Generalization of Eagon-Reiner theorem
and h-vectors of graded rings
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Abstract

We generalize the Eagon-Reiner Theorem as follows: reg Ia —
indeg Ip = dim k[{A*)— depth k[A*]. As an application, we give (i) a
necessary and sufficient condition for a sequence of integers to be the
h-vector of a homogeneous k-algebra R = k[z1,22,...,2,]/] with
reg I — indeg I < ¢ for a fixed ¢ > 0, and (ii) an upper bound for

multiplicities, which improves one of the Herzog-Srinivasan inequal-
ities.

Introduction

Recenty Alexander duality theorem plays an important role in the study
on a minimal free resolution of Stanley-Reisner rings. (See [Br-He,], [Te-
Hiy], [Te-Hiz|, for example.) In particular, Eagon and Reiner introduced
Alexander dual complexes and proved the following interesting theorem:

THEOREM 0.1([Ea-Re)). Let k be a field. and let A be a simplicial com-
plex and A~ its Alezander dual complez. Then k[A] has a linear resolution

if and only if k[A*] is Cohen-Macaulay.

The above result is a starting point of this article. We generalize it in
the following way.

THEOREM 0.2. Let k be a field. Let A be a (d—1)-dimensional complex
on the vertex set [n]. Suppose d <n —2. Then

reg In —indeg Ip = dimk[A*] — depth k[A™].

Note that Theorem 0.2 corresponds to Theorem 0.1 in the case that
either side of the equality is 0.



On the other hand, it is one of important problems to characterize the
h-vectors of a good class of homogeneous k-algebras (i.e., noetherian graded
k-algebras gererated by elements in degree one and degree 0 part is k) for
a field k. This kind of a problem was originated in Macaulay’s work (see
Theorem 1.1 in §1), and developed by a lot of mathematicians in algebraic,
geometric, and/or combinatoric methods. See, for example, [St;] and [St;]
to survey this topic. In this article we give a necessary and sufficient con-
dition for a sequence of integers to be the h-vector of a homogeneous ring
R = k[z1,22,...,2,)/] with reg I — indeg I < c for a fixed ¢ > 0, as an
application of the above theorem using the Grébner basis theory.

As another application, we give some upper bound for the multiplici-
ties of homogeneous k-algebras. In [He-Sr] Herzog and Srinivasan give a
conjecture for the upper bound for multiplicities as follows:

Conjecture 0.3 ([He-Sr, Conjecture 2]). Let R be a homogeneous
k-algebra of codimension hy. Then

< [1i2; reg;(R)
= h]‘ )
where reg;(R) := max{j | 8;;(R) # 0}.

e(R)

And among other things, they proved following inequality:

THEOREM 0.4([He-Sr, Corollary 3.8]). Let R = k[zy,z2,...,24]/]
be a homogeneous k-algebra. Then

reg I +n —depth R —1
< .
e(R) < ( n — depth R

We obtain a bound as follows:

THEOREM 0.5. Let R = A/I be a homogeneous k-algebra of codimension
hy > 2. Then

reg [+ hy —1
< .
e(R)_( hy )

Theorem 0.5 improves Theorem 0.4 for the non-Cohen-Macaulay rings.
As a corollary we obtain some partial affirmative result on Conjecture 0.3.

The author would like to appreciate Professors D. Eisenbud, J. A. Eagon
and V. Reiner for their helpful coments.



§1. Preliminaries

We first fix notation. Let N(resp. Z) denote the set of nonnegative
integers (resp. integers). Let | S | denote the cardinality of a set S.

We recall some notation on simplicial complexes and Stanley-Reisner
rings according to [St;]. We refer the reader to, e.g., [Br-He], [Hi], [Ho]
and [St;] for the detailed information about combinatorial and algebraic
background.

A simplicial complex A on the vertez set [n] = {1,2,...,n} is a collection
of subsets of [n] such that (i) {i} € A for every 1 < i < n and (ii) F € A,
G C F = G € A. Each element F of A is called a face of A. We call
FeAanfaceif | F'l=1+1 Weset d = max{| F' || F € A} and define
the dimension of A to be dimA =d — 1.

