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Abstract

We study the Betti numbers which appear in a minimal {ree res-
olution of the Stanlev-Reisner ring k{A] = A/I5 of a simplicial com-
plex A over a field k. The Alexander duality theorem of topology
enables us to give a short proof to the fact that the second Betti
number of £[A] does not depend on the base field k. Moreover, when
the ideal I is generated by square-free monomials of degree two, we
<how that the third and fourth Betti numbers are independent of k.
Some concrete examples of simplicial complexes A for which every
Betti number of k[A] is independent of & are also discussed.

Introduction

Let A = k[ry,20....,2,) denote the polynomial ring in v-variables over
A field k. which will be considered to be the graded algebra A = @50 An
over k with the standard grading, ie., each dega; = 1. Let Z (resp—j Q)
denote the set of integers (resp. rational numbers). We write A(j), 7 € Z,
for the graded module A(j) = B ezl A()]n over A with [A(j)]n = Ans;.
Let I be an ideal of A generated by homogencous polynomials and R the
quotient algebra A/I. When [ is regarded as a graded module over A with
the quotient grading, it has a graded finite free resolution

0 DA 2 B PA) A R— 0 (1)
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where each @JGZ:\(—j)J'J. | <1 < h,is a graded free module of rank

0# 3 ,ez 0, <. and where every ¢, is degree-preserving. Moreover, there
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exists a unique such resolution which minimizes each 51-]; such a resolution is
called minimal. If a finite free resolution (1) is minimal, then the homological
dimension hd4(R) of R over A is the non-negative integer h and f; =
IMRY) =3 ez i) 8 called the i-th Betti number of R over A.

In this paper, we study the Betti numbers of R = A/I over A when an
ideal I is generated by square-free monomials, i.e., R is the Stanley-Reisner
ving k[A] = A/l associated with a simplicial complex A ([Sta;], [Rei]).
Even though hd4(k[A]) may depend on the base field k, (with a fixed field
k) the integer v—hda(k[A]) is topological [Mun], i.e., it depends only on the
geotnetric realization of A. Since the first Betti number 37 (k[A]) is equal to
the minimal number of generators of the ideal Ja, #(k[A]) is independent
of the base field k. However, in general, BA(k[A]) may depend on k. It is
known. e.g., [Bru-Hery] that the second Betti number G35 (k[A]) does not
depend on the base field k. We give a short proof of this result by using
the Alexander duality theorem of topology. Moreover, when the ideal Ta
is generated by square-free monomials of degree two (e.g., A is the order
complex of a finite partially ordered set), we show that both the third and
fourth Betti numbers of A[A] over A are independent of k. On the other
hand, it would be of interest to find a natural class of simplicial complexes
A for which all Betti numbers B{1(k[A]) are independent of k. We show
that, for example, if the geometric realization of A is either a 3-sphere or a
3-Lall, then all Betti numbers of k[A] are independent of k.

§1. Simplicial complexes and Hochster’s formula

We first recall some notation on simplicial complexes and Hochster’s
topological formula on Betti numbers of Stanley-Reisner rings. We refer the
reader to, e.g., [Bru-Her;], [H,], [Hoc] and [Sta,] for the detailed information
about combinatorial and algebraic background.

(1.1) A simplicial complex A on the verter set V = {z1,29,...,To} 18
A collection of subsets of 17 such that (i) {2} € A forevery 1 <1< w and
(oeAN, 7Co=>TEQT. Fach element o of A is called a face of A. Let
#(o) denote the cardinality of a finite set o. We set d = max{fi(o) | 0 € A}
and define the dimension of A to be dimA =d — 1.

Given a subset W of V', the restriction of A to W is the subcomplex

AW:{O’GAlGCH/}

of A. In particular, Ay = A and Ag = {0}. On the other hand, if o 1s a



face of A, then we define the subcomplexes link, (o) and stara(o) to be
inka(o) ={redjonr=0ocUrec A}

stara(o) ={r € Aloure A}
Thus, m particular, link, (#) = staray(0) = A.
Let 11,(A; k) denote the 4-th reduced simplicial homology group of A with
the coefficient field k. Note that H_y(Ask) = 0if A # {0} and

11-({0};1»‘):{2 85%.

