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Abstract

The problem of finding fermionic formulas for the many generalizations of Kostka

polynomials and for the characters of conformal field theories has been a very exciting re-

search topic for the last few decades. In this thesis we present new fermionic formulas for

the unrestricted Kostka polynomials extending the work of Kirillov and Reshetikhin. We

also present new fermoinic formulas for the characters of � � � and � � � superconfor-

mal algebras which extend the work of Berkovich, McCoy and Schilling.

Fermionic formulas for the unrestricted Kostka polynomials of type �
� ��

�  � in the case

of symmetric and anti-symmetric crystal paths were given by Hatayama et al. We present

fermionic formulas for the unrestricted Kostka polynomials of type �
� ��

�  � for all crystal

paths based on Kirillov-Reshetihkin modules. Our formulas and method of proof even in

the symmetric and anti-symmetric cases are different from the work of Hatayama et al. We

interpret the fermionic formulas in terms of a new set of unrestricted rigged configurations.

For the proof we give a statistics preserving bijection from this new set of unrestricted

rigged configurations to the set of unrestricted crystal paths which generalizes a bijection

of Kirillov and Reshetikhin.

We present fermionic formulas for the characters of � � � superconformal models

������	 � � ��	 ! 	 � � and �����
	 � �%$&	 � ' ��	�� , and the ���*� superconformal model with central

charge � � $ � � '�� ���� � . The method used to derive these formulas is known as Bailey flow.

We show Bailey flows from the nonunitary minimal model � ��	��	 � � with 	��	 � coprime

positive integers to ��� � and ���,� superconformal algebras. We derive a new Ramond

sector character formula for the � � � superconformal algebra with central charge � �
$�� � ' �

�
� � � and calculate its fermionic formula.
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1

Chapter 1

Introduction

1.1 Summary of the main results

Fermionic formulas have been widely researched in mathematics and physics. In this thesis

we consider two problems regarding fermionic formulas that arise in the context of com-

binatorial representation theory and conformal field theory (CFT). This thesis is based on

two papers that resulted from research performed with Prof. Anne Schilling during my

years of graduate school at the University of California, Davis.

In Chapter 2, we present a new fermionic formula for the unrestricted Kostka polynomi-

als. This work is based upon the paper “New Fermionic formula for the unrestricted Kostka

polynomials” with Anne Schilling. An extended abstract of this paper has appeared in the

proceedings of 17th International conference, Formal Power Series and Algebraic Combi-

natorics 2005, held at the University of Messina, Italy, in June 2005. The full version of the

paper is available as a preprint at http://front.math.ucdavis.edu/math.CO

/0509194. We have submitted this paper for publication to The Journal of Combinatorial

Theory, Series A. Our results extend the work of Kerov, Kirillov and Reshetikhin [44, 47]
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who used the Bethe Ansatz to find a fermionic formula for the Kostka polynomials. This

was first extended in [48] to generalized Kostka polynomials by establishing a bijection

between the highest weight paths in the tensor products of Kirillov-Reshetikhin crystals of

type � � and rigged configurations. We prove our new formula for the unrestricted Kostka

polynomial case by giving a statistics preserving algorithmic bijection between all crystal

paths in the tensor products of Kirillov-Reshetikhin crystals of type � � and the corre-

sponding set of rigged configurations. An explicit description of the new set of rigged

configurations is presented, which is called the set of unrestricted rigged configurations.

Our formula when restricted to symmetric and anti-symmetric crystals is different from

the results of Hatayama et al. [31] where fermionic formulas are given for the unrestricted

Kostka polynomials in these special cases.

In Chapter 3, we present new fermionic formulas for the characters of � ��� and ���
� superconformal algebras using the method of Bailey construction. The work in Chapter 3

is based on the paper “Non Unitary minimal models, Bailey’s lemma and � � � � � su-

perconformal algebras” with Anne Schilling. This paper is published in Communications

in Mathematical Physics, Volume 260, number 3 (2005) 711-725. We show that there are

Bailey flows from the nonunitary minimal models ���
	��	 � � for arbitrary coprime positive

integers 	��	 � to � � � and � � � superconformal models. The superconformal models

are also indexed by a pair of coprime positive integers �
	��	 � � . Denote the � � � supercon-

formal algebras by � � ��	��	 � � and � � � superconformal algebras by
� ��	��	 � � . We find

Bailey flows specifically from the model � ��	��	 � � to ����� ��	 !�	 � 	 � � , � � ��	 � �%$�	�� ' ��	�� and

to
� �
	��	 � � with central charge given by $�� � ' � �� � � . Using the known fermionic formulas for

the minimal models ���
	��	 � � [11], we explicitly calculate the fermionic formulas for the

characters of ����� ��	 ! 	 � 	 ��� , ������	 � �%$&	�� ' ��	�� and
� �
	��	 � � . Moreover, we derive a new

Ramond sector character for � ��� superconformal algebras and calculate its fermionic
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formula.

The new bijection given in Chapter 2 as well as its inverse have been implemented as

C++ programs and are included in Chapter 4. In early stages of the project on unrestricted

Kostka polynomials, these programs were used extensively to produce data and to verify

conjectures regarding the unrestricted rigged configurations. The progams have also been

incorporated into MuPAD-Combinat [58] as a dynamic module by Francois Descouens.

In Chapter 4, we describe three programs which were used to verify different parts of our

conjectures for our results presented in Chapter 2. The programs in Sections 4.1, 4.2 and

4.3 are designed for use by anyone who would like to do calculations using the bijection or

the inverse bijection. Working out the bijection for even a small example is time-consuming

and is very tedious. Therefore, we believe that these programs are very helpful to anyone

studying unrestricted Kostka polynomials. The program in Section 4.1 also calculates the

unrestricted Kostka polynomials.

Having stated the main results, it is worth mentioning that the bridge between the two

papers is fermionic formulas one of which appears in the context of combinatorial repre-

sentation theory and the other appears in conformal field theories (CFTs). The following

section provides a brief background on fermionic formulas, Kostka polynomials and CFTs.

1.2 Background and motivation

A partition � � ��� � ������������� � is a � -tuple of positive integers satisfying � �
	 � �
	 ����� 	

��� 	� . Let
� ����� be the length of the partition � which is the number of nonzero parts. In

symmetric functions theory, the ring of symmetric functions have various bases including

the monomial symmetric functions, Schur functions, and Hall-Littlewood symmetric func-

tions [55]. The Kostka polynomial ����� ��� � , indexed by two partitions � and � is defined
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as the matrix elements of the transition matrix between the Schur functions � � � � � and the

Hall Littlewood symmetric functions � � � ��� � � . That is:

��� � � � �
�
�
� ��� ��� ��� � � ��� � � � (1.2.1)

In representation theory, the Kostka polynomials � ��� ��� � are a � -analog of the multiplicity

of the irreducible � � � representation ��� , indexed by the highest weight � , in the expansion of

the L-fold tensor product � � �	� 
�
 ����� 
 � � �� 
 . Here �-��� � � ��������� ��� � is a partition and � � ��� 


is the symmetric tensor representation of � � � with weight ��� . These polynomials have been

generalized in many ways in algebraic combinatorics. In some generalizations, for example

[48, 51, 53, 76, 77, 78, 79, 80], the components of the tensor product are replaced by tensor

representations which are not always symmetric. In some other generalizations [30, 33, 61,

62, 69, 74], the representations of � � � are replaced by representations of other Kac-Moody

algebras [34]. There are many combinatorial descriptions of Kostka polynomials. Lascoux

and Schützenberger [52] gave the description

� ��� ��� � �
�

����� � � � � 

�	�
� � 
 � (1.2.2)

where � � � � � � is the set of semi-standard Young tableaux [27, 55] of shape � and content

� and where � � � � [55] is the charge statistic of the tableau ����� ����� � � . This expression

proved the non-negativity of the coefficients of the Kostka polynomials as conjectured by

H.O. Foulkes [26].

