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Let 2= R™ be an integral convex polytope; ie., a convex polytope any
of whose vertices has integer coordinates of dimension d, and let 02 denote
the boundary of #. Given a positive integer n we write (£, n) for the
number of those rational points (a,, &, .., &y) in 2 such that each na; is
an integer. In other words,

(P, n)=#nP L")

Here n? = {na; ae #} and #(X) is the cardinality of a finite set X. The
systematic study of i(%, n) originated in the work of Ehrhart (cf. [Ehr]),
who established that the function i(#, n) possesses the following fundamen-
tal properties:

(0.1) (£, n) is a polynomial in n of degree d. (Thus i(%, n) can be
defined for every integer n.) :

(02) i2,0)=1.

(0.3) (“loi de réciprocité”) (—1)? (2, —n) = #(n(P —0P)~Z") for
every integer n>0.

We say that (&, n) is the Ehrhart polynomial of #. See, eg., [Stas,
pp. 235-241; and H,] for an introduction to Ehrhart polynomials.
We define the sequence &g, 8y, J5, ... of integers by the formula

(1—/1)‘“‘[1+ Y i(ﬂ,n)l"]: Y 8,4 (1)
n=1 i=0
Then, the basic facts (0.1) and (0.2) on (£, n) together with a fundamental
result on generating functions, e.g., [Sta;, Corollary 4.3.1], guarantee that
5,=0 for every i>d. We say that the sequence &(Z):= (8o, 91, 04)
which appears in Eq.(1) is the S-vector of 2. Thus do=1 and 6,=
#(P Z")—(d+1). On the other hand, it follows easily from (0.3) that
0y,=#{P—0P)n Z"). Moreover, each §, is non-negative [Sta,].
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EHRHART POLYNOMIALS OF CONVEX POLYTOPES
Now, our result in this paper is

(1.1) THEOREM. Let 2 = R" be an integral convex polytope of dimension
d with the é-vector 6(P)= (6, 8,, ..., 04) and suppose that (P — OP)YNZV is
non-empty; ie., 0,#0. Then we have the inequality 6, <, for every 1 <i<d

The proof of Theorem 1.1 relies on the following two well-known facts.
See, e.g., [Sta,] for fundamental definitions and results concerning
J-vectors and h-vectors of triangulations of balls and spheres.

(1.2) LEMMaA (cf. [B-M]). Let 2 = R” be an integral convex polytope of
dimension d with the S-vector 0(P) = (8¢, 0,, ..., 6,4). Also, let 4 be a tri-
angulation of P with the vertex set ®~ZV whose h-vector is h(4)=
(hos By ooy by ). (Thus, hy =6, hy=3, [Sta,, pp. 80-81] and hyr =0
[Stay, p.67]).) Then h, <6, for every 0<i<d.

(1.3) Lemma ([Bar,, Bar,]). Let hd)=(ho, hy, ... h,) be the h-vector
of a triangulation of the boundary 0% of a convex polytope P of dimension
d. (Thus, in particular, hi=h,_; for each 0<i<d [Sta,, p.77].) Then
hy < h, for every 1<i<d

We are now in the position to give a proof of Theorem 1.1. Let # = RV
be an integral convex polytope of dimension d and suppose that
(#—02)n Z" is non-empty, say (Z —02)nZN = {v,, v,, .., v,}. First, we
take any triangulation 4(0) of the boundary 62 of # with the vertex set
02N Z". and then we construct a triangulation 4(j) of 2 with the vertex
set (6#nzZ™)u (v, ..., v;} for each 1< </in the following way:

(1} Define 4(1) to be the triangulation of 2 which consists of those
simplices o < 2 such that ¢ is the convex hull of tU {v,} in R” for some
ted(0); i.e., 4(1) is the cone over 4(0) with apex v,.