Let fi = fi(A), 0 <1 < d~ 1, denote the number of i-faces in A. We
define f_; = 1. We call f(A) = (fo, f1,-.., fa—1) the f-vector of A. Define
the h-vector h(A) = (ho, h1,...,hq) of A by

d
S fialt—1)* thd :

1=0

If Fis a face of A, then we define a subcomplex links F' as follows:
linkaF ={GeA|FNG=0,FUG € A}.

Let f{i(A; k) denote the i-th reduced simplicial homology group of A with
the coefficient field k.

Let A = kzy,z3,...,2,] be the polynomial ring in n-variables over a
field k. Define Io to be the ideal of A which is generated by square-free
monomials &;, T, Tip, 1 < 1y < g < -0- < 3, < ny with {e1,22,...,0} €

A. We say that the quotient algebra k[A] := A/Ia is the Stanley-Reisner
ring of A over k.

Next we summarize basic facts on the Hilbert series. Let k be a field
and R a homogeneous k-algebra. We means a homogeneous k-algebra R by
a noetherian graded ring R = @;sq K; generated by K; with Ry = k. In
this case R can be written as a quotient algebra k[zy,xs,...,z,]/I, where
deg z; = 1. In this article we always use the representatation A/l with
A = k[zy,29,...,%,] a polynomial ring and with I; = (0).



Let M be a graded R-module with dim; M; < oo for all 2 € Z, where
dimy M; denotes the dimension of M; as a k-vector space.
The Hilbert series of M is defined by

F(M, t) = Z(dlmk Mi)ti.
i€Z
It is well known that the Hilbert series F(R,t) of R can be written in
the form

ho+ hat + - byt

(1 _ t)dij ’
where ho(= 1), hy,..., h, are integers with e(R) := ho+ hy + -+ + hy > 1.
The vector h(R) = (hg, h1, ..., h,) is called the h-vector of R and the number
e(R) the multiplicity of R.

F(R,{) =

Let f and 7 be positive integers. Then f can be uniquely written in the

form
)+ )

where n; > n;_1 > --- >n; > 7 > 1. Define

<i> n; +1 n,_1+1 n; +1
f —<i+1>+< ; et )

0> = 0./

THEOREM 1.1(Macaulay, Stanley [Sts, Theorem 2.2]). Let h =
(hi)i>o be a sequence of integers. Then the following conditions are equiva-
lent:

(1)There exists a homogeneous k-algebra R with F(R,t) = ¥5o(dimy R;)t'.
(Q) ho =1 and 0 S hi+1 S hi<1> fO'f‘i Z 1.

We say that a sequence h = (h;)i>o of integers is an O-sequence if it
satisfies the equivalent conditions in Theorem 1.1.

For a finite sequence (hg,hy,...,hs), we identify it with the infinite
sequence (hg, hy,...,hs,0,0,...).

We consider k[A] as the graded algebra k[A] = @5 k[A]; with degz; =
1for 1 < j < n. The Hilbert series F/(k[A],t) of a Stanley-Reisner ring k[A]
can be written as follows:

P(ALY) = 1+Z {'_li



ho + hyt + -+« + hqt?
(1—1¢) ’

wheredim A = d-1, (fo, f1,..., fa-1) is the f-vector of A, and (ho, h1,. .., ha)
is the h-vector of A.

THEOREM 1.2 (Hochster’s formula on the local cohomology mod-
ules (cf. [St;, Theorem 4.1])).

_ |F|
o . ~ . t
F(Hpm(k[A)), t) = Z dimy H;_jpj—1(linka F'; k) (1 - t“1> )
cEA

where Hin(k[A]) denote the i-th local cohomology module of k[A] with re-

spect to the graded mazimal ideal m.

