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Integration Over a Polyhedron:
An Application of the Fourier-Motzkin
Elimination Method

Murray Schechter

1. INTRODUCTION. Consider the problem of evaluating a double integral over a
polyhedron. Suppose we want to convert the double integral to an iterated
integral. In order to have simple (i.e., affine) limits of integration, it may be
necessary to decompose the region of integration. An example can be seen in
Figure 1, where the integration region must be written as the union of 4, B and
C, assuming we want to integrate with respect to x first. The required decomposi-
tion of a two dimensional polyhedron (i.e., a polygon) is easily accomplished by
looking at the picture, but in three dimensions this may be a more daunting task,
while if more than three variables are involved pictures fail us. The Fourier-
Motzkin elimination method for solving a system of linear inequalities can serve as
a basis for finding this decomposition.

¥

Figure 1. Polygonal domain of integration.

2. THE FOURIER-MOTZKIN ELIMINATION METHOD. The Fourier-Motzkin
Elimination method determines whether a given system of linear inequalities and
equations is consistent or not and, if it is, enables one to find solutions. It can
handle a mixture of strict and non-strict inequalities, although we outline here only
the simplest form, dealing with the system Ax < b. It is much more than a
computational technique, since it can serve as the means for establishing the
fundamental facts in the theory of linear inequalities, such as the duality theorem
of linear programming. This is analogous to the situation in linear algebra, where
the Gaussian elimination method serves not only to solve linear systems but to
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establish key facts about basis, rank and dimension. Full discussion of this method
can be found in [1] and [2]. For our purposes it suffices to describe the computa-
tional aspect.

We describe the elimination of x;. This is done by performing row operations
on the augmented matrix (A4, b), where A4 is an m X n matrix. Here are the steps:

1. Rearrange the rows of (A, b) and multiply rows by positive constants as
needed so that the first column becomes a string of 1’s followed by a string of
—1’s followed by a string of zeros. Any of these strings may be empty.

2. For each pair (1, — 1) appearing in column 1 construct a new inequality by
adding the two rows of (A4, b). The resulting inequality is adjoined to the
system. Note how this differs from Gaussian elimination, where the number
of equations doesn’t increase during the elimination process.

The resulting matrix has the form shown in Table 1.

TaBLE 1. Eliminating x;

1 ap A1 b, W
1 3 A by
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-1 Aiyr,2 Apyr,n bk+/'
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Suppose x,, ..., x, are assigned specific values that satisfy all those inequalities

not involving x, in the system corresponding to Table 1, that is, all inequalities
after the first £ + r. From the way in which the inequalities adjoined to the system
were formed it follows that the bounds placed on x; by the first k£ + r inequalities
are compatible, so that x; can be chosen to solve these inequalities. If both —1
and 1 appear in column 1 of the augmented matrix after elimination then the
values that can be assigned to x,; constitute a closed bounded interval, otherwise a
closed halfline. From this observation we can state the following:

Theorem. Let Ax < b be the system obtained from Ax < b by using steps 1 and 2
above to eliminate x,. Then

1. The systems Ax < b and Ax < b have the same set of solutions.

2. Let P = {x|Ax < b} and let P' denote the set of points (x,, %, ...,x,) that
satisfy all the inequalities not involving x, in the system Ax < b. Then P' is the
projection of P onto the hyperplane x; = 0.

Now we complete the description of the Fourier-Motzkin elimination method.
Having eliminated x,, we now ignore the rows involving x; as well as the first
column and eliminate x, from the remaining rows, etc. This procedure can
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terminate in one of two ways:

1. For some k, when we attempt to eliminate x, we find that all the equations
have non-zero x, coefficients and these are of the same sign, so that the
elimination procedure terminates. In this case there exist solutions for
arbitrarily chosen values of x,_,,..., x,. If k = n then there are no arbitrary
variable values to choose but x, can have any value on a closed halfline.

2. We eliminate x,. The result of this elimination is a set of inequalities with all
coefficients zero. A solution to Ax < b exists if and only if the right hand
sides of these inequalities are all nonnegative.