In the mid 1980’s, Kirillov and Reshetikhin [47] used the Bethe Ansatz to obtain a

new expression for the Kostka polynomials known as a fermionic formula. A fermionic

formula is a � -polynomial or a � -series that is a specific sum of products of the � -binomial
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coefficients ��
���
�

���
�
	 � ��� ���

� � � � � � ��  � � (1.2.3)

where

��� ��� �
��
��� � � � ' � � � for � ������� and ��� ��� � ��� (1.2.4)

When �-��� � � � , the fermionic formula for the Kostka polynomial looks like

� � � � ��� � � �
��� ��� ���� ������� � � � 

�
� (1.2.5)

where

��� � � � � � ���
� � � � � � �

� � � 
 �
�!�"�! � � �$# �

��
� 	

�%" 

� ! � �&" 


�

� �&" 

�

� �
�'	 �

� ��( ��) ��� �
�

�
�!�" � * ! �,+ " � * �� � - # �/.10$2 ��
 ��� � � �%" 


� � � * 
- �

	
�&" 

� �4365 " � '

�
�! * ! � + " * � - # �7.10$2 ��
 � � � � � * 
- �

The ( ��) -indexed sum is over the set ( � �&" 

� �8�9#��;: �=< �>< � � 
 	 � ) such that for

�?< �@< � � 
 	 � ,
	
�&" 

� 	 � �

�
�$# � 
 � �&" 


� �
� - � " � - �

Here � + " * � �!�" � * ! � is the Cartan matrix for � � �BA � and the partition � has at most ��! � nonzero

parts. The importance of the fermionic formula lies in the fact that there are no minus signs.

Therefore, it can be used to study the limiting behavior, which is a key ingredient in finding

different formulas for the characters related to affine Lie algebras and Virasoro algebras.
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Some examples of such applications can be found in [31, 45].

To prove that the fermionic formula of the Kostka polynomial is given by equation

(1.2.5), Kirillov and Reshetikhin [47] gave a bijection between the set �"����� � � and a new

combinatorial object called rigged configurations. Rigged configurations index the solu-

tions of the Bethe Ansatz equations and they are sequences of partitions satisfying certain

size restrictions along with some labellings called riggings for the parts of the partitions.

This connection between fermionic formula and Kostka polynomial is the beginning of a

whole new era of research in combinatorial representation theory.

In 1997 Nakayashiki and Yamada [60] gave a different representation of the Kostka

polynomials in terms of paths:

� ��� ��� ���
�

� � � � � � � 

�

� � � 
 � (1.2.6)

where a path 	 � � � � � � � is a highest weight element of weight � in Kashiwara’s crystal

base [37] corresponding to the tensor product representation � � �	� 
 
 � � � � 
 
 ����� 
 � � � � 
 of

� � � . The statistic � ��	�� associated with a path 	 is called energy. This new representation

was derived by realizing that paths are in bijection with the set of rigged configurations.

This bijection is done by sending a path (which can be viewed as a word in the � � � case) to

its Robinson-Schensted [27] recording � -tableau, which is then sent to the rigged config-

uration using Kirillov-Reshetikhin bijection. The path form of the Kostka polynomials is

particularly important because this definition can be generalized to any Kac-Moody Lie al-

gebras using the crystal base theory. Therefore, the Kostka polynomial for any Kac-Moody

Lie algebra is defined as the generating function of paths when graded by the energy statis-

tic and is called the “one dimensional sum”
�

. The fermionic formula � for the “one

dinemsional sum” was conjectured in full generality by Hatayama et al. in [30, 31]. This
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is known as the famous
� � � conjecture. Although this conjecure in full generality is

still open, many special cases have been proved in a series of papers [61, 62, 69, 74].

Similar to the Kostka polynomials, the unrestricted Kostka polynomials
� ��� ��� � , in-

dexed by two partitions � and � , can be defined as the matrix elements of the transition

matrix between the monomial symmetric functions and the modified Hall-Littlewood sym-

metric functions [46, 55]. Let � be a partition with
� ������< � , and let � � � � ��� � � and

� � � � � � � � be the Hall-Littlewood polynomials [55]. A modified Hall-Littlewood polyno-

mial � � � � � � � � � is defined to be

� � � � � � � � � � � � � � � � � � ' � � � � � � (1.2.7)

where the variables
� � � � � ' � � are the products ,�� -  � � � 	 � for , � � ��� ��� , � � ������� , � � .

Note that � � � � � � � �"� ��� � � � and � � � � ��� � �"� � � � � � where ��� � � � is the complete ho-

mogeneous symmetric function [55]. With this notation the Kostka polynomial can also be

defined as

� � � � ��� � � �
�
�

� � � � � � � � � � �$�

The unrestricted Kostka polynomial,
� ��� ��� � is then defined as

� � � � � � � � �
�
�
� ��� ��� � � � � � �$�

Combinatorially [30, 31, 33, 76, 80],

� ����� � � �
�

� � � � � � � 

�

� � � 

(1.2.8)

where � � � � ��� is the set of all unrestricted paths of weight � . Unrestricted paths are ele-
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ments in the crystal base of the tensor product representation � � � � 
�
 ����� 
 � � � � 
 of � � � . The

unrestricted Kostka polynomials we described above correspond to type � �� � Lie algebras.

One should note that the set of unrestricted paths of weight � contains the set of highest

weight paths with the same weight vector.

A fermionic formula for the � �  � unrestricted Kostka polynomials, when � is a se-

quence of row partitions or a sequence of column partitions, was proved in [31, 46]. The

existence of crystal bases have been conjectured in [32, 33] for all Kirillov-Reshetikhin

modules. A Kirillov-Reshetikhin module, � ��� �
is a finite dimensional module over an

affine Lie algebra, which corresponds to the weight vector ��� � , where � � is the fundamen-

tal weight of the affine Lie algebra. The corresponding crystal is denoted by
� ��� �

. For

�
� ��

�  � , the affine Lie algebra of type � �� � [34], the existence of the Kirillov-Reshetikhin

crystals are known [43, 80]. In the type �
� ��

�  � case, the weight vector ��� � is a rectangular

partition of height ! and width � . Having the crystal basis, it is natural to extend the defini-

tion of unrestricted Kostka polynomials to tensor products of Kirillov-Reshetikhin modules

using the path definition (1.2.8). The fermionic formula for the unrestricted Kostka poly-

nomials of type �
� ��

�  � in this general set up has not been studied until now. In Chapter 2 we

study these unrestricted Kostka polynomials for tensor products of all Kirillov-Reshetikhin

modules of type �
� ��

�� � and present new fermionic formulas.

