes & of
dimension d w » 4, > 0. t"1nks to equation (3), we have only to consider
the integral comve . polyvtopes 2 RY of standard type.

Since s = 7 tdy implies ¥ € #7.di. it is quite reasonable to ask if
we can compute d1.77) in terms of (7). However. the following Example
¢1.35 falls short of our expectation.

(1.5 Exanmpre. Let & = 3. First, we consider .2 € #7(3) with t'e
vertices i Lo =1 0000 (0, -1, 00 (0.0, =1, (0,1, 1), (1, 2, 1),
and (1. 1.0:. Then o1’y =(1.4,4. 1) and §(Z") =(1,19.19.1). On
the other hand. let © € #7(3) be the bipyramid, which is the convex hull of
HELO 0 001,00 b L0y (-1, 0.00.(0,—1.0).(0,0.1),(0,0,
~1itn ' with 3040 = (1.4.4,1). Then #° c R® is the prism with

N

et "= 01,20.20.0 1) . Hence 6(2") #6(477) even though (%) = §(€).

A semewhat interesting question related with Example (1.5) is the problem
when convex polylopes .2 € £7(d) satisfy 6() = 6(9°"). We remark that
the equality 80471 == (.7} implies vol(o#) = vol(.%"7} by equation (4).

On the other hand, during the DIMACS workshe  on Polytopes and Con-
vex Sets (Rutgers University, January 8-—12, 1990, Staniey and the author
discussed the following question: Let & and 4 be integral convex polytopes
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in ' of dimension d and suppose that each vertex of 5 is a vertex of &
thus. in particular. &4 € 4. Then is ¢(4€) > 6(5)? (Namley, 1s the ith
component of J(4') greater than or equal to the /th component of (%)
for every 0 <1< a"?)l

2. Simplicial complexes

Let us review the definition of f-vectors and /A-vectors of simplicial com-
plexes. Let A be a simplicial complex on the vertex set V= {x,. x|, .... X, }.
Thus. A 1s a collection of subsets of }° such that (i) {x,} € A for every
< i/<vand (i if 7€ A and 1 C ¢ then 7 € A. An element 0 € A is
called an i-face of A f #(g) =i+ 1. A facet of A is a maximal face (with
respect to inclusion) ot A. Let d := max{#(g); o € A}. Then the dimension
of A is dim{A):=d — 1. We write f, = f(A), 0 <i<d, for the number
ot i-faces of A. The vector f{A) = (f,. f;..... f,_,) iscalled the f-vector

of A. Define the h-vector hiA) = (hy. h .....h,) of A by the formula

d d
DAV IS Y

1=0 =0

with /= 1. In particular. A, = 1. h =#(}")-d.and

/zui«hl+-»-+/zd:_fd_l.

We now study ¢ 2rtain troangulation A of the boundary 9.7 of a convex
nolviope .# € # "{u; and discuss a relation tetween the d-vector of &# and
the Ji-vector of AL

Let € «"(d) and set V= 0.2 N Z%. We write .7 for the sct o
amplices @ © 3 such that each vertex of ¢ is contained in }*. Thus in
particular {x} € ./ for each x € J'. We say that a subset A of .7 isa
‘riangulaiion of 0.7 with the vertex set V' if the following conditions are
satistied:

1o vt e A foreach v
i if g€ Aand risataceof g.then T€A.
i) f g, t€ Al then g7t is a common face of both ¢ and 1.

(v {VI(”,A g =d./.

(2.1) LEMMA. The boundary .7 of every # € #7(d) possesses a trian-
- o d
culation with the vertex set ™ = 0.2 0 Z°

\ triangulation A of the boundary .7 of .# € #7(d) with the vertex set
oozt might be regarded as a simplicial complex on 17 of dimension
{4 -1 whose geometric realization is .2 . Since .2 1s homeomorphic to
the wd - 1)-sphere, the h-vector h(A) = (h,. h .....h,) of the simplicial

"Stanley [Stals} answered this question athrmatively by the use of a modification of the
< ohen-Macaulay ring 1 2 which appears in the sketeh of the proot of Theorem (1.3,
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complex A on I satisties the Dehn-Sommenrville equation n,o=h, for
every <1< d . Consult. e.g., [Hoc2] and [Sta6)].