(1.2) Let 4 = May, aq, .. | ry] be the polynomial ring in v-variables over
a field k. Here, we identify eacli 2, € V with the indeterminate z; of A.
Define 75 to be the ideal of A which is generated by square-free monomials
Lol Ty, LS <y <o < g < with {zi, 2y, 20} & A
We say that the quotient algebra k[A] := A/I, is the Stanley-Reisner ring
of A over k. In what follows, we consider A to be the graded algebra
A = @®.50 An with the standard grading, i.e., each degz; = 1, and may

regard k[A] = Dnxo(k[A]), as a graded module over A with the quotient
grading.

\1.3) Let h = hd 4(£]A]) denote the homological dimension of k[A] over
A aud consider a graded minimal {ree resolution
U= @A™ 2 2 P A 24 2 kAl — o (2)
J€Z JEZ
of k[A] over A. It is known that v — d < h < v. Hochster’s formula [Hoc,
Theorem (5.1)] guarantees that

B, = Z dimkHj_f—l(Aw; k). (3)

WV, 4(W)=;

Thus, in particular,

AHEAD = S dimy, Hyvy—io1 (A k). (4)
wev

Some combinatorial and algebraic applications of Hochster’s formula,
have been studied. Munkres [Mun] proved that v — hd4(k{A]) depends only
on the geometric realization of A. Moreover, if A is the order complex of
a modular lattice, then the last Betti number of k[A] can be computed by
means of the Mébius function of the lattjce ([Hz], [H3)). See also (Bac],

B-H,], [B-H,), (FrS] and [11,] for related topics and results.



§2. Second Betti numbers of Stanley—Reisner rings

It is known, e.g., [Bru-Her,| that the second Betti number of a Stanley-
Reisner ring is independent of the base field. By virtue of Hochster’s formula
together with the Alexander duality theorem of topology, we give a short
proof of this result. Let | A | denote the geometric realization of a simplicial
complex A.

(2.1) LEMMA. Let A be a simplicial complez on the vertex set V with
(V) =vandk a field Then dimy, H,_5(A; k) is independent of k.

Proof. Let 2% denote the set of all subsets of V. Thus, the geometric
vealization .\ of the simplicial complex 2V — {V} is the (v — 2)-sphere. We
may assume that V' & A; in particular, | A | is a subspace of X. Note
that fT._5() A L k) = I"=3(] A L1 k) since k is a field. Now, the Alexander
duality theorem guarantees that 17“‘3(] AL k)= Hy(X—| A ;k). On the

other hand, dimy [ly(X— | A |: k) + 1 is equal to the number of connected
components of X— | 24 | Thus, dimy H,_3(A; k) = dimg Ho(X— | A |; k) is
independent of the base field & as required. Q. E. D.

(2.2) THEOREM. The second Betti number 83 (k[A)) of the Stanley-
Rewsner ring k[A] = A/ls of a simplicial complex A is independent of the
base field k.

Proof. By virtue of Hochster's formula (4), the second Betti number
3 (k[A]) 1s equal to 2w cv dimyg Hygyy_3(Aw; k), which is independent of
k by Lemma (2.1) as desired. Q. E. D.

Let T be the simplicial complex on the vertex set V = {1,2,3,4,5,6}
drawn below (cf. [Rei]). Thus, | I' | is the real projective plane. We then

have
: I IC
]1(1,1(/\'“\]) - { j EEE:IEA”g i

We have gy = 1,8 = 10,4, = 15,35 = 6 if char(k) # 2, while 8y = 1,6, =
10,‘32 = 1—),/33 = 7,54 =1 ]f Cl]al'(/\‘) = 2




Oun the other hand, let A denote the simplicial complex on the vertex set
Vo= {1,‘2,3,4,5,6,7} drawn below (cf. [Bjs,], [H]). Then hd4(k[{A)]) = 4
for an arbitrary field . However, we have Bo=1,48 = 13,8, = 27,8, =
19, 4, =4if char(k) # 2. while Bo=1,5 = 13,8, = 27,85 = 20,8y =5 if

char(h) = 2.

