NOTE

DUAL POLYTOPES OF RATIONAL CONVEX POLYTOPES*)

TAKAYUKI HIBI

Received August 1, 1989

Let $\mathcal{P} \subset \mathbb{R}^d$ be a rational convex polytope with $\dim \mathcal{P} = d$ such that the origin of \mathbb{R}^d is contained in the interior $\mathcal{P} - \partial \mathcal{P}$ of \mathcal{P} . In this paper, from a viewpoint of enumeration of certain rational points in \mathcal{P} (which originated in Ehrhart's work), a necessary and sufficient condition for the dual polytope $\mathcal{P}^{\text{dual}}$ of \mathcal{P} to be integral is presented.

Introduction

A convex polytope $\mathcal{P} \subset \mathbb{R}^N$ is called *rational* (resp. *integral*) if each vertex of \mathcal{P} has rational (resp. integer) coordinates. We write $\partial \mathcal{P}$ for the boundary of \mathcal{P} . Let $d = \dim \mathcal{P}$.

 $d=\dim\mathcal{P}.$ Suppose that N=d and that the origin $(0,\ldots,0)$ of \mathbb{R}^d is contained in the interior $\mathcal{P}-\partial\mathcal{P}$ of $\mathcal{P}.$ Then the dual polytope $\mathcal{P}^{\mathrm{dual}}\subset\mathbb{R}^d$ is defined by

$$\mathcal{P}^{\mathrm{dual}} := \{(x_1, \dots, x_d) \in \mathbb{R}^d; \quad \sum_{i=1}^d x_i y_i \leq 1 \quad \text{for any} \quad (y_1, \dots, y_d) \in \mathcal{P}\}.$$

Note that $\dim \mathcal{P}^{\text{dual}} = d$, $(0, \dots, 0) \in \mathcal{P}^{\text{dual}} - \partial \mathcal{P}^{\text{dual}}$ and $(\mathcal{P}^{\text{dual}})^{\text{dual}} = \mathcal{P}$. Also, if $\mathcal{F} \subset \mathcal{P}$ is an i-face (i.e., $\dim \mathcal{F} = i$), $0 \le i < d$, then

$$\mathcal{F}^{\,\hat{}} := \{(x_1,\ldots,x_d) \in \mathcal{P}^{\,\mathrm{dual}}; \quad \sum_{i=1}^d x_i y_i = 1 \quad \text{for any} \quad (y_1,\ldots,y_d) \in \mathcal{F}\}$$

is a (d-1-i)-face of $\mathcal{P}^{\text{dual}}$. Moreover, any (d-1-i)-face of $\mathcal{P}^{\text{dual}}$ is of the form $\mathcal{F}^{\hat{}}$ for a unique *i*-face \mathcal{F} of \mathcal{P} . See [1, pp. 46–48]. Thus, if \mathcal{P} is rational then $\mathcal{P}^{\text{dual}}$ is also rational. However, $\mathcal{P}^{\text{dual}}$ is not necessarily integral even though \mathcal{P} is integral. So, it is natural to ask when the dual polytope of an integral convex polytope turns out to be integral.

AMS Subject Classification code (1991): 52 B 20

^{*)} This research was performed while the author was staying at Massachusetts Institute of Technology during the 1988-89 academic year.

(2.1)). In particular, we see that the dual polytope $\mathcal{P}^{\text{dual}}$ of an integral convex polytope \mathcal{P} is integral if and only if the Ehrhart polynomial $i(\mathcal{P},n)$ of \mathcal{P} satisfies The purpose of this paper is to present a necessary and sufficient condition for the dual polytope $\mathcal{P}^{\text{dual}}$ of a rational convex polytope \mathcal{P} to be integral (cf. Theorem $i(\mathcal{P}, -n-1) = (-1)^d i(\mathcal{P}, n)$ (cf. Corollary (2.2)).

The author is grateful to Professor Richard P. Stanley for simulating conversations on the topic of Ehrhart polynomials of convex polytopes.

Throughout this paper we write #(X) for the cardinality of a finite set X.

1. Ehrhart polynomials

We summarize fundamental facts concerning the Ehrhart function of a rational convex polytope from [3, pp. 235–241].

(1.1) Let $\mathcal{P} \subset \mathbb{R}^N$ be an arbitrary rational convex polytope with dim $\mathcal{P} = d$. Given a positive integer n, write $i(\mathcal{P}, n)$ for the number of rational points $(x_1, \ldots, x_N) \in \mathcal{P}$ with each $nx_i \in \mathbb{Z}$, and set $i(\mathcal{P}, 0) = 1$. In other words,

$$i(\mathcal{P},n) = \#(n\mathcal{P} \cap \mathbb{Z}^N),$$

where $n\mathcal{P} := \{n\mathbf{x}; \mathbf{x} \in \mathcal{P}\}$. Also, let $\omega(\mathcal{P}, \lambda)$ be the generating function

$$\omega(\mathcal{P},\lambda) = \sum_{n=0}^{\infty} i(\mathcal{P},n)\lambda^{n}$$

of the sequence $\{i(\mathcal{P},n)\}_{n=0}^{\infty}$. Then $\omega(\mathcal{P},\lambda)$ is a rational function in the variable λ .