Recently, fermionic expressions for generating functions of unrestricted paths for type

�
� ��
� have also surfaced in connection with box-ball systems. Takagi [83] establishes a

bijection between box-ball systems and a new set of rigged configurations to prove a

fermionic formula for the � -binomial coefficient. His set of rigged configurations coin-

cides with our set in the type �
�	��
� case. There is a generalization of Takagi’s bijection to

type �
�	��

�� � case [50]. Hence our bijection composed with the generalized Takagi’s bijec-

tion establishes a new connection between box-ball systems and the unrestricted Kostka
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polynomials.

One of the motivations to seek an explicit expression for unrestricted Kostka polynomi-

als is their appearance in generalizations of Bailey’s lemma [7]. Bailey’s lemma is a power-

ful method to prove Rogers-Ramanujan type identities [64, 65, 68]. The Bailey transform

of [4] starts with a seed identity and produces an infinite family of identities. The orig-

inal Bailey lemma corresponds to type � � . In [76] a type � � generalization of Bailey’s

lemma was conjectured which was subsequently proven in [86]. A type � � Bailey chain,

which yields an infinite family of identities, was given in [6]. In these generalizations a

key ingredient was an explicit fermionic formula for the unrestricted Kostka polynomial.

If the method we used in this thesis to find the new fermionic formula for the unrestricted

Kostka polynomial can be generalized to other Kac-Moody algebras, it might trigger fur-

ther progress towards generalizations of the Bailey’s lemma to Kac-Moody algebras other

than type � � . Unrestricted rigged configurations for the simply laced type Lie algebras

have already been studied in [70].

In the physics context, finding explicit formulas for the characters of the the solvable lat-

tice models has been a fundamental problem. The minimal models denoted by � ��	��	 ��� are

conformal field theories (CFT) invented by Belvin, Polyakov and Zamolodchikov [13, 14].

These are conformally invariant two dimensional field theories, which describe second or-

der phase transitions. The symmetry algebras of these theories are the infinite dimensional

algebras known as the Virasoro algebras. The Virasoro algebra is generated by generators3 � satisfying

� 3 � ��3 ��� � ��� ' � ��3 � A � ! �
� � ����� ' ��� 5 ��A � � � � for � � � ��� � (1.2.9)
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where � is the central charge given by

� �
	��	 � � � � '
� �
	 �(' 	�� �

	 	 � � (1.2.10)

where � < 	 ��	 � and 	��	 � are coprime. Hence the minimal models are indexed by 	�� 	 � .
The conformal dimension for this model is given by

� � � � ���� � � ��	 �'! ' 	 � � � ' �
	 � ' 	�� �� 	 	 � � (1.2.11)

where

�?< ! < 	 ' � � � < �?< 	 � ' ���

The characters of these models are calculated in [16, 19, 67] as

� � � � � � 
��� � � � � � ���
��� � �	
� �  � � �  �

��� ���
��- �  � � � - � - � � � A � � �  � � 
 ' �

� - � � A � 
 � - � A � 
 � � (1.2.12)

where ��� ��� ��� �� � � � � ' � � � . This expression is derived by the Feigin and Fuchs con-

struction [22] of a Fock space using bosonic generators and hence known as a bosonic

formula. In 1993, Kedem et al. [17, 40, 41, 42] found a new expression for such characters

in their study of the three state Potts models. The new formula had no minus signs like the

bosonic form. They interpreted the new formula as the partition function of quasi-particles

satisfying fermionic exclusion principles and called the new expression fermionic.

The fermionic expression for the minimal models ���
	��	 � � are calculated in [11, 84],
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which have the following form:

�
� restriction

�
�� �������'A���� ��- � �

��
� � � � ' � �
	�! �

�
� "

� "
���
� 	 � (1.2.13)

where 	 is an � component vector of non-negative integers which may be subject to re-

strictions in the sum,
�

is an �� � matrix, and � and � are � component vectors. Kedem

et al. showed in [17, 40, 41, 42] that any expression of this form can be interpreted physi-

cally. Due to this reason finding fermionic formulas is a very important problem in physics.

The character identities obtained by equating the bosonic and fermionic expression for the

CFT characters are known as Bose-Fermi identities.

As mentioned earlier, the fermionic formulas for minimal models are very well studied

but the fermionic formulas for other CFTs are not yet known in full generality. The ��� �
and ���)� superconformal algebras are two classes of CFTs where the symmetry algebras

are extended Virasoro algebras. Berkovich, McCoy and Schilling demonstrated in [10] that

some of the characters of ����� and ���*� superconformal algebras can be obtained from

the minimal models ����	 ' � �	�� by means of a construction known as the Bailey’s lemma.

Bailey’s Lemma first appeared in the paper [7] in 1949. Bailey observed this important

result while trying to clarify Rogers second proof of Rogers-Ramanujan (RR) identities

(1917). The first and second RR identities are

��
� � � � �

�
��� � � � �

��� ���
��

� �  � � � �
�	� � �BA ��
 ' � ��� ��A � 
 � � �BA ��
 � �

��
� � � �

� � ' �
� �  � � � � ' �

� ��  � (1.2.14)

��
� � � �

� � �BA ��

��� � � � �

� � � �
��

� �  � ��� �
� � � ��A � 
 ' �

��� ��A ��
 �
�
�BA ��
 � �

��
� � � �

� � ' �
� � 
� � � � ' �

� �� � �
(1.2.15)
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There are many different proofs of these identities for example [54, 64, 65, 68, 71] and

there are many generalizations [2, 15, 29, 81, 82] in the theory of partitions. It is worth

mentioning that the equality of the first two expressions of (1.2.14) is the Bose-Fermi iden-

tity for the minimal model ��� � � � � . Therefore, Bose-Fermi identities can be interpreted as

a generalization of the RR-identities.

Bailey’s lemma has been a very useful method for proving RR-type � -identities. Slater

[81, 82] used this lemma extensively to prove 130 RR-type identities. In connecting the

Bailey construction to physics the most remarkable step was achieved when Foda and

Quano [23, 24] derived identities for the Virasoro characters using Bailey’s lemma. The

method used is a constructive procedure which starts from a polynomial generalization of

a Bose-Fermi identity of one CFT and produces a Bose-Fermi identity for the character

of another CFT. This is known as Bailey flow. Hence new fermionic formulas for CFTs

can be calculated via Bailey flow from known fermionic formulas of another CFT. The

Bailey flow from ���
	 ' � �	�� to ����	�� 	 !)� � is presented in [10, 24] and further flows to

some special � � � and � � � supersymmetric models are given in [10]. This led us to

investigate about Bailey flows from ����	�� 	���� with 	��	 � arbitrary coprime positive integers

to other CFTs. In [10] it was conjectured that their methods, which was applied to the

unitary case when 	.� 	 � ' � can be applied to the general case. This is the problem we

study in Chapter 3. We demonstrate new Bailey flows from ���
	��	 � � to ��� � and ��� �
superconformal algebras and prove the conjectures of [10]. We present new Bose-Fermi

identities for the characters of � � � and � ��� superconformal algebras. These new

identities can be thought of as the generalized RR-type identities for the � � � and ���*�
superconformal characters.
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Chapter 2

Fermionic formulas for unrestricted

Kostka polynomials

2.1 Introduction

The Kostka numbers � ��� , indexed by the two partitions � and � , play an important role

in symmetric function theory, representation theory, combinatorics, invariant theory and

mathematical physics. The Kostka polynomials ��� � � � � are � -analogs of the Kostka num-

bers. There are several combinatorial definitions of the Kostka polynomials. For example

Lascoux and Schützenberger [52] proved that the Kostka polynomials are generating func-

tions of semi-standard tableaux of shape � and content � with charge statistic. In [60]

the Kostka polynomials are expressed as generating function over highest-weight crys-

tal paths with energy statistics. Crystal paths are elements in tensor products of finite-

dimensional crystals. Dropping the highest-weight condition yields unrestricted Kostka

polynomials [30, 31, 33, 76]. In the �
�	��
� setting, unrestricted Kostka polynomials or � -

supernomial coefficients were introduced in [75] as � -analogs of the coefficient of ,
"

in the
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expansion of � �- � � � � ! , ! , � ! ����� ! , - � ��� . An explicit formula for the �
� ��

�  � unrestricted

Kostka polynomials for completely symmetric and completely antisymmetric crystals was

proved in [31, 46]. This formula is called fermionic as it is a manifestly positive expression.