3. Ideals I, generated by monomials of degree two

Ihe purpose of this section is to show that the third and fourth Bett;
numbers of a Stanley-Reisner ring k[A] = A/I, are independent of the base
field & when the idea] I is generated by square-free monomials of degree
two. For example, the ideal I, associated with a simplicial complex A is
generated by square-free monomials of degree two when, e.g., A is the order
complex ([Stag, P-120]) of a finite partially ordered set.

LA (resp. A') be a simplicial complex on the vertex set (resp. V)
and i sose that VA7 — 0. Recall that the stmplicial join A x A’ of A
and 25 the simplicial complex on the vertex set V' UV’ which consists of
all sthscts of VU V7 of the form o U 7 with o € Aand 7€ A’

(3.1) LEMMA. Let A be a simplicial complex on the verter v with
2V = v and suppose that the ideal I is generated by square-free monomials
of degree two. Then IYH(A;k) =04 v<2n4 1). Moreover, f v =
2(n + 1), then I, (A; k) # 0 if and only if A is the simplicial join of n +1
copies of the 0-sphere S% = e o).

Proof. We first show that fln(i\;k) = 0ifv < 2(n + 1). Suppose
that 75 # (0) and vy e Vowith 2y € 1, We set A = stara ({z}) and
Ay = ANy, Then ATUA, = A and ATNA, = linka({z}). Note that
the ideals 7, . 1a;, 15,04, are generated by square-free monomials of degree
two. On the other hand, since {v} € A {2} ¢ A, and {z},{y} & A, NA,,

we may assume that Hn(AI; k) =0, H,(As; k) = 0 and Hy (AN Ay, k) =
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0. Hence, thanks to the reduced Mayer-Vietoris exact sequence, we have
Ho (A5 k) = 0 as desived.

Secondly, let us assume v — 20+ 1). If Ais the simplicial join of
"+ 1 copies of §° then the geometric realization of A is the n-sphere S™.
Thus f]n(A;/c) # 0. On the other hand, suppose that f{n(A; k) # 0. Then
Ta # (0). Let ry € Iy and A, = stara({z}), A, = AV—{:{:} as above.

* Since (A k) =0, f[n(Ag; k) =0 and 1~]~n(A; k) # 0, the reduced Mayer-

Vietoris exact sequence guarantees that Hy_y(linka({z}); k) # 0. Let o'
be the number of vertices of linka({z}). Then v' < p» — 92 = 2n since
{r} {y} ¢ inka({z}), while v/ > 21 since 1?,1_1(1i11kA({z}); k) # 0. Hence
v = 2n. Thus, we may assume {hat linka({z}) is the simplicial join of
1copies of S Let z € V he an arbitrary vertex of A with » # z and
= # y. Then, since v’ = Zn, {z} € linka({z}). Hence, there exists an
element w ¢ 1V — {2,y} such that zw e [nnkd({r}). Since I, is generated by
square-free monomials of degree two, we have zw € Ia. Consequently, for
an arbitrary element o V. there exists a unique element B € V such that
{a.8) € A Hence, A is the simplicial join of n + | copies of the 0-sphere
§Y as required. Q. E. D.

(3.2) COROLLARY. Suppose that the ideal Ia s generated by square-
free monomials of degree two and thal a finite free resolution (2) of k[A] =
All5 over A is minimal Then, B, =0 for all i and j with j > 2.

Proof. By Lemma (3.1), we have IYﬁ([‘/')_,'_](A[jl;k) = 0if §(W) <
28V =), de, #(V) > 94, Hence, thanks to Hochster’s formula (3),
B =0 for all i and J owith j > 27 Q. E. D.

Taylor [Tay] constructed an explicit (not nesessarily minimal) finite free
resolution of #[A] = A/1, over A. The above Corollary (3.2) also follows
immediately from Taylor resolutions.

