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Let # C R? be a rational convex polytope with dim® = d such that the origin of RY is
contained in the interior # — 8% of #. In this paper, from a viewpoint of enumeration of certain
rational points in P (which originated in Ehrhart’s work), a necessary and sufficient condition for

the dual polytope pdual o P t5 be integral is presented.

Introduction

A convex polytope P C RY is called rational (resp. integral) if each vertex of
P has rational (resp. integer) coordinates. We write 8P for the boundary of . Let
d=dim?.

Suppose that N = d and that the origin (0,...,0) of R? is contained in the
interior ? — 8P of P. Then the dual polytope P dual - R4 is defined by

d
?d“al:z{(zl,...,l‘d)ERdQ ZziyiSI for any (y17-~-,yd)€9’}~

i=1

Note that dim P 4% =d, (0,...,0) € pdual _ gpdual apd (P d“al)dual = P. Also, if
F C P is an i-face (i.e., dimF =19),0< 1< d, then

d
g = {(.’El,...,xd) E?dum; Zziyi =1 forany (yla"'ﬂyd) Eg:}

1=1

is a (d — 1 —1)-face of pdual  Moreover, any (d — 1 — 4)-face of #9ual js of the form
%" for a unique i-face F of P. See (L, pp. 46-48]. Thus, if P is rational then P dual
is also rational. However, P dual ig pot necessarily integral even though 2 is integral.
So, it is natural to ask when the dual polytope of an integral convex polytope turns
out to be integral.

*) This research was performed while the author was staying at Massachusetts Institute of

Technology during the 1988-89 academic year.
AMS Subject Classification code (1991): 52 B 20
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The purpose of this paper is to present a necessary and sufficient condition for
the dual polytope P 992l of a rational convex polytope P to be integral (cf. Theorem

(2.1)). In particular, we see that the dual polytope pdual of an integral convex
polytope P is integral if and only if the Ehrhart polynomial i(P,n) of P satisfies
WP, —n —1) = (=1)%(P,n) (cf. Corollary (2.2)).

The author is grateful to Professor Richard P. Stanley for simulating conversa-
tions on the topic of Ehrhart polynomials of convex polytopes.

Throughout this paper we write #(X) for the cardinality of a finite set X.

1. Ehrhart polynomials

We summarize fundamental facts concerning the Ehrhart function of a rational
convex polytope from [3, pp. 235-241].

(1.1) Let P C RY be an arbitrary rational convex polytope with dim? = d. Given
a positive integer n, write i(P, n) for the number of rational points (z,...,zy) € P
with each nz; € Z, and set i(#,0) = 1. In other words,

(P, n) = #(nPNZV),

where n? = {nx;x € P}. Also, let w(P, A} be the generating function

o0
w(P,A) =D (P, )\
n=0
of the sequence {i(P,n)}72 . Then w(P, )) is a rational function in the variable A.

(1.2) If P c RY is integral then i(P,n) is a polynomial, called the Ehrhart polyno-
mial of P, in n of degree d = dimP. Moreover, when N = d, the leading coefficient
of the polynomial i(P,n) is equal to the volume of P.

(1.3) Suppose that a convex polytope # C RY is rational with dim® = d. Let

j(#,n) be the number of rational points (z1, ...,z y) contained in the interior P -9
of ? with each nz; € Z, where n = 1,2,.... Then we have the equation

o0

33w = (- a7

n=1

as rational functions in A. Thus, in particular, if # is integral, then j(#,n) =

(-1)%(P, —n).

2. When is P 4v?! integral?

We are now in the position to state our main results.

(2.1) Theorem. Suppose that P C R? is a rational convex polytope with dim P = d
and that the origin of R% is contained in the interior # — 0P of P. Then the
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(P, A1) = (=) (P, A

dual polytope pdual o P s integral if and only if w
rational functions in A.

(2.2) Corollary. Suppose that P c RY is an integral convex polytope with dim P
and that the origin of RY is contained in the interior P — 0P of P. Then a neces
and sufficient condition for the dual polytope pdual of P to be integral is that
Ehrhart polynomial i(P,n) of P satisfics i(P, —n — 1) = (=1)%(P,n).