(1.2) If $\mathcal{P} \subset \mathbb{R}^N$ is integral then $i(\mathcal{P}, n)$ is a polynomial, called the *Ehrhart polynomial* of \mathcal{P} , in n of degree $d = \dim \mathcal{P}$. Moreover, when N = d, the leading coefficient of the polynomial $i(\mathcal{P}, n)$ is equal to the volume of \mathcal{P} .

(1.3) Suppose that a convex polytope $\mathcal{P} \subset \mathbb{R}^N$ is rational with $\dim \mathcal{P} = d$. Let $j(\mathcal{P},n)$ be the number of rational points (x_1,\ldots,x_N) contained in the interior $\mathcal{P}-\partial \mathcal{P}$ of \mathcal{P} with each $nx_i \in \mathbb{Z}$, where $n=1,2,\ldots$ Then we have the equation

$$\sum_{n=1}^{\infty} j(\mathcal{P}, n) \lambda^n = (-1)^{d+1} \omega(\mathcal{P}, \lambda^{-1})$$

as rational functions in λ . $(-1)^d i(\mathcal{P},-n).$ Thus, in particular, if \mathcal{P} is integral, then $j(\mathcal{P},n)$

Ņ When is $\mathcal{P}^{\text{dual}}$ integral?

We are now in the position to state our main results

and that the origin of \mathbb{R}^d is contained in the interior $\mathcal{P} - \partial \mathcal{P}$ of \mathcal{P} . Then the (2.1) Theorem. Suppose that $\mathcal{P} \subset \mathbb{R}^d$ is a rational convex polytope with dim $\mathcal{P} = d$

dual polytope $\mathscr{P}^{\text{dual}}$ of \mathscr{P} is integral if and only if $\omega(\mathscr{P},\lambda^{-1})=(-1)^{d+1}\lambda\omega(\mathscr{P},\lambda)$

Am there
other rational functions in λ .

- and sufficient condition for the dual polytope P dual of P to be integral is that and that the origin of \mathbb{R}^d is contained in the interior $\mathcal{P} - \partial \mathcal{P}$ of \mathcal{P} . Then a neces Ehrhart polynomial $i(\mathcal{P}, n)$ of \mathcal{P} satisfies $i(\mathcal{P}, -n-1) = (-1)^d i(\mathcal{P}, n)$. (2.2) Corollary. Suppose that $\mathcal{P}\subset\mathbb{R}^d$ is an integral convex polytope with dim \mathcal{P}
- is $i(\mathcal{P}_{[s]}, n) = 2n^2 + 2n + 1$, thus $i(\mathcal{P}_{[s]}, -n 1) = i(\mathcal{P}_{[s]}, n)$. the dual polytope $(\mathcal{P}_{[s]})^{\text{dual}}$ of $\mathcal{P}_{[s]}$ is also integral. The Ehrhart polynomial of integral convex polytope whose vertices are (0,1), (0,-1), (1,s) and (-1,-s). (2.3) Example. Let d=2. Given an arbitrary integer $s\geq 1$, write $\mathcal{P}_{[s]}$ for

3. Key Lemma

 $n-1 < k < n \text{ such that } k\mathcal{F} \cap \mathbb{Z}^d \text{ is non-empty, where } k\mathcal{F} := \{k\mathbf{x}; \mathbf{x} \in \mathcal{F}\}.$ $\dim \mathcal{F} = d-1$. Then there exist an integer n > 1 and a rational number k $b \in \mathbb{Z}, b > 1$, and the greatest common divisor of a_1, \dots, a_d, b is equal to 1 (3.1) Lemma. Suppose that $\mathcal{H} = \{(x_1, \dots, x_d) \in \mathbb{R}^d; \sum_{i=1}^d a_i x_i = b\}$, where each $b \in \mathbb{Z}$. b > 1, and the greatest common divisor. hyperplane in \mathbb{R}^d and that $\mathscr{F}\subset \mathscr{H}$ is an arbitrary rational convex polytope

Proof. Since $b \geq 2$ and the greatest common divisor of a_1, \ldots, a_d, b is equal some a_i (say a_1) is not divided by b. Let $b/a_1 = q/p$, where $p, q \in \mathbb{Z}$ are relat prime and q > 1.

positive integer c with $c(\mathbf{v} - \boldsymbol{\alpha}) \in \mathbb{Z}^d$ and define $\boldsymbol{\delta} (= (\delta_1, \dots, \delta_d)) := c(\mathbf{v} - \boldsymbol{\alpha})$. $a_1 \delta_1 + \dots + a_d \delta_d = 0$. Also, fix a positive integer n_0 such that $k\mathbf{g} - \boldsymbol{\delta} \in k^{\mathcal{G}}$ for ${\bf v} := {\bf v}^{(1)} + \ldots + {\bf v}^{(m)}, \; {\bf g} := (1/m) {\bf v} \; {\rm and} \; {\boldsymbol \alpha} := (mb/a_1, 0, \ldots, 0) \in \mathbb{Q}^d.$ Let $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(m)}, m \geq d$, with each $\mathbf{v}^{(i)} \in \mathbb{Q}^d$, be the vertices of \mathcal{F} .