(3.3) LEMMA. Let A be o sumplicial compler on the verter set V' with
(V) = 7. Suppose that Ia is generated by square-free monomials of degree
two and that HQ(A;/\‘) # 0. Then, one of the Jollowing conditions (i) and
(1) 15 satisfied:

(1) A s the simplicial Join of the cycle of length 5 and 0-sphere S°;

(i1) there cxists @ € V such that Av_ ;3 = S®% S04 SO

Proof. Suppose that there exists no z € V with Ay_g,; = S0+ S0 4 g0,
Let 2 € V and set A, = stara({z}), A, = Av_(zy. Then A = Ay UA, and
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linka({z}) = A;NA,. Since A, is contractible, we have Hg(/_\x; k) =0. On
the other hand, since A, # SS9+ 8% % SO e have Iyz(AQ; k) = 0 by Lemma
(3.1). Thus, thanks to the reduced Mayer-Vietoris exact sequence, we have
1}1(““]\’&({1‘}); k) # 0 since Hy(A; k) # 0. Let V’ denote the vertex set of
Iinka({z}). Then (V') > 4 by Lemma (3.1). Moreover, again by Lemma
(3.1), 1f (V') = 4, then linka({a}) is the cycle of length 4. If the number of
vertices of linka({}) is equal to 4 for every y € V, then dim A = 2 and the
number of faces o of A with §(o) = 3 is (4 x #(V)) =3=%, a contradiction.
Hence, there exists z € V such that the number of vertices of linka ({z})
15 greater than or equal to 5. If the number of vetrices of linka({z}) is
equal to 6, then A = stary({z}) and, therefore, A is contractible, which
contradicts 11,(A;k) # 0. Thus, the number of vertices of link, ({z}) is
equal to 5. Since Iyl(linkA({:}); k) # 0 and the ideal link 4 ({z}) 1s generated
by square-free monomials of degree two, it follows easily that linka ({z}) is
one of the following figures:

nav

@ b (O

Iflinks({z}) is one of the above figures (a), (b), (c) and (d), and if H,(A; k) #
0. then there exists 2 € 1V with Ap_(p3 = S%% 8%+« 8° (the routine details
should be omitted). On the other hand, if linka({z}) is the graph of figure
(e) and if /(A k) # 0, then A is the simplicial join of the cycle of length
5 and D-sphere S° as required. Q. E. D.

We are now in the position to state the main result of this section.

(3.4) THEOREM. Let A be a simplicial complex and suppose that the
rdeal 1y is genevated by square-free monomials of degree two. Then, both
the third Betti number 33(k[A]) and the fourth Betti number Bi(k[A)) of
FIA} = A/T5 over A are independent of the base fleld k.

Proof. Iirst, we study the third Betti number B3 (k[A]) of k[A] over
Ao Let V' be the vertex set of A. Thanks to Proposition (3.2), what we
must prove is that s is independent of the base field k for every 7 < 6.
Thus. by virtue of Hochster’s formula (3), what we must prove is that

-1
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dim 17:(;1-)_1,(A{1-; k) is independent of & for every IV C V with H) <.
e = 5, then f[,-(/Au'; k) =0 for every @ 2> 2 by Lemma (3.1). Thus,
since the reduced Euler characteristic V(A) and dimy, 1~{0(AW; k) are inde-
pendent of k. it follows from Buler-Poincaré formula chat dim Hy (A k) is
mndependent of k. On the other hand, if (W) = 6, then dim Hy(Ayy: k) =0
unless Ay is the simplicial join of three copies of the 0-sphere by Lemma
(3.1). Moreover, if Ay is the simplicial join of three copies of the O-sphere,
then dim /1,( Ay k) =1 for an arbitrary field k.