Let A be the polynomial ring k[z;, z2,...,2,] for a field k. Let M be a
finitely generated graded A-module and let

0 — & A(—; )Pm (M — - — P A(— )P M) M — 0
jeZ jeZ

be a graded minimal free resolution of M over A. We call B;(M) = 3=;cz Bi ;(
the i-th Betti number of M over A. We sometimes denote 8#(M) for 8;(M)
to emphasize the base ring A. We define a Castelnuovo-Mumford regularity
reg M of M by

reg M = max {j —1 | Bi;(M) # 0}.
We define an initial degree indeg M of M by

indeg M = min {¢: | M; # 0} = min {j | fo;(M) # 0}.

THEOREM 1.3(Hochster’s formula on the Betti numbers[Hoc,
Theorem 5.1]).

BukA) = 3 dimpHji 1 (Ari k),

FC[n), |Fl=j

where

Ar={GeA|GCF}.

Finally we quote some result on Grobner basis we use later. See [Ei,
Chapter 15] for complete explanation.
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Let A be the polynomial ring k{z{,z,...,2,] for a field k. Let I be a
homogeneous ideal in A. We denote Gin (I) to be a generic initial ideal

of I with respect to the reverse lexicographic order. It is well known that
h(A/Gin (I)) = h(A/I) and, in particular, e(A/Gin (I)) = e(A/I).

Ifurther we have:

THEOREM 1.4([Ba-St]).
depth A/Gin (I) = depth A/I
and

reg Gin ([) = reg I.

§2. Alexander duality and some generalization of the
Eagon-Reiner theorem

First we recall the definition of Alexandr dual complexes.

Definition ([Ea-Re]). For a simplicial complex A on the vertex set
[n], we define an Alezander dual complez A* as follows:

A*={F C[n]:[n]\ F & A}.
If dim A < n —3, then A~ is also a simplicial complex on the vertex set [n].

[n the rest of the paper we always assume dim k[A] = d and dim k[A*] =
d* for a fixed field k.

Now we give some generalization of the Eagon-Reiner theorem.

THEOREM 2.1. Let k be a field. Let A be a (d—1)-dimensional complex
on the vertex set [n]. Suppose d <n —2. Then

reg [a —indeg Ip = dimk[A*] — depth k[A”].

Proof. Put depth k[A*] = p*. By Hochster’s formula on the local
cohomology modules, we have

. -1 |F|
F(H,l,n(k[A*]), t) = Z dim, H1_|F|_1(linkA*F; k) ( ) .

FeA® 1 —¢1



Hence if [ < p*, then H1_|p|_1(linkA~F; k) = (0) for all F' € A*. By the proof
in [Ea-Re, Proposition 1], we have H,_;_o(Ap; k) = (0) for all F' C [n]. By
Hochster’s formula on the Betti numbers this means that §; ;4n-1—1(k[A]) =
0 for « > 1. Hence

Biitn(Ia) = Biign-1(a) = -+ = Biign-p+1(la) =0

for « > 0. Similarly, since f[n_p-_g(A[n]\p;k) = ﬁp'_lpl_l(linkA.F; k) #
(0) for some F € A, we have B;;4n_p(In) # 0 for some ¢ > 0. Hence
reg In = n — p*. By the definition of the Alexander dual complex we have
indeg In = n—d*. Therefore, we have reg In —indeg I = d* —p*. Q.E.D.

Let h = (hg,hq,-..,h,) be afinite O-seqence. Put p:=min{: > 1| h; <
(\}”J:.’_l) }. We define the dual sequence h* = (h});>0 by

SRt = 1—t"(ho+ hi(1 —t) + -+ k(1 —1)°)
S (1-t) '

LEMMA 2.2. Y =0 fort> hy + s.

Proof. We have

— th — — 1)
hrt = 1 —tM(hg+ hi(l —t)+ -+ + he(l —1)°)

20 (1—t)r
L= b (1) (5)F)
- (1—1¢)
L= T (Y ()
- (1—1t) -

For I > hy + s, we have

= <p+§"1>— ) ((‘l)jghi(;))(erm_l)

(j+h1)+m=I m
p+l—1) i & <z> <p+l—h1—j——1>
— -1/ hil . )
( AR EDSICE o8 I (S e

p+l—1 s ‘ i\ (p+1—hy—j—1\
= =2 hi) (=1){. :
( l ) § § g (J>< [~h—j-1 )



~Yh, (p ! thh: ‘- 1) ([Ri, Page8 (5)))

1 [ —hy

I
. 3
1l I
=}
+

_ I—hy =14~ :
= l - L= byt hy > ([Ri, Page8 (3b)])
_ (pH+i-1} [p+i-1
B l l
= 0.
Q.E.D.