Example 1. Consider the system

x+y+z <2
2x +y <1

—x <0 D
-y <0
-z <0

The augmented matrix for this system is M; and the result of applying the
Fourier-Motzkin elimination method is M,, where
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The last two rows of M, tell us that a solution exists, which was quite obvious,
since (0,0,0) is a solution. Rows 7 and 8 tell us that z must be chosen on the
interval [0,2]. Take z = 1. Then rows 3, 4, and 5 tell us that y <1 and y > 0.
Choose y = 0. Rows 1, 2, and 3 tell us that x < 1,x < 1/2, and x > 0. Choosing
x = 1/2, we get the solution (1,/2,0, 1).

Let P denote the solution set for the system of inequalities in this example. The
Fourier-Motzkin elimination method tells us that the projection of P onto the z
axis is the interval [0, 2] and that the projection of P onto the plane x = 0 is given
by0 <y <1, 0<z<2, y+z< 2. Both these facts can be easily verified graphi-
cally.

The maximum value that z can have subject to the inequalities (1) is 2. We’ve
indirectly solved a linear programming problem by the Fourier-Motzkin elimina-
tion method. In fact, every linear programming problem can be solved by this
method, though perhaps not efficiently.

3. AFFINE LIMITS OF INTEGRATION. Suppose that we want to integrate a
function f over a bounded non-empty polyhedron P = {x| Ax < b} in R". Apply-
ing the Fourier-Motzkin elimination method to the given system of inequalities we
get an equivalent system with augmented matrix of the form shown in Table 1.
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Define a set of affine functions by

n
Af (xy5.005%,) =b;— Yoayx;, i=1,...,k
j=2

n
A7 (xy,...,x,) = —bey; + Zzakﬂ’jxj, i=1,...,r

=
and let P! denote the projection of P onto x, = 0, so that P! is the set of
solutions of all the inequalities other than the first £ +r. Then P may be
described as follows: x € P if and only if (x,,...,x,) € P!, x;, <A} for i =
1,...,kand x; = A; fori=1,...,r. This characterization may be written more
simply if we define two more functions M and m by

m(Xy,...,%X,) = max{Aj‘(xz,...,xn), j= 1,...,r}
M(x,,...,x,) =min{A/(x,,...,x,), j=1,...,k}
Then x € P if and only if (x,,...,x,) € P! and
m(Xxy,...,%,) <x; <M(xy,...,x%,)

We may write

[fode= [ [VF(x)deds, - d,.

Our aim is to have only affine functions for the limits of integration. To do this
we decompose P! into pieces on which m and M are affine. For i = 1,..., k and
j=1,...,r let P} be the set of points in P' for which M = A4} and m = A4;.
Then

B

[y = Z:j[}[A‘jff(x) deyde, -+ d,.

Now we address the problem of finding Pli To do this we start with the
inequalities defining P!, namely, those after the first k + r inequalities in the
system corresponding to Table 1, and adjoin the following inequalities:

Af<A;, p=1,....k, p#i
A7 ZA;, p=1,...,r, p#j.

Taking into account the definitions of A4;" and A; the reader may verify that the
inequalities defining Pl} may be obtained by the following recipe: for p = 1,...,k,
p # I, replace row p of table 1 by (row p) — (row i) and for p =k + 1,...,k + r,
p # k + j, replace row p of Table 1 by (row p) — (row (k + j)). Note that we find
ourselves in the unusual position of subtracting two inequalities and not by
mistake!