Secondly, we show that the fourth Betti number Bi(k[A]) of k[A] over A
is mdependent of the base field k. We must prove that dim Hu(W)—s(Aw; k)
1s independent of & for cvery IV C Vo owith §(1V) < 8. If either (W) =6
or {(H7) =38, then we can show that dim f]u(W)—s(Aw; k) is independent, of
k by the similar technique with Lemma (3.1) as above. Let f(W) =7 and
suppose that [fy( Ay k) # 0. Then, by Lemma (3.3), we easily see that Ay
has the homotopy type of one of the following spaces: (1) the 2-sphere; (ii)
the disjoint union of the 2-sphere and a single point; (iii) the space X U Y,
where X s the 2-sphere and Y is either the l-sphere or the 2-sphere, such
that X'MY consists of a single point. [fence, dim,, f[g(Aw; k) is independent
of the base field & as desired. Q. E. D.

f4. Finite free resolutions of the n-sphere

hi general, it is possible to define tle Stanley-Reisner ring Z[A] = A/,
ol A over the commutative ring Z. However, a minimal free resolution of
Z1A] over the polvnimial rng A = Z[J:l,a'g,...,aru] does not necessarily
cxist. On the other hand, there exists a minimal free resolution of Z[A)]
over cbifand only if all Betti numbers BAE[A)) are independent of the
base field & (sce, e.g., [-K]). Thus, it might be of interest to find a natural
class of simplicial complexes A for which all Betti numbers BA(k[A]) are
mdependent of k. The main purpose of this section is to show that if | A
is the n-sphere " (or the n-ball B") with n < 3, then all Bett; numbers
BAK[A]) of k[A] are independent of . Moreover, we construct a shellable
simiplicial complex A with | A= S"such that some Bett; number B2 (k[A])
does depend on the base field 4.

(4.1) PROPOSITION. (a) Let A be a simplicial complex and suppose
that the geonmetrie realization | A of A is a connected 3-manifold without
boundary. Then, all Betts numbers SA(E[A]) are independent of the base
Jield kil 1 N is ovientable and Hi(A; Z)=0.

o8}



() Let Xbe a simplicial complex such that| A | is a connected 2-manifold
without boundary. Then, all Betti n umbers 3 (k[A]) are independent of the
base field k if and only | A is orientable.

Proof By virtue of Hochster’s formula, in order for all Bett numbers
d;“(k[A]) to be independent of the base field k, it is necessary and sufficient
that dim, /?](A;;z; k) is independent of k for every subset W of the vertex
set Voand for each integer j > —1.

(a) Suppose that | A | is orientable and that f[](A; Z)=0 Let W=V,
el A= AL Obviously, dimy lyo(A; A} = 0. Since HI(A; Z) =0, it follows
that dimy /1, (A: k) = 0. Moreover. by Poincaré duality, dimy H;;(A; k) =1
and dim, 172(;\; k) = 0. Let 1" denote an arbitrary non-empty subset of
Vowith 11 # V. Since | A | is orientable, by Alexander duality, we have
(Hy( Ny b)) 2) A2 Ay k) = Ho(| A | = | Ay |; k). Hence, dimy H,(Aw; k)
1s independent of /. Thus, since f[g(A”/; Z) is torsion-free, it follows that
dimg H3( Ay k) is independent of k. Moreover, since ¥(Ayy) is independent
of k, dimng Hy(Ayy; k) is also independent of the base field k.

(b) First, suppose that | A | is non-orientable. Then f{g(A;Q) = 0.
Since 11,(N;72/27) = 19N Z)27) = Z/2Z by Poincaré duality, if fol-
lows that diny, [H,(A; k) depends on the base field k. On the other hand,
let us assume that | A | is orientable. By Poincaré duality, we have
dimy, HQ(A;A‘) = 1. Morcover, if W is a subset of V with W # V and
if Ay is of dimension two, then Ay possesses non-empty boundary. Hence
Ay has the homotopy type of the geometric realization of a one-dimensional
sitmplicial complex: in particular dimy ITIQ(AW; k)=0. Consequently, for ev-
ery subset 117 of V., dim, Hay( Ay k) is independent of k. Since X(Aw) is
independent of &, dim, (A k) is also independent of k. Q. E. D.