In this chapter we give a new explicit fermionic formula for the unrestricted Kostka

polynomials for all Kirillov–Reshetikhin crystals of type �
�	��

�� � . This fermionic formula

can be naturally interpreted in terms of a new set of unrestricted rigged configurations for

type �
�	��

�� � . Rigged configurations are combinatorial objects originating from the Bethe

Ansatz, that label solutions of the Bethe equations. The simplest version of rigged configu-

rations appeared in Bethe’s original paper [8] and was later generalized by Kerov, Kirillov

and Reshetikhin [44, 47] to models with
��� � ��� symmetry. Since the solutions of the Bethe

equations label highest weight vectors, one expects a bijection between rigged configura-

tions and semi-standard Young tableaux in the
��� � ��� case. Such a bijection was given

in [47, 48]. Here we extend this bijection to a bijection � between the new set of unre-

stricted rigged configurations and unrestricted paths. It should be noted that � is defined

algorithmically. In [70] the bijection was established in a different manner by construct-

ing a crystal structure on the set of rigged configurations. Here we show that the crystal

structures are compatible under the algorithmically defined � and use this to prove that �

preserves the statistics.

The bijection � has been implemented as a C++ program and has been incorporated

into the combinatorics package of MuPAD-Combinat by Francois Descouens [58]. The

program is given in chapter 4.

This chapter is structured as follows. In Section 2.2 we review crystals of type �
� ��

�  � ,

highest weight paths, unrestricted paths and the definition of generalized Kostka polyno-

mials and unrestricted Kostka polynomials as generating functions of highest weight paths

and unrestricted paths respectively with energy statistics. In Section 2.3 we give our new
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definition of unrestricted rigged configurations (see Definition 2.3.3) and derive from this

a fermionic expression for the generating function of unrestricted rigged configurations

graded by cocharge (see Section 2.3.2). The statistic preserving bijection between unre-

stricted paths and unrestricted rigged configurations is established in Section 2.4 (see Defi-

nition 2.4.7 and Theorem 2.4.1). As a corolloray this yields the equality of the unrestricted

Kostka polynomials and the fermionic formula of Section 2.3 (see Corolloray 2.4.2). The

result that the crystal structures on paths and rigged configurations are compatible under

� is stated in Theorem 2.4.14. Most of the technical proofs are relegated to the last three

sections. An extended abstract of this chapter can be found in [18].

2.2 Unrestricted paths and Kostka polynomials

2.2.1 Crystals ����� � of type �
�	��

�� �

Kashiwara [37] introduced the notion of crystals and crystal graphs as a combinatorial

means to study representations of quantum algebras associated with any symmetrizable

Kac–Moody algebra. In this paper we only consider the Kirillov–Reshetikhin crystal
� ��� �

of type �
�	��

�� � and hence restrict to this case here.

As a set, the crystal
� ��� �

consists of all column-strict Young tableaux of shape � � � � over

the alphabet ((� � � �"�-�"�&� � ) . As a crystal associated to the underlying algebra of finite type

� �  � , � ��� �
is isomorphic to the highest weight crystal with highest weight � � � � . We will

define the classical crystal operators explicitly here. The affine crystal operators �/� and �;�
are given explicitly in [80]. Since we do not use these operators we will omit the details.

Let � � ((� � � �"�-�"� � � ' � ) be the index set for the vertices of the Dynkin diagram of type

� �  � , � the weight lattice, ( � � � � :�
 ��� ) the fundamental roots, (�� � � � :�
 ��� ) the



2.2. Unrestricted paths and Kostka polynomials 16

simple roots, and ( � � ����� . � � � � � � :%
 � � ) the simple coroots. As a type � �� � crystal,
� � � ��� �

is equipped with maps ��� � ��� � � '�� ��� ( � ) and 	�
 � � '�� � for all 
 � �
satisfying

��� � 	���� 	 �� �� � 	 � � � 	 if 	 ��	 � � �

	�
 � � � � 	�� ����	�
 � 	�� ' � � if � � ��	�� � �

� � ���	�
 ��	&��� ��� � ��	&� '�� � � 	����

where
�
� � ��� is the natural pairing. The maps � � � �� are known as the Kashiwara operators.

Here for 	 � �
,

� � ��	&��� .���� ( � 	 � :#� �� � 	����� � )
� � ��	&��� .���� ( � 	 � : � �� ��	&���� � ) �

Note that for type � �  � , � � � � and � � ����� ' ��� A � where (�� � :�
 � � ) is the standard basis

in � . Here 	�
 � 	�� � �! � �"�"�"�&�" � � is the weight of 	 where  � counts the number of letters


 in 	 .

Following [38] let us give the action of ��� and ��� for 
 � � . Let 	 � � ��� �
be a tableau

of shape ��� � � . The row word of 	 is defined by 	#�%$�& � 	�� �' � ������ �  
� where  � is the

word obtained by reading the � -th row of 	 from left to right. To find � � ��	&� and �� � 	�� we

only consider the subword consisting of the letters 
 and 
 !*� in the word of 	 . First view

each 
�!*� in the subword as an opening bracket and each 
 as a closing bracket. Then we

ignore each adjacent pair of matched brackets successively. At the end of this process we

are left with a subword of the form 
 � � 
 ! � �

	
. If 	 � � (resp. � � � ) then �	� � 	�� (resp. �� ��	&� )

is obtained from 	 by replacing the unmatched subword 
 � ��
�! � �

	
by 
 � 

� � 
 ! � �

	 A �
(resp.
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1 2 3 ����� n1 2 3 n-1

0

Figure 2.1: Crystal
� � � �

.


 � A � � 
 ! � �

	
 �

). If 	 � � (resp. � � � ) then �	� ��	�� (resp. �� � 	�� ) is undefined and we write

� � � 	���� � (resp. ��� � 	���� � ).

A crystal
�

can be viewed as a directed edge-colored graph whose vertices are the

elements of
�

, with a directed edge from 	 to 	 � labeled 
 � � , if and only if �	� ��	&� � 	 � .
This directed graph is known as the crystal graph.

Example 2.2.1. The crystal graph for
� � � � � �

is given in Figure 2.1.