4. THE COMPLETE ALGORITHM. By putting together the material in the
preceding sections we can construct an algorithm for solving the problem of
expressing an integral over a polyhedron P = {x| Ax < b} in R" as the sum of
repeated integrals with affine limits. It is convenient to use a rooted tree to
describe this algorithm. Each node is a system of inequalities and the nodes at the
n'th level correspond to the polyhedra into which P is decomposed to get the
integrals with affine limits.
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At the root node of the tree is the system Ax < b, to which the Fourier-
Motzkin elimination method has been applied. The nodes at level k correspond to
a decomposition of the polyhedron P into polyhedra of a certain form. The system
of inequalities at a kth level node must be of the following form: inequalities

2i — 1 and 2i tell us that x; lies between two affine functions of x;,,,..., x, for
i =1,..., k and the remaining inequalities, which don’t involve x, ..., x,, say that
Xgi1s---» X, lie in the projection of P onto x; =x, = -+ =x, = 0. To construct

the next level of the tree, we find all the children of each node on level k. For each
node we have an augmented matrix corresponding to that node’s system of
inequalities. Let @ denote that matrix with the first 2k columns and rows deleted.
Apply to @ the procedure described in the preceding section, i.e., for each pair of
inequalities that bound x,,,; above and below by affine functions of x,,,,..., x,,
form another set of inequalities. Apply the Fourier-Motzkin elimination method to
this system. If the resulting system has a solution, then, it, together with the first
2k inequalities that we temporarily ignored, forms a node at level k + 1 of the
tree. The nth level of the tree gives the desired decomposition of P.

The sub-polyhedra into which P is decomposed by this algorithm are not all
disjoint. However their intersections, if not empty, lie in hyperplanes, which
themselves may appear as sub-polyhedra. For purposes of integration we may
ignore these sub-polyhedra.

It should be noted that this algorithm is not practical for large problems. Even
carrying out the Fourier-Motkin elimination method for one system can involve a
great many computations. In [3, p. 156] there is an example of a system of
inequalities with O(n®) inequalities for which the Fourier-Motzkin elimination
method produces a system with more than 2"/? inequalities. Our algorithm
requires that this process be carried out at each node and furthermore the number
of inequalities increases as the algorithm goes from one level of the tree to the
next. Nevertheless, the algorithm can be used in some problems where visualiza-
tion fails.

There are a number of shortcuts one can take in carrying out this algorithm but
in the following example we will not take any of these except that obvious
redundancies will be deleted from the sets of inequalities.

Example 2. Consider integrating over the polyhedron P defined in Example 1. Let
R denote the root of our tree. The set of inequalities associated with R is given by
M, with the last two rows, which are clearly unnecessary, omitted. R has two
children, corresponding to the first two inequalities. Following the recipe in the
preceding section these are, after applying the Fourier-Motzkin elimination method
to each node and removing obvious redundancies:

1 1 1 2 1 12 0 1.2
1 0 0 0 -1 0 0 0

o 1 1 2 o 1 2 3

0 1 0 1 o 1 1 2

Ril o -1 -2 -3 Rl g 01 0 1
0 -1 0 0 0 -1 0 0

o 0 1 2 0 0 1 3,2

0 0 -1 -1] 0 0 -1 o]

R, corresponds to 0 <x <2 —y — z, and R, corresponds to 0 <x < (1 —y)/2,
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with (y,z) € P! in both cases. R, has 4 children. Those that corresponds to
3-2z<y<2-zand0 <2 — z give respectively

[ 1 1 1 2] ( 1 1 1 2]
-1 0 0 -1 0 0
0 1 1 2 0 1 1 2
Rz | 9 -1 -2 -3 Rotl 0 -1 -2 -3
0 0 1 3,2 0 0 1 3.2
0 0 -1 -1 0 0 -1 —1]

R, gives us the polyhedron 0 <x <2 -y —2,3-2z2<y<2-21<2z<3/2,
and Ry, gives us the polyhedron 0 <x <2 -y -2z, 0<y<2-23/2<z<2.
Another of the children of R; gives the limits 1 < z < 1, which may be omitted for
purposes of integration, while the fourth child is empty, as evidenced by the fact
that the row (000 —1) appears in the Fourier-Motzkin form of the augmented
matrix. R, has 3 children, of which none is empty but one satisfies the condition
1 <z <1, hence may be ignored for purposes of integration. The final result,
which may be verified geometrically, is:

1-y

.
[Pfdxdydz - folfolfOdexdydz + f13/2f03'“f07yfdxdydz

+f13/2f32_'zzzf02_y'zfdxdydz + Lizj:_zj:_y_zfdxdydz.
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