By the above lemma we can define A* by

" (ho 4+ hi(1 —t) + -+ + hy(1 — 1)*)

= 1—(1—t)P(hg+ Rt +--+h} 1),

We justify the notation A* by the following lemma:

LeEMMA 2.3. Let A be a simplicial complex on the vertex set [n]. Then
we have :

R (A) = h(A™).

Proof. By the definition we have fi(A*) = (1:1) — fr-i=2(A). Put
dim k[A] = d, dimk[A*] = d*, and 7 = 1 — ¢t. Then we have

ho(A) + hy(A)t + -+« + hg(A)t¢
(1—1t)

4, fis (AN
(1—t)
((?) — fr—ici (AT

i=0 (1_t)i

2 (DF & faia (A
S Lh-v & (-n
B t \" t " & faici (AT
- (1) - () B

1=0

= I1V]




L < ¢ >n ho(A*) 4+ hy(AS)T 4 -+« + hge (A7

(1—t) \1—t¢ (1—7)&
B 1 " (ho(A%) 4+ hy(A)(L ~ 1) + -+ + ha(A)(1 — 1))
(1=t = '

Therefore, since p = n — d* we have

(1 — )" U ho(A) + hy(A)t + - + hg(A)t?)
= 1=t (ho(A™) + hy(AT) (L = t) + -+ + hae (A™)(1 = )*)

Q.E.D.

§3. Application to the h-vectors of homogeneous
rings

For a sequence h = (h;)i>o of integers, we define the partial sum sequence

Sh of h by
Sh = (ho,ho + h1,ho+ b1+ hayooy O by, ).
e

And inductively we define the i-th iterated partial sum sequence S‘h by
Sth = S(S51h).

The next proposition is a variation of Stanley.

ProPOSITION 3.1(cf. [Stz, Corollary 3.11]). Let k be a field. Let
h = (ho, k1, -, h,) be a segence of integers with ho+hy +---+h, > 0. We
fiz an integer ¢ > 0. Then the following conditions are equivalent:
(1) There exists a simplicial complez A with dimk[A] — depth k[A] < ¢
such that h = h(k[A]).
(2) There exists a homogeneous k-algebra R with dim R—depth R < ¢ such
that h = h(R).
(3) The c-th iterated partial sum sequence S°h of h is an O-sequence.

Proof. We may assume | k |= co. Put dim B = d.
(1)= (2). Trivial.



(2)= (3). (A)Case d—c < 0. The c-th iterated partial sum sequence S°h
of h is the (¢ — d)-th iterated partial sum sequence of (dimy R;)i>o. Then
S°h 1s an O-sequence.

(B)Case d — ¢ > 0. We have depthR > d — ¢. Let {y1, y2,..-Yd-c} be a
regular sequence in k[A};. Then the c-th iterated partial sum sequence S°h
of his (dim(R/(y1, Y2,---Ya-c))i)i>o, Which is an O-sequence.

(3)= (1). There exists a monomial ring R (i.e., R = A/I, where I is
generated by monomials) whose Hilbert function is S°h. Note that dim R =
c. Let k[A] be a porlarization of R (See [St-Vo] for the definition and basic
properties of the porlarization). Then

dim k[A] — depth k[A] = dim R — depth R
< dimR

= C.
Q.E.D.

We have the following theorem which gives a characterization of h-vector
of homogeneous k-algebras R = A/l with reg I —indeg I < c.