Given two crystals
�

and
� � , we can also define a new crystal by taking the tensor

product
� 
 � � . As a set

� 
 � � is just the Cartesian product of the sets
�

and
� � . The

weight function 	�
 for 	 
 	 � � � 
 � � is 	�
 � 	 
 	 � � � 	�
 ��	�� ! 	�
 ��	 � � and the Kashiwara

operators �� , ��� are defined as follows

�� � 	 
 	 � � �

���� ��� �� 	 
 	 � if � � � 	�� � � � � 	 ��� ,

	 
 ���	 � otherwise,

��� � 	 
 	 � � �

���� ��� ��� 	 
 	 � if � � ��	�� 	 � � � 	 � � ,

	 
 ��� 	 � otherwise.

This action of �	� and �� on the tensor product is compatible with the previously defined

action on 	 �%$�& ��	 
 	 � � ��	#�%$�& � 	�� 	#�%$�& � 	 � � .
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Example 2.2.2. Let 
 �*� and

	 � � �
� $


 � $
$ �
� �

�

Then 	 �%$�& ��	�� �)� $ � � � � $ � � $ , the relevant subword is � $ ' � '�' $ ' � $ , and the unmatched

subword is � '�'�' '�' '�'�' $ . Hence

� � � 	��.� � �
$ $


 � $
$ �
� �

and � � ��	&��� � �
� $


 � �
$ �
� �

�

2.2.2 Paths and unrestricted paths

Let
� � � ��� � ��� 
 � ��� � � � ��� � � 
 ����� 
 � � � � � � .
A highest weight path or simply path is an element 	 � �

such that � � � 	�� � � for all

��< 
�< � ' � . It is known that the weight vector of a highest weight element for type

� �  � is a partition with atmost � nonzero parts. Let � � ��� � � � � �"�"�"��� � � � be a partition

with atmost � nonzero parts, then the set of all highest weight paths of weight � and shape
�

is defined as

� � � � ��� �>(�	 � � : 	�
 � 	���� � and �� � 	���� � for all �?< 
 < � ' � ) �
An unrestricted path is an element in the tensor product of crystals

� � � ��� � ��� 

� � � � � � � � � � 
 ����� 
 � � � � � � . Let � � ��� � � � � �"�"�"�&� � � � be an � -tuple of nonnegative integers.

The set of unrestricted paths is defined as

� � � � ����� (�	 � � : 	�
 ��	�� � � ) �
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Note that the weight of an unrestricted path need not be a partition.

Example 2.2.3. For
� � � � � � 
 �

�
�
� 
 � � �

�
of type � � the path

	 � � 
 � $
� � 
 �

�
$

is a highest weight path of weight � ��� � � � � � � � � . The path

	 � � 
 � �
� � 
 �

$�

is an unrestricted path of weight � � �� �%$ � � �%� � .

There exists a crystal isomorphism
�
�
� ��� � 
 � � � � � � � � � � � � � 
 � ��� �

, called the com-

binatorial
�

-matrix. Combinatorially it is given as follows. Let 	 � � ��� �
and 	 � � � � � � � �

.

The product 	 �)	 � of two tableaux is defined as the Schensted insertion of 	 � into 	 . Then
� � 	 
 	 � ���

�
	 � 


�
	 is the unique pair of tableaux such that 	 ��	 � �

�
	 � �

�
	 .

The local energy function � �
� ��� � 
 � � � � � � � � is defined as follows. For 	 
 	 � �

� ��� � 
 � � � � � �
, � ��	 
 	 � � is the number of boxes of the shape of 	 � 	 � outside the shape

obtained by concatenating ��� � � and � � � � � � .

Example 2.2.4. For

	 
 	 � � � �
� � 
 �

$�

we have

	 ��	 � �
� � $
� � �
� �

�
�� � � $

� � �
�
	 � �

�
	��

so that
� � 	 
 	 � ���

�
	 � 


�
	 �

�
�� 
 � $

� � �



2.2. Unrestricted paths and Kostka polynomials 20

Since the concatentation of and is , the local energy function � � 	 
 	&��� �
� .

Now let
� � � ��� � ��� 
 ����� 
 � � � � � � be a � -fold tensor product of crystals. The tail

energy function
� '�
�
� � � is given by

� '� � 	����
�

�! ��� - ! � � -  � � - 
� �����

� � A � � � ��	&� �

where � � (resp.
� � ) is the local energy function (resp. combinatorial

�
-matrix) acting on

the 
 -th and ��
 ! � � -th tensor factors of 	 � �
.

Definition 2.2.5. The generalized Kostka polynomial � � � � ��� � with � � � � � ��������� � � �
where

� - is a rectangular partition of height ! - and width � - is the generating function

of highest weight paths with the tail energy function

� � � � ��� � �
�* � � � � � � 
 �

� � � * 

�
� ��

�  � -unrestricted Kostka polynomials or supernomial coefficients were first introduced

in [76] as generating functions of unrestricted paths graded by an energy function.

Definition 2.2.6. The � -supernomial coefficient or the unrestricted Kostka polynomial

is defined as
� � � � ��� �

�* � � � � � � 

�
� � � * 
 �



2.3. Unrestricted rigged configurations and fermionic formula 21

2.3 Unrestricted rigged configurations and fermionic for-

mula

Rigged configurations are combinatorial objects invented to label the solutions of the Bethe

equations, which give the eigenvalues of the Hamiltonian of the underlying physical model [8].

Motivated by the fact that representation theoretically the eigenvectors and eigenvalues can

also be labelled by Young tableaux, Kirillov and Reshetikhin [47] gave a bijection between

tableaux and rigged configurations. This result and generalizations thereof were proven

in [48].

In terms of crystal base theory, the bijection is between highest weight paths and rigged

configurations. The new result of this paper is an extension of this bijection to a bijection

between unrestricted paths and a new set of rigged configurations. The new set of unre-

stricted rigged configurations is defined in this section, whereas the bijection is given in

section 2.4. In [70], a crystal structure on the new set of unrestricted rigged configurations

is given, which provides a different description of the bijection.

2.3.1 Unrestricted rigged configurations

Let
� � � ��� � ��� 
 ����� 
 � � � � � � and denote by 3 ��� 3 �&" 
� : � ��� 
 � ���-� the multiplicity array of

�
, where 3 �&" 
� is the multiplicity of

� " � � in
�

. Here ��� � � ����� and � � ((� � � �"�"�-�&� � ' � )
is the index set of the Dynkin diagram � �� � . The sequence of partitions � � (�� �%" 
 :�� � � )
is a � 3 ��� � -configuration if

�
�&" � � 
 ��� 
 � �%" 


� � " �
�

�&" � � 
 ��� 
 3 �&" 
� � " ' � � (2.3.1)
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where � �&" 

� is the number of parts of length 
 in partition �

�%" 

. Note that we do not require �

to be a dominant weight here. The (quasi-)vacancy number of a configuration is defined

as

	
�&" 

� �

� - # � .@0�2 � 
 � � � 3 �&" 
- '
�

� * � - 
 ��� � � " : � * � .10$2 ��
 � � � � � * 
- �

Here � � : � � is the normalized invariant form on the weight lattice � such that � � � : � - � is

the Cartan matrix. Let � � 3 � ��� be the set of all � 3 � ��� -configurations. We call 	
�%" 

� quasi-

vacancy number to indicate that they can actually be negative in our setting. For the rest of

the paper we will simply call them vacancy numbers.

When the dependence of � �%" 

� and 	

�%" 

� on the configuration � is crucial, we also write

� �&" 

� � � � and 	

�&" 

� � � � , respectively.