On the other hand. a triangulation A of the boundary 9.5 of 2 € Z7(d)
with the vertex set I = 9.2 nZ% is called compressed (cf. [Stad, p. 337])
i, tor cach facet 5 of A. the determinant of the matrix (Xjp e Xpne s X )
s cqual to =1, whe: {"u}m,gd is the set of vertices of ¢. (Note that if

2 7 R is the simplex which is the convex hull of {(0,0,...,0)}Ua, then
dlvoli 1 comcides with the absolute vaiue of the determinant of the matrix
[ U G ¢

rd

When & < 3 and 2 € £7(d). every triangulat.on of 3.2 with the vertex
set 17 =04 0Z% is compressed. because the volume of an integral convex

polvtope 4 < F~ of dimension 2 with #(&' N Zz) =3 isequalto 1/2.

(2.2) ProprosiTioN (cf. [Stad] and [B-M]). Suppose that A is a triangulation
of the boundary 0.7 of 7 € &(d) with the vertex set V =82 0 Z%. Let
iy = thy oo, h,) be the h-vector of A and () = (6g-0,,...,0d,)
the o-vector of # . Then 8(F) > h{A | ie., o, 2 h. forevery 0 <i<d.
Moercover, hiA) = d1.#) if and only if A is compressed.

(2.3) Examrre. Let d =4 and & € #7(4) the convex polytope with the
vertexset 100,00 1. 1,0,1).(8,0, 7, D), (0, 1.1, 1). —(0.0,0.
Pl 00b 0= 100100, —(0, 1.1, iy}, Then 8(52) = (1, 4,22,
4. 1. whichis not an “0O-sequence™ (see. e.g.. [Sta3, H2]). thus there exists no
compressed triangulation of 922 with the vertex set 1 = 02 nZ* . In fact.
/" is a simplicial convex polytope with the “-vector h(”) =(1.4.6, 4.1}
and the set of faces of .# is the unique triangulation of .57 with the vertex
set 1

Now. let d(o#"i = (d,.6,.....d,) be the d-vector of &# € #7(d) and
suppose that AiAr = Vg hy o h,) is the A-vector of a triangulation A
of 724 with the vertex set |7 = 0.2 N Z¢. whose existence is guaranteed
by Lemma 2.1 - Then the Lower Bound Theorem by Barnette [Barl, Bar2]

implies the inequality 4 > A, forevery 1 < i < d. On the other hand.
d

since we have 0, =2 A NZY) ~(d + 1)) = nt=#(})-d). we obtain from
Proposiion (2.27 the following result.

(2.4) CoroLLary. The o-vector (4] = (d,.6,.....9d,) of an arbitrary
convex polviope /= A71dY satisfies the inequality d,. >0, forevery 1 <i <
d

In [' 10]. the above Corollary (2.4} is generalized as follows:

£2.5) THeorem ([H10D. Let .2 C Y be an integral convex polvtope of
dimenston d owith the d-vector §(.4) = (3y+ 3y ....0,) and suppose that

S0 T oy nonempty, L.e., o, # 0. Then we have the inequality
a0 torevery LS < d
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Fix an integer @ > | and let Z7(d} be the set of d-vectors d(+1 of
£ € 771d) . Also, we write .Z"(d  for the subset of .Z"{d}. which consists
ot o-vectors J(+”) of # € #7(d} such that #5° possesses a compressed
triangulation with the vertex set }° = 952 nZY. We remark that Fidy =
ZTidy if d < 3 however, Z(d)# Z7(d) forevery d > 4.

[t would be of interest to find a combinatorial characterization of the
sequences in .27 (d) (or 2 (d)).

On the other hand. by virtue of [Hen, Theorem 3.6}, the supremum of
volumes vol(.2) of ¥ € #7(d) is bounded. Hence, Lemma (1.1} and
equation (4}, together. imply the following:

(2.6) PROPOSITION. The set Z"(d) is finite for every d > 1.

We do not know the exact values of v(d) := max{vol(#). F € #7(d)}
and u(d) - #(Z7id)) when d > 3. Note that v(2) = 9/2 [Sco] and
w2y =7 however v(d) > (d+ )d/d! if d >3 (cf. [Z-P-W]). Also. see
[Hen, 44].

3. Toric varieties

We a* - now in the position to study toric varieties arising from triangu-
iations «. the boundaries of convex polytopes. We refer the reader to. e.g.,
[Oda] and [Dan] for basic information on toric varieties.