(2.3) Example. Let d = 2. Given an arbitrary integer s > 1, write P[g for
integral convex polytope whose vertices are (0,1), (0,-1), (1,s) and (-1,-s). 1
the dual polytope A.%Eva:w_ of .%E is also integral. The Ehrhart polynomial of

is i(P(g),n) = 2n? + 2n + 1, thus i(Pg), —n — 1) = W(Ps)p1)-

3. Key Lemma

a

(3.1) Lemma. Suppose that ¥ = {(z1,...,24) € RY; S a;zi = b}, where eac
=1

b€ Z, b > 1, and the greatest common divisor of ai,...,aq,b is equal to 1,

hyperplane in RY and that § C ¥ is an arbitrary rational convex polytope

dim% = d — 1. Then there exist an integer n > 1 and a rational number k

n—1 < k < n such that k¥ N Z% is non-empty, where kg = {kx;x € F}.

Proof. Since b > 2 and the greatest common divisor of ay,...,aq,b is equal
some a; (say ap) is not divided by b. Let b/ay = q/p, where p, q € Z are rela
prime and g > 1.

Let <E,..;<A3va m > d, with each v(® € Q9 be the vertices of F.
v o= vi) 4. . +vM™ g:= (1/m)v and @ := (mb/ay1,0,...,0) € Q.
positive integer ¢ with ¢(v —a) € 74 and define 8(= (61, .. .,64)) := c(v—a).
a161 + ... + agég = 0. Also, fix a positive integer ng such that kg — m.m k¥ fo
rational number k > ng. The existence of such integer ng is geometrically ot
since kg is the center of gravity of k.

Now, since (b/a1)ZNZ = qZ and ¢ > 1, there exist integers t and n
such that (n — 1)b < ait < nb. Let k = ait/b. Then (ng <iIn—1 < k
Moreover, if 8 = (¢,0,...,0) € 74 then B = (k/m)e, thus B + (k/cm)b -
Hence B8+ |k/cm}b € Z8 N kF as required.

4. Proof of Theorem (2.1)

Suppose that P C RY is a rational convex polytope with dim® = d sucl
the origin of R? is contained in the interior P — 8P of P. Thanks to (1.3), f
proof of Theorem (2.1), it is enough to show that the equality j(P,n) = NA”%L
holds for an arbitrary positive integer n if and only if the following condition
satisfied:
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d
(%) If a hyperplane J# = {(zy,... 1 Zq) € R Yoar; = b}, where each a;,beZ,
i=1
b > 0, and the greatest common divisor of ay,.

..,_ad, b is equal to l,isa supporting
hyperplane of # such that X NP is

a facet, then b = 1.*%)

Let #1,...,%, be the Supporting hyperplanes of P sych that &, := P N¥#; is
d . .
a facet of 2, 1 < J <8, and K= {(zy,... ,Zq) € R, Zl afj)x,- = b(f)}, where each
1=
alm, b ¢ Z, b > 0, and the greatest common divisor ofagj), ceey a‘(f), b ig equal
to 1. Then a point (61,

e Bg) €Z2% s contained in n(P — 9P
d . . d
and only if 3 a,(]),@i < nbl9) (resp. 3 az(

i=1 =1
if each pUU) = 1, then n(® — 8P) N zd —
any positive integer n.

On the other hand, su
#; and #;, and

) (tesp. (n - 1)#) if
j)ﬂz‘ < (n=1)b9) for any 1 <Jj < s. Thus,

(n-1)Pnzd, Le, j(P n) = (P,n—1), for

ppose that some $(7) ~ i Then, apply Lemma (3.1) to
we see that there exist a rational number k and an integer n > 2
Withn — 1 < k < n such that kF;N 24 s non-empty. since k¥F; cn(P - OP) and
kFiN(n—1)P = 0, we have (n— 1)5’nzdgn(?-6.7’)mzd, thus i(P,n—1) # j(P,n)
as required.

|
A generalization of Theorem (2.1) is obtained in [

2.
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**) Egon Schulte pointed out to the a

uthor that the condition (*) is equivalent to the condition
that the dual polytope of ? ig integral.
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