In the usual setting a rigged configuration � � ��� � consists of a configuration � ��� � 3 � � �
together with a double sequence of partitions � � (�� �&" � � 
 : � ��� 
 � � � ) such that the

partition �
�&" � � 
 is contained in a � �%" 


� ��	
�&" 

� rectangle. In particular this requires that 	

�%" 

� 	 � .

For unrestricted paths we need a bigger set, where the lower bound on the parts in �
�&" � � 


can be less than zero.

To define the lower bounds we need the following notation. Let � � � � � � ��� � �"�"�-� ��� ��
� � �

where � � � ��� A � ! ��� A � ! �����! � � . We also set � � � � � . Let
� ��� � � be the set of tableaux of

shape ��� such that the entries in column � are from the set ((� � � �"�"�-�&��� �  � ) and are strictly

decreasing along each column.

Example 2.3.1. For �,� �
and � � � � � � � � � � � , the set

� � � � � consists of the following

tableaux
$ $ �
� �
�

$ $ �
� �
�

$ � �
� �
�

$ $ �
� �
�

$ $ �
� �
�

$ � �
� �
�

�

Note that each � � � ��� � � is weakly decreasing along each row. This is due to the fact
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that � - � � 	 � � ' � ! � since column � of height � � is strictly decreasing and � � ' ��! � 	 � - � � A �
since the entries in column � ! � are from the set ((� � � �"�-�"�&� � � ) .

Given � � � ����� � , we define the lower bound as

�
�%" 

� � � � � ' ���� - � � � ��
 	 � - � " � ! � � � �� - � � � � 
 	 � - � " A � ���

where � - � " denotes the entry in row � and column � of � , and � ���� � � if the the statement

� is true and � � � � � � otherwise.

Example 2.3.2. For the tableau � �
$ $ �
� �
�

from example 2.3.1 some of the lower bounds

are given by

�
� ��
� � � � � ' � � �

� ��
 � � � � ' � � �
�
�

� � � ��� � � �

�
�



� � � � � ' � �%�
�
�


�

� � ��� ' ���

Let �)�	�� � � � such that � 	 � . A � �)�	�� � � -quasipartition � is a tuple of integers

� �+��� � � � � �"�-�"�&� � � � such that � < � � < � �  � < ����� < � � <,	 . Each ��� is called a

part of � . Note that for � � � this would be a partition with at most � parts each not

exceeding 	 .

Definition 2.3.3. An unrestricted rigged configuration � � � � � associated to a multiplicity

array 3 and weight � is a configuration � � � � 3 � ��� together with a sequence � � (�� �&" � � 
 :
� ��� 
 � � � ) where �

�&" � � 
 is a ��
�&" 

� � � ��� 	

�%" 

� � � �%" 


� � -quasipartition for some � � � ������� . De-

note the set of all unrestricted rigged configurations corresponding to � 3 � � � by
� � � 3 ��� � .

Remark 2.3.4.

1. Note that this definition is similar to the definition of level-restricted rigged config-

urations [73, Definition 5.5]. Whereas for level-restricted rigged configurations the
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vacancy number had to be modified according to tableaux in a certain set, here the

lower bounds are modified.

2. For type � � we have � � ��� � ��� � � so that
� �>(�� ) contains just the single tableau

���

� �
� � ' �

...

�

�

In this case � � � � ��� '�� � �- � � � � 
 	 � - � � ��� ' 
 . This agrees with the findings of [83].

The quasipartition �
�&" � � 
 is called singular if it has a part of size 	

�%" 

� . It is often useful

to view an (unrestricted) rigged configuration � � � � � as a sequence of partitions � where the

parts of size 
 in �
�%" 


are labeled by the parts of �
�&" � � 
 . The pair � 
 � , � where 
 is a part of

�
�&" 


and , is a part of �
�%" � � 
 is called a string of the � -th rigged partition � � ��� � �%" 
 . The label

, is called a rigging.

Example 2.3.5. Let �-� �
, � ���� � � � � � � � , 3 � ��
� � �

and all other 3 �%" 
� � � . Then

� � ��� �.� ' 2
� � ' 1

is an unrestricted rigged configuration in
� � � 3 � � � , where we have written the parts of �

�&" � � 

next to the parts of length 
 in partition �

�&" 

. To see that the riggings form quasipartitions,

let us write the vacancy numbers 	
�&" 

� next to the parts of length 
 in partition �

�%" 

:

�
$

� ' 1 �
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This shows that the labels are indeed all weakly below the vacancy numbers. For

� � �
$ $
�
�

� � � � � �

we get the lower bounds

' 2
' 1

� ' 1 �

which are less or equal to the riggings in � � ��� � .

Let
� � � ��� � � � 
 ����� 
 � � � � � � and 3 the corresponding multiplicity array. Let � � � � � �

� � � 3 � ��� . Note that rewritting (2.3.1) we get

: � �&" 
 : � � - � " � - '
�� - � � � - .�� � � ! - ' ��� � � � (2.3.2)

Hence for large 
 , by definition of vacancy numbers we have

	
�&" 

� �8: � �&"  ��
 : ' � : � �&" 
 :�! : � �%" A ��
 :&! � - .@0�2 � 
 � � � 3 �&" 
-

� � " ' � " A � (2.3.3)

and

�
�%" 

� � � ��� ' � �� - � � � ��
 	 � - � " ��! ��� � �� - � � � ��
 	 � - � " A � �

� ' � " ! � " A � � ' � " A � � (2.3.4)
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For a given � � � ��� � � define

� 	
�%" 

� � � � � 	

�&" 

� ' �

�%" 

� � � �$�

We write
� 	

�&" 

� for

� 	
�&" 

� � � � when there is no cause of confusion. For large 
 , � 	

�%" 

� � � � � � " .

From the definition of 	
�&" 

� one may easily verify that

' 	
�&" 

�  � ! � 	

�%" 

� ' 	

�&" 

� A � 	 � �&"  ��


� ' � � �%" 

� ! � �&" A ��


� � (2.3.5)

Let ��� � " denote the � -th column of � . Then it follows from the definition of �
�%" 

� � � � that

�
�&" 

� � � ���)�

�%" 

�  � � � � ' � � 
 � ��� � " ��! � ��
 � ��� � " A � � �

Hence (2.3.5) can be rewritten as

' � 	
�&" 

�  � ! � � 	

�&" 

� ' � 	

�%" 

� A � ' � ��
 � ��� � " ��! � ��
 � ��� � " A � �

! � ��
�! � � ��� � " � ' � � 
�! � � ��� � " A � � 	 � �&"  ��

� ' � � �&" 


� ! � �%" A ��

� � (2.3.6)

Lemma 2.3.6. Suppose that for some � � � � � � � , � 	
�&" 

� � � � 	 � for all � � � and 
 such that

� �&" 

� � � . Then there exists a � � � � ��� � � such that

� 	
�&" 

� � � � � 	 � for all 
 and � .