(i) If 4(j) is constructed and 1<j</ then let 1(j) € 4(j) be the
smallest face which contains v, and write 1’ for the subdivision of (/)
which is the cone over the boundary dt(j) of (/) with apex v, , . Also, let
link , ,(z(/)) (resp., star, ,(t(j))) be the link [Sta,, p.70] (resp., star
[Sta,, p. 727) of 7(j) in 4(j). We then define 4(j+1) to be the triangula-
tion of # which consists of those simplices 6 = 2 such that ¢ is either
(a) the convex hull of {u¢in R" for some ¢ e’ and ¢elink ,,(t(/)) or
(b)aeA(j)-starA(j)(r(j)).

We now investigate the relation between the h-vector of 4(j) and that of
4(j+1) for each 0< </ We write (RS, B, B, ) for the h-vector
h(A(})) of 4(j). Since A4(1) is the cone over 4(0) with apex v,, we know
that % =h'Y for each 0<i<d. Thus, by virtue of Lemma 1.3, we have
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RV < k(P for every 1 <i<d. Now, let j>1 and suppose that /) <k for
every 1<i<d. Let v be a vertex of 7(j) and set 4* =star,,, ,,({v;,}).
Then we easily see

Si4(j+1))=fi(4()) + fi - (link 1 ({v})) (2)

for every 1 <i<d. Here, e.g., (fo(4())), f1(4(})), [r(4())), ..} is the f-vector
of 4;; e, f;(4(j)) is the number of i-dimensional simplices of 4(j). On the
other hand, we set

p=link 4, y({v}) N link 44 ({041 })-

Then p is a triangulation of a (d—2)-sphere and link ,.({v}) is the cone
over p with apex v, . Let h(p)=(ho, h,, .., hy_,) be the h-vector of p. It
follows from Eq. (2) that

BTV =hD 4k,

for each 1 <i<d. Hence h{Y* Y <hY*" for every 1 <i<d because of each
h;zhy (=1).

Thanks to Lemma 1.2, the §-vector §(2) = (Jy, J,, ..., 64) of P satisfies
hi(1)< 4, for every 0<i<d. On the other hand, we know 2" > h{" (=6,)
for each 1<i<d, thus we have the inequality &, <J, for every 1 <i<d as
required. ' Q.E.D.

(1.4) Remark. (a) When t(j)e 4(j) is a facet (maximal face) of 4(}),
then A(p)= (1, 1, .., 1). This fact immediately shows that if (A, k,, ..., h,, 0)
is the h-vector of a triangulation of a d-ball, then (hy, A, +1,h,+1, ..,
h;+1,0) is also the A-vector of a triangulation of a d-ball. Thus, in par-
ticular, given positive integers d and n, there exists a triangulation 4 of a
d-ball with the h-vector A(4)=(1,n,1,..,1,0)eZ9+2

(b) Let 4 be a triangulation of a d-ball and suppose that each facet
possesses a vertex contained in the interior 4 — 34 of 4. Then the h-vector
h(4)=(hg, hy, ..., hy, 0) of A satisfies the linear inequality

ho+h1+ +hi<hd+hd—l+ o +hd-—i

for every 0<i< [d/2].

(c) A technique similar to what was done in the proof of
Theorem 1.1 enables us to obtain the linear inequalities

041404 2+ -+ +0,_; K6 +d3+ - +8,+0,,4,

0<i<[(d—1)/2], for the d-vector (P)= (6, d,, .., d,) of an arbitrary
integral convex polytope 2 < RY of dimension d. In particular, §,_, < 4,;




however, [Stas, Ex.3.4] shows that unfortunately we cannot expect
Ogs1-:<0, when 2 <.
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It would, of course, be of great interest to find a combinatorial charac-
terization of the d-vectors of integral convex polytopes.

We

refer the reader to [Sta,, (3.4); Sta,, (4.1); Stas, (3.3)] for further

information about J-vectors (= h*-vectors). Also, see [H,, H,,H;,and H,].
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