Suppose that A is a triangulation of the boundary 02 of .2 € #7(d)
with .he vertex sct 1 = 02 N Z%. Then we can construct a simplicial
complete fan # (A) (cf. [Dan, §5]) in the Q-vector space Q‘d assuciated with
A in the obvious way ([Stal0, p. 218; Oda, Proposition 2.19]). In fact. for
cach face 7 of A, we define a simplicial convex pol hedral cone C(g) (with
apew at the origin) to be the union of all ravs whose vertex is the origin and
which pass thrcugh ¢ . Then the set .# (A} of all such cones C(g) forms a
complete fan. We write .2 (A) for the complete toric variety assoc’ated with
#1A). Here we should remark that #(A) is nonsingular [Oda, Theorem
1.10] if and only if A is compressed (cf. Proposition (2.2)). In general,
the toric variety .#(A} is not necessarily projective (even though .7 (A) is
nonsingular, sce [Oda, p. 84]). On the other hand. if the toric varie . 2 (A)
1s nonsingular and projective, then the d-vector d(-#) of % coincides with
the A-vector of some simplicial convex polvtope of dimension d (cf. [Stal0,
p- 219])2 thus. in particular, J(_#) is unimodal. ie.. d, <4, <--- < d1a/2)
[StaS] and [Stal12, Theorem 20]). Consult. e.g., [Stall] for further results
related with toric varieties and unimodal sequences.

It would be of interest to ask if there exists a natural class of convex
polytopes . < #"(d) such that the boundary 9.7 of & _ossesses a trian-
gulation A with the vertex set 1" = ./ N 74 for which the corresponding
toric vanety -#’(Ay 1s projective (or nonsingular).

On the other hand. there exists a convex polytope 2# € #7(d) and trian-
sulations A. A" of the boundary 4.7 of ./ with the vertex set | = g0zl

i < A s 5 . oS L AR R
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such that #°(A) is nonsingular (resp. projective), but #°(A) is not nonsin-
gular (resp. projective) if d >4 (resp. d > 3).

Throughout the remainder of this section, we suppose that X 1is a finite
partially ordered set (poset for short) with elements y, , y,,...,y, labeled
so that if v, < v, in X, then /i < j in Z. A totally ordered subset of X is
called a chain of X . Set [ := max{#(C); C is a chain of X}. We say that
X 1s pure if every maximal chain of X has the cardinality /. If a € X,
then r(c’ denotes the greatest integer m > O for which there exists a chain
a=f<p,<---< B, inX.

Now, we write Z'(X) for the subset of R . which consists of those points
farpa~. ... ay). such that

(1) O0<a, +r(e,)<l+1 foreach 1 <i<d, and
(0 o, +rla) < a; +r(a)) if y, > y,m X.
Let @ (X) be the order polytope [Sta7] associated with X . Then

(7 LX) = (I + DOX) = (rla,) . Hay), ..., rlay)).

Thus, Z2(X) C R? isan integral convex polytope of dimension d . Moreover,
X} 1s of standard type, i.e., @(X) € %,(d). We say that &(X) is the fat
order polvtope associated with X .

(3.1) LEMMA. The fat order polvtope € (X) € &,(d) associated with X is
contained in #7(d) if and only if X is pure.

SKETCH OF PROOF. Thanks to [Sta7] and equation (7), we know the equa-
tons of supporting hyperplanes # C RY of Z'(X) such that Z N&(X) is
a facet of Z7(X,. In other words, we have information on the vertices of the
dual polytope @1 X)" of Z(X) (cf. [Grii, p. 47]). Thus, the required result
follows easily from Theorem (1.4). Q.E.D.

We now state a combinatorial result on triangulations of the boundary
7 (X1 of the fat order polytope Z(X) when X is pure.

In [H8]. we prove that certain (complete and simplicial) toric varieties
arising from canonical triangulations [Sta7] of order polytopes are projective.
Thus. combining {H8] with [T-E, Chap. I1I, §2]. we obtain the following:

{3.2) THEOREM. When X is pure, there exists a triangulation A of the
boundary o9& (X of € (X) with the vertex set 'V = 0&(X) N Z% such that
the complete toric variety #7(A) Is nonsingular and projective.

Our next work is to compute the d-vector §(€(X)) of €(X). Let w, =
w/(Xi, 0 < i < d. be the number of permutations n = ¢,¢,---¢, of
t.2.....d with the properties that (i) if Ye <Y in X, then p < g
e s a linear extension of X) and (ii) #({r.c, > ¢, ,}), the num-
ber of descents of m. is equal to i. Thus, in particular, w, = 1. Set
s :=max{/.w # 0}. Then we casily see the equality s = d —/. We say that
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the sequence w(X) := (Wo, wy, ..., w) isthe w-vector of X . Consult, e.g.,
[Stal, Sta7; Sta8, Chap. 4, §5; H3, H4] for the combinatorial background of
w-vectors of finite posets.