Proof. By definition
� 	

�&" 
� � � � � � and
� 	

�&" 

� � � ��� � " 	 � for large 
 . By (2.3.6)

� 	
�&" 

� � � � 	 �

�
� � 	

�%" 

�  � � � ��! � 	

�&" 

� A � � � ��! � ��
 � ��� � " � ' � ��
 � ��� � " A � �

' � ��
�! � � ��� � " ��! � � 
�! � � ��� � " A � ��! � �&"  ��

� ! � �%" A ��


� � (2.3.7)
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when � �&" 

� � � . Hence

� 	
�&" 

� � � � � � is only possible if � �&"  ��


� � � �&" A ��

� � � , column

� of � contains 
 ! � but no 
 , and column � ! � of � contains 
 but no 
 ! � . Let � be

minimal such that
� 	

� � 
� � � � � � . Note that � � � since the first column of � contains all

letters � � � �-�"�"����� � . Let � � < � be minimal such that
� 	

�&" 

� � � � � � for all � � < ��� � .

Then inductively for � � � ' � � � ' � �"�"�"�&� � � it follows from (2.3.7) that � �%"  ��

� � � and

column � of � contains 
 ! � but no 
 . Construct a new � � from � by replacing all letters


 !)� in columns � � ��� � !*� �"�"�"��� � by 
 . This accomplishes that
� 	

�%" 
- � � � � 	 � for all � and

� < ��� � ,
� 	

� � 
� � � � � 	 � , and
� 	

�&" 
- � � � � 	 � for all � 	 � such that � �&" 
- � � . Repeating

the above construction, if necessary, eventually yields a new tableau � � � such that finally
� 	

�&" 
- � � � �
� 	 � for all � and � .

2.3.2 Fermionic formula

The following statistics can be defined on the set of unrestricted rigged configurations. For

� � ��� � � � � � 3 � � � let

� � � � � � � � � � � � � !
�

�&" � � 
 ��� : � �&" � � 
 : �
where : � �&" � � 
 : is the sum of all parts of the quasipartition �

�%" � � 
 and

� � � � ��� �
�
�" � * ��� �- � � # � � � " : � * � .10$2 � � ��� � � �&" 
- � � * 


� �

Definition 2.3.7. The RC polynomial is defined as

��� 3 � ��� �
�

��� � � 
 ����� � � � � 

� � �

��� � � 
 �

The RC polynomial is in fact � � -symmetric in the weight � . This is not obvious from
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its definition as both (2.3.1) and the lower bounds are not symmetric with respect to � .

Let
� � ��� ��� be the set of all nonempty subsets of

� ������� and set

�
�&" 

� ������ . ��� ( � �&" 


� � � � :�� �#� ) for � � � � � � � � .

By inclusion-exclusion the set of all allowed riggings for a given � ��� � 3 � ��� is

�
� ����� � � � 
 � ' � ��� � � A � (�� :�� �&" � � 
 is a ��

�&" 

� ���� �	

�&" 

� � � �&" 


� � -quasipartition ) �
The � -binomial coefficient 	 � A ���
 , defined as

� � ! 	�


� ��� ��� A �
��� ��� � � � �

where � � � � � � � ' � � � � ' � � � ����� � � ' � � � , is the generating function of partitions with at

most � parts each not exceeding 	 . Hence the polynomial � � 3 � ��� may be rewritten as

� � 3 � ��� �
�

� ����� � � � 
 � ' � � � � � A � �
� � � � � � � 


� � �
��� 
 A�� �

�
� � ����� � � � ���� � � �� � � 


�
�

�&" � � 
 ���
� � �%" 


� !#	
�&" 

� ' �

�&" 

� � ���

� �%" 

�



called fermionic formula. This formula is different from the fermionic formulas of [31, 46]

which exist in the special case when 3 is the multiplicity array of
� � � � � ��� 
 ����� 
 � � � � �

or
� � � ��� � � 
 ����� 
 � � � � � .
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2.4 Bijection

In this section we define the bijection � � � � � � � � � � � � 3 � � � from paths to unrestricted

rigged configurations algorithmically. The algorithm generalizes the bijection of [48] to

the unrestricted case. The main result is summarized in the following theorem.

Theorem 2.4.1. Let
� � � � � � � � 
 ����� 
 � � � � � � , 3 the corresponding multiplicity array

and �,� ��� � �-�"�"��� � � � a sequence of nonnegative integers. There exists a bijection � �

� � � � ��� � � � � 3 � � � which preserves the statistics, that is,
� '� ��	&� � � � � � � 	�� � for all

	 � � � � � � � .

A different proof of Theorem 2.4.1 is given in [70] by proving directly that the crystal

structure on rigged configurations and paths coincide. The results in [70] hold for all for

all simply-laced types, not just type �
� ��

�  � . Hence Theorem 2.4.1 holds whenever there

is a corresponding bijection for the highest weight elements (for example for type
� �	��
�

for symmetric powers [74] and antisymmetric powers [70]). Using virtual crystals and

the method of folding Dynkin diagrams, these results can be extended to other affine root

systems.

Here we use the crystal structure to prove that the statistics is preserved. It follows from

Theorem 2.4.14 that the algorithmic definition for � of this thesis and the definition of [70]

agree.

An immediate corollary of Theorem 2.4.1 is the relation between the fermionic for-

mula for the RC polynomial of section 2.3 and the unrestricted Kostka polynomials of

section 2.2.

Corollary 2.4.2. With the same assumptions as in Theorem 2.4.1,
� � � � ��� �*��� 3 ��� � .
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2.4.1 Operations on crystals

To define � we first need to introduce certain maps on paths and rigged configurations.

These maps correspond to the following operations on crystals:

1. If
� � � � � � 
 � � , let ��� � � � � � � . This operation is called left-hat.

2. If
� � � ��� � 
 � � with � 	 � , let ��� � � ��� � ��� � 
 � ��� �  � 
 � � . This operation is called

left-split.

3. If
� � � ��� � 
 � � with ! 	 � , let ����� � � � � � � � 
 � �  � � � 
 � � . This operation is

called box-split.

In analogy we define ����� 3 � (resp. ��� � 3 � , ����� 3 � ) to be the multiplicity array of ����� � � (resp.

��� � � � , ����� � � ), if 3 is the multiplicity array of
�

. The corresponding maps on crystal

elements are given by:

1. Let 	 � � 
 	%� � � � � � 
 � � . Then ����� 	���� 	%� .

2. Let 	 � � 
 	 � � � ��� � 
 � � , where � � � � � � ����� � � and � � denotes the 
 -th column of � .

Then ��� � 	���� � � 
 � � ����� � �

 	%� .

3. Let 	 �

	 �

	 �
...

	 �


 	 � � � ��� � 
 � � , where 	 � � ����� � 	 � . Then ����� 	���� 	 � 

	 �
...

	 �  �


 	 � .

In the next subsection we define the corresponding maps on rigged configurations, and

give the bijection in subsection 2.4.3.
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2.4.2 Operations on rigged configurations

Suppose 3 �	��
� � � . The main algorithm on rigged configurations as defined in [47, 48] for

admissible rigged configurations can be extended to our setting. For a tuple of nonnegative

integers � � ��� � �-�"�"� ��� � � , let �  be the set of all nonnegative tuples � � ��� � �-�"�"� � � � � such

that � ' � ��� � for some �?< ! < � where � � is the canonical ! -th unit vector in � � . Define5 � � � � 3 � ��� � � � � � � � � � ����� 3 ��� ��� by the following algorithm. Let � � ����� � � � � 3 � � � .
Set � � � 
 � � and repeat the following process for � � � �%� �"�"�"��� � ' � or until stopped. Find

the smallest index 
 	 � �&"  ��
 such that �
�&" � � 
 is singular. If no such 
 exists, set $�� � � ����� � �

and stop. Otherwise set � �%" 
 � 
 and continue with � ! � . Set all undefined � �&" 
 to � .