On the other hand, it follows easily that, for a simplicial complex A on
the vertex set 17, all Betti numbers BA(k[A]) are independent of & if one of
the following conditions is satisfied: (1) dim A < I; (ii) A is a 2-manifold

with non-empty boundary; (iii) (V) < 5.

(4.2) THEOREM. Let A be g stmplicial complez and suppose that the
geometric vealization | A | of A is the n-sphere S™ (or the n-ball B™) with
n < 3. Then, the Betti number B (k[A]) is independent of the base field k
Jor every i >0,

Proof 11 [ A ]= S™ then the above Proposition (4.1) guarantees that
all Betti numbers AHE[A]) are independent of the base field .



On the other hand, suppose that | A |= B™ and define A’ to be the
simplicial complex A U (9A * { a single point }). Thus, | A" |= 8™ Let V
denote the vertex set of A. Then AL = A, Hence, it follows that, for every
subset T of 17 and for each integer j > —1, dimy f{j(Aw; k) is independent
of the base field k as required. Q. E. D.

(4.3) EXAMPLE. Let I denote the simplicial complex on the vertex
set V== {1,2,3,4,5,6}, discussed in §2, whose geometric realization | I' |
is the real projective plane. Let A denote the simplicial complex which
consists of all subsets ¢ of V with o # V. Thus, | A | is the 4-sphere.
We consider T' to be a subcomplex of A in the obvious way. Let Sd(A)
denote the barycentric subdivision of A, If W is the vertex set of Sd(T),
then #(117) = 31 and Sd(A)y = SA(I"). Thus, we have

dimzyoz My1_as—1 (SAA )i Z/2Z) > dimq Hai_ps-1(Sd(A)w; Q);

(liI”Z/‘ZZ ]Y31_29_1(S(1(A);;'; Z/QZ) > dilﬂQ Hgl_gg_l(Sd(A)n/; Q)
Henee
s((Z/22)[SAA)]) > FA(QISA(A)]);
F(Z/22)[SA)]) > A (QS(A)]).
Note that hd(k[SA(A)]) = 57 and Bas(k[SA(A) = 5(k[SA(A)]). Since
A is the boundary complex of the d-simplex, it follows that A is shellable
(defined in, e.g., [B-M]). llence, thanks to [Bj61], SA(A) is also shellable.

3
3

(4.4) EXAMPLE. Let A denote the simplicial complex as in Example
(4.3) and define A to be A — {{1,2,3,4,5}}. Then | A" | is the 4-ball. The
similar technique as in Example (4.3) enables us to see that some Betti num-
bers 82 1E[SA(A")]) of the Stanlev-Reisner ring k[SA(A’)] of the barycentric
subdivision SA(A') of A’ depend on the base field £. The simplicial complex
SA(A") 1s also shellable.

I'he above Examples (4.3) and (4.4) illustrate the following

(4.5) PROPOSITION. Fiz an integer n > 4 and let V denote the
Joate set {12, non+ 1,0+ 2}. Define A, to be the simplicial complex
which consists of all subsets o of V with o # V. Moreover, let A, denote
the simplicial complex A, — {{1,2,... n+ 1}}. Then, there exist integers i
and j such that S2(K[SA(A,)]) and ﬁf(k[Sd(A:l)]) depend on the base field
k. Note that both Sd(A,) and SA(A,) are shellable with | Sd(A,) |= S™ and
L Sd(A ) = B

10



[t would, of course, be of interest, for every fixed integer n > 4. to find
an miteresting class of simplicial complexes A with | A |=S" such that all
Betti numbers SA(k[A]) are independent of the base field k.

(4.6) CONJECTURE. Let O(P) be the order polytope [Sta,] asso-
ciated with a finite partially ordered set P. Let A be the canonical tri-
angulation of O(P) discussed in [Staz] and JA the boundary of A. Thus,
| JA = S with §(P) = . Then, all Betti numbers BE(k[OA)) of the
Stanley-Reisner ring kOA]) = A/I55 are independent of the base field k.
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