In general, if p(4) = Z,>o 1/1 € R{A] and ¢ > 0 is an integer, then we
write [p(1)]° for 3

>0 lé
(3.3) PROPOSITION. Let w(X) = (Wo, wy, ..., w) be the w-vector of X
and 6(€(X)) = (dy,9,,...,8,) the S-vector of @(X) € #,(d). Then we
have the equality
d . ({+1)
(8) Y64 = <1+x+;.2+---+1’)‘”‘2wjﬂ
=0 j=0

We refer the reader to, e.g., [H2, §4] for some information on equation (8).
As an immediate consequence of Theorem (3.2) with Proposition (3.3), we
obtain a class of unimodal sequences in our theory of J-vectors.

(3.4) COROLLARY. Suppose that X is pure with the w-vector w(X) =
(wy, w,,....w,). Then the combinatorial sequence (0> 0y, ...0,) defined
hy equation (8) is (symmetric and) unimodal.

It 1s conjectured that the w-vector (Wg, w, ..., w,) of an arbitrary finite
poset is unimodal, i.e.. w, <w, < < w 2 - > w, for some 0 <
¥ . Consult [Stal2, pp. 505- 506] for further mformatmn On the other
hand lhanks to [H8] and [Stal5, Lemma 2.2], we easily prove the inequalities
Widir ) 2 Wigsnyzer 2 2 W,

(3.5) ExaMPLE. Let ¢ = 4 and suppose that X = V15 ¥s, ¥y, 1) is the
pure poset with the partial order Yy <Yy, ¥, <yy.and y, <y,. Then [ =
2.s=2.and w(X)=1(1.3,1). Hence, thanks to equation (8), the §-vector
of the fat orcr polytope Z'(X) € #7(4) is 6(@ (X)) = (1, 80, 245, 80, 1).
On the other hand, the vertices of €(X) are (-2, =2, -1, —1), (1, =2,
(=200 =t =D (b =1, =), (=2, 1. =1,2), (1,1,2, 1),
(b.1.—=1.2).and (1.1,2,2). Moreover, the vertices of the dual poly-
ope < (X)" of €(X) are gy =(1.0,0,0), g, =(0,1.0,0), By =
(0.0.-1.0), 8, =(0.0.0, -0 By =(-1,0,1,0), 8, =(0,—-1,1,0).
and f, = (0.-1.0.1). Since we know the vertices and the facets of
2 X7, it is possible by routine computation to determine if there exists a
compressed triangulation of (4 (X)) with the vertex set ¥ = 9(€(X)*) N
7' In fact, the triangulation A ot J(&(X)") whose facets are 2345, 1234,
2357, 1237, 3457, 4567. 1347, 1467. 1245, 1456, 1257, and 1567 is a com-
pressed triangulation of 9(Z'(X)") with the vertex set V = 9(@(X)")n2Z*.
Here, for example, the notation 2345 means the simplex in R* with the ver-
tex set {B,. B,, B,. Bs}. Note that vol(€(X)") = 12/4! and §(€(X)") =

1.3.4.3. ]

It 1s ne
(@ (X))
with #(X
equation

We col
containec
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It is not difficult to see that there exists a compressed triangulation of
(X)) with the vertex set V' = 9(€(X)") N Z° for every pure poset X
with #(X) = d. Also, when X is pure, does there exist a nice formula like
equation (8) to compute §(€(X)")?

We conclude this section with another example of combinatorial sequences
contained in ,:Z['(d ) which is related with nonsingular Fano toric varieties.

(3.6) EXAMPLE. Suppose that a convex polytope & € €~ (d) is simplicial.
Then, thanks to Proposition (2.2), we easily see that 4(P) = 6(P) if and
only if % is a Fano polyhedron (polytope) in the sense of [V-K, p. 223]. In
[¥-K] Voskresenskij and Klyachko give a complete classification of centrally
symmetric Fano polytopes. (Especially, see [V-K, p. 234] on the description
of the Fano polytope for the del Pezzo variety associated with the root system
of type A of an even rank.) Thus, in particular, we should say that the J-
vectors §{S°) arising from centrally symmetric simplicial convex polytopes
e F7(d) with h(P) = 6(P) are already known. Is it possible to find a
combinatorial characterization of the J-vectors (%) of simplicial convex
polytopes % € #°(d) with h(P) = §(F)?
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