rational number $k \geq n_0$. The existence of such integer n_0 is geometrically obsince $k\mathbf{g}$ is the center of gravity of $k\mathcal{F}$. Now, since $(b/a_1)\mathbb{Z} \cap \mathbb{Z} = q\mathbb{Z}$ and q > 1, there exist integers t and n such that $(n-1)b < a_1t < nb$. Let $k = a_1t/b$. Then $(n_0 \leq)n-1 < k$ Moreover, if $\beta:=(t,0,\ldots,0)\in\mathbb{Z}^d$ then $\beta=(k/m)\alpha$, thus $\beta+(k/cm)\delta$ Hence $\beta+\lfloor k/cm\rfloor\delta\in\mathbb{Z}^d\cap k\mathcal{F}$ as required.

4. Proof of Theorem (2.1)

the origin of \mathbb{R}^d is contained in the interior $\mathcal{P} - \partial \mathcal{P}$ of \mathcal{P} . Thanks to (1.3), for proof of Theorem (2.1), it is enough to show that the equality $j(\mathcal{P}, n) = i(\mathcal{P}, n)$ holds for an arbitrary positive integer n if and only if the following condition Suppose that $\mathcal{P} \subset \mathbb{R}^d$ is a rational convex polytope with dim $\mathcal{P} = d$ such

(*) If a hyperplane $\mathcal{H} = \{(x_1, \dots, x_d) \in \mathbb{R}^d; \sum_{i=1}^d a_i x_i = b\}$, where each $a_i, b \in \mathbb{Z}$, b>0, and the greatest common divisor of a_1,\ldots,a_d,b is equal to 1, is a supporting hyperplane of $\mathcal P$ such that $\mathcal H\cap\mathcal P$ is a facet, then $b=1.^{**}$

Let $\mathcal{H}_1,\ldots,\mathcal{H}_s$ be the supporting hyperplanes of \mathcal{P} such that $\mathcal{F}_j:=\mathcal{P}\cap\mathcal{H}_j$ is a facet of \mathcal{P} , $1 \leq j \leq s$, and $\mathcal{H}_j = \{(x_1, \dots, x_d) \in \mathbb{R}^d; \sum_{i=1}^d a_i^{(j)} x_i = b^{(j)}\}$, where each $a_i^{(j)}, b^{(j)} \in \mathbb{Z}, b^{(j)} > 0$, and the greatest common divisor of $a_1^{(j)}, \dots, a_d^{(j)}, b^{(j)}$ is equal to 1. Then a point $(\beta_1, \dots, \beta_d) \in \mathbb{Z}^d$ is contained in $n(\mathcal{P} - \partial \mathcal{P})$ (resp. $(n-1)\mathcal{P}$) if and only if $\sum_{i=1}^{d} a_i^{(j)} \beta_i < nb^{(j)}$ (resp. $\sum_{i=1}^{d} a_i^{(j)} \beta_i \leq (n-1)b^{(j)}$) for any $1 \leq j \leq s$. Thus, if each $b^{(j)} = 1$, then $n(\mathcal{P} - \partial \mathcal{P}) \cap \mathbb{Z}^d = (n-1)\mathcal{P} \cap \mathbb{Z}^d$, i.e., $j(\mathcal{P}, n) = i(\mathcal{P}, n-1)$, for

On the other hand, suppose that some $b^{(j)} > 1$. Then, apply Lemma (3.1) to \mathcal{H}_j and \mathcal{F}_j , and we see that there exist a rational number k and an integer $n \geq 2$ with n-1 < k < n such that $k\mathcal{F}_j \cap \mathbb{Z}^d$ is non-empty. since $k\mathcal{F}_j \subset n(\mathcal{P} - \partial \mathcal{P})$ and $k\mathcal{F}_j \cap (n-1)\mathcal{P} = \emptyset$, we have $(n-1)\mathcal{P} \cap \mathbb{Z}^d \subsetneq n(\mathcal{P} - \partial \mathcal{P}) \cap \mathbb{Z}^d$, thus $i(\mathcal{P}, n-1) \neq j(\mathcal{P}, n)$

A generalization of Theorem (2.1) is obtained in [2].

References

- [1] B. GRÜNBAUM: Convex Polytopes, John Wiley & Sons, Inc., New York, N.Y., 1967.
- [2] T. Hibi: A combinatorial self-reciprocity theorem for Ehrhart quasi-polynomials of rational convex polytopes, European J. Combinatorics, to appear.
- [3] R. STANLEY: Enumerative Combinatorics, Volume I, Wadsworth, Monterey, Calif.,

Takayuki Hibi

Department of Mathematics Faculty of Science Hokkaido University Kita-ku, Sapporo 060, Japan

^{**)} Egon Schulte pointed out to the author that the condition (*) is equivalent to the condition that the dual polytope of $\mathcal P$ is integral.