THEOREM 3.2. Let k be a field. Let h = (ho, hi, -, hs) be an integer
sequence with hy > 2, and ho + hy + --- + hy > 0. We fiz an integer ¢ > 0.
Then the following conditions are equivalent: )

(1) There exists a homogeneous k-algebra R = A/l with

reg [ —indeg [ < ¢
such that h = h(R), where A is a polynomial ring and I is a homogeneous
ideal with I = (0).
(2) There exists a simplicial complex A with

reglpy —indeg In < ¢

such that h = h(A).

(3)The c-th iterated partial sum sequence S°(h*) of the dual sequence h* of
h s an O-sequence.

Proof. (1)=>(2). Let R = A/I be a k-algebra satisfying the conditions
in (1). Since we have reg Gin(J) = reg I, we have

reg Gin(/) — indeg Gin(I) < ¢
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and h = h(A/Gin([)). Considering the porlarization, we obtain a Stanley-
Reisner ring k[A] satisfying the conditions in (2).

(2)=(1). Trivial.

(2)=(3). If A is a simplicial complex with the conditions in (2), then
Theorem 2.1 we have

dim k[A*] — depth k[A™] < c.

And by Lemma 2.5 we have h* = h(k[A*]). Hence by Proposition 3.1, the
condition (3) holds for A.

(3)=(2). If h* satisfies the condition (3), there exists a simplicial com-
plex A such that for its Alexander dual complex A*, h* = h(k[A*]) and

dim k[A™] — depth k[A™] < c.
then we have h = h(k[A]) and
regla —indeg Ip < c.
Q.E.D.

Remark. The inequality reg /o — indeg In < ¢ means that at most
(indeg Ia, indeg Ian +1,...,indeg Ia + ¢ )-linear parts appear in the min-
imal free resolution of Ia.

§4. On upper bounds for multiplicities

In this section we give some upper bound for the multiplicities of homo-
geneous k-algebras. And we deduce some partial affermative result on the
Herzog-Srinivasan conjecture.

First we prove the following lemma:

LEMMA 4.1.
e(k[A]) = B n, (K[A7]).

Proof. We have

ho(A) + hy(A) (1 = t) + -+ - + hg(A)(1 — t)* (1)
_ 1= =) (ho(AY) + (ATt - has (A*)Y) (2)
gn—d ’
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by Lemma 2.5. Since indeg Ix» = n —d = hy, we have

Pin—a(K[AT])
= (the coefficient of "¢ in — (1 — )" %" (ho(A*) 4+ hy(A*)t + - -+ + hgs (A%)24"))
= (the coefficient of t"~¢ in the numerator in (2))
= lim(ho(A) + ki (A)(1 =)+ -+ ha(A)(1 — )
= e(k[A]).

Q.E.D.

THEOREM 4.2. Let R = A/ be a homogeneous k-algebra of codimension
hy > 2. Then

hl

o(R) < (reg I+h1~1>.

Proof. By Theorem 1.4, we have reg Gin([) = reg [ and h(A/I) =
h(A/Gin(I)). Considering the porlarization, we obtain a Stanley-Reisner
ring k[A] = B/Ia with e(A/I) = e(k[A]) and reg I = reg Ia. To evaluate
e(k[A]), we may assume | k |= co. Put p* = depth k[A*]. By Theorem
2.1. we have d* — p* = reg [ — (n — d*), where n = embdim k[A*]. Hence

£

reg [ =n —p~.
Let y1,Y2,...,Yp* be a regular sequence in k[A*};. By Lemma 4.2 we
have

e(k[A]) = Bun (K[AT])

B 1} yerYp* * Tl—p*—i—h _1
— 181‘}{51/1 Y2 Y )(k[A ]/(y17y2""7y1)‘)) S ( hl 1 ).

Q.E.D.

COROLLARY 4.3 Let R = A/I be a homogeneous k-algebra of codimen-
sion hy > 2 with Boreg 1 # 0. Then Conjecture 0.3 holds.

Proof. Since reg;(R) =reg I +1— 1 for 1 <¢ < hy, we have

reg [ + hy —1 I}, reg;(R)
< — =1 TEEATE)
e(f) < ( hy ) hy!

Q.E.D.
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