The new rigged configuration � �� �
�
����� 5 � � ����� is obtained by removing a box from the

selected strings and making the new strings singular again. Explicitly

� �%" 

� � �� ��� � �&" 


� � � � !

�������� �������
� if 
 ��� �%" 
 ' �

' � if 
 ��� �%" 

� otherwise.

The partition
�
�
�&" � � 
 is obtained from �

�&" � � 
 by removing a part of size 	
�&" 

� � � � for 
 ��� �&" 
 ,

adding a part of size 	
�&" 

� � �� � for 
 ��� �&" 
 ' � , and leaving it unchanged otherwise. Then5 � � ����� � � � � ����� 3 � � � � where �-� � ' ���
	 ��� � � 
 .

Proposition 2.4.3. 5 is well-defined.

The proof is given in section 2.5.

Example 2.4.4. Let 3 be the multiplicity array of
� � � � � � 
 �

�
� � 
 �

�
� � and � �
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�� � � � � � � � � � � � . Then

� � ��� � � ' 1
�

�
' 1
' 1

� ' 1 ' 1 � � � � 3 � ��� �

Writing the vacancy numbers next to each part instead of the riggings we get

' 1
�

�
' 1
' 1

� ' 1 ' 1 �

Hence � � ��
 � � � �

 ��� and all other � �&" 
 � � , so that

5 � � ��� ��� ' 1
�

' 1
� ' 1 ' 1 �

Also $�� � � ����� �*$ and � � � � ��� � �*� .

The inverse algorithm of 5 denoted by 5  � is defined as follows. Let 3 � ��
� � 3 �	��
� !
� ��3 � � 
� � 3 � � 
� for all 
 � � ���� . Let � be a weight and � � � !�� � for some � < ! < � .

Define 5  � � � � � 3 � ��� � � � � 3 � ��� by the following algorithm. Let � � � ��� � � � � 3 � ��� .
Let �

� � 
 � � . For �#� ! ' � down to � , select the longest singular string in � � � ��� � � 
 of

length �
� � 
 (possibly of zero length) such that �

� � 
 < �
� � A ��
 . With the convention �

� � 
 � �

we have �
� � 
 < �

�	��

as well. 5  � � � � ��� � � � � � � is obtained from � � � � � by adding a box to

each of the selected strings, and resetting their labels to make them singular with respect to

the new vacancy number for
� � � 3 � � � , and leaving all other strings unchanged.

Example 2.4.5. Let �-� �
, 3 � � 
� � 3 � � 
� � � and � � � � � � � � � � � � � � � .

� � ����� � ' 1 � �
� � ' 1

' 1
� ' 1

' 1
� �
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is a rigged configuration in
� � � 3 � ��� . For ! � �

5  � � � � � � � ' 1
' 1

� �
� � ' 2

' 1
� ' 1

' 1
� � �

Proposition 2.4.6. 5  � is well defined.

This proposition will also be proved in section 2.5.

Let � 	 � . Suppose
� � � ��� � 
 � � and 3 the corresponding multiplicity array. Note

that � � 3 � ��� � � � ��� � 3 ����� � . Under this inclusion map, the vacancy number 	
�%" 

� for �

increases by 5 " � � � ��
 � � � . Hence there is a well-defined injective map ��� � � �
� � � 3 ��� � �

� � � ��� � 3 ��� ��� given by the identity map ��� � � � � ������� � � ��� � .
Suppose ! 	 � and

� � � ��� � 
 � � with multiplicity array 3 . Then there is an injection

��� � � �
� � � 3 � � � � � � � ����� 3 � � � � defined by adding singular strings of length � to � � ��� � �&" 


for � < � � ! . Note that the vacancy numbers remain unchanged under ��� � � .

2.4.3 Bijection

The map � � � � � ��� � � � � � 3 ��� � is defined recursively by various commutative dia-

grams. Note that it is possible to go from
� � � � � � � � 
 � � � � � � � � � � 
 ����� 
 � � � � � � to the

empty crystal via successive application of ��� , ��� and ��� .

Definition 2.4.7. Define that map � � � � � � ��� � � � � 3 � ��� such that the empty path maps

to the empty rigged configuration and such that the following conditions hold:
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1. Suppose
� � � � � � 
 � � . Then the following diagram commutes:

� � � � ���
�

' '�' � � � � 3 � ���
���

�
�
�

�
�
����

� � � � � � ��� � � ��� � � ' '�' ��
�
� � � � � � � ����� 3 � � � �

2. Suppose
� � � ��� � 
 � � with � 	 � . Then the following diagram commutes:

� � � ��� �
�

' '�' � � � � 3 � ���
���

�
��

�
�� ��� 	
	

� � ��� � � ��� ��� ' '�' �� � � � ��� � 3 � � � �
3. Suppose

� � � ��� � 
 � � with ! 	 � . Then the following diagram commutes:

� � � � ���
�

' '�' � � � � 3 � ���
���

�
�
�

�
�
� ��� 	
	

� � ����� � ��� ��� ' '�' �� � � � ����� 3 � � � �
Proposition 2.4.8. The map � of Definition 2.4.7 is a well-defined bijection.

The proof is given in section 2.6.

Example 2.4.9. Let
� � � � � � 
 �

�
� � 
 �

�
� � and � ���� � � � � � � � � � � � . Then

	 � $ 
 �
�

 � � $� � � � � � � ��� �

and � ��	�� is the rigged configuration � � ��� � of Example 2.4.4. We have
� '� ��	�� � � � � � ����� �

� .
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Example 2.4.10. Let � � �
,
� � �

�
�
� 
 �

�
� �

and �#� � � � � � � � � � . Then the multiplicity

array is 3 � � 
� � � ��3 � � 

�

� � and 3 �&" 
� � � for all other ����� 
 � . There are 7 possible unrestricted

paths in � � � � ��� . For each path 	 � � � � � � � the corresponding rigged configuration

� � ��� � � � ��	�� together with the tail energy and cocharge is summarized below.

	 � � �
� �


 $� � � ��� �.� � ' 1
' 1

�
� '� � 	���� � � � � � � ��� �

	 � � �
� � 
 �

$ � � ��� �.� ' 1
�
� �

� '� � 	���� � � � � � � ��� �

	 � � �
� $


 �� � � ��� �.� � �
� ' 1

� '� � 	���� � � � � � � ��� �

	 � � �
� � 
 �

$ � � ��� �.� � �
' 1

�
� '� � 	���� � � � � � � ��� �

	 � � $
� � 
 �

� � � ��� �.� � �
� �

� '� � 	���� � � � � � � ��� �

	 � � �
� $


 �� � � ��� �.� ' 1 � ' 1

� '� � 	���� � � � � � � ��� �

	 � � �
$ � 
 �

� � � ��� �.� ' 1 � ' 1

� '� � 	���� � � � � � � ��� �

The unrestricted Kostka polynomial in this case is ��� 3 � � ���)� ! � � ! � � � � � � � ��� .

2.4.4 Crystal operators on unrestricted rigged configurations

Let
� � � � � � � � 
 ����� 
 � � � � � � and 3 be the multiplicity array of

�
. Let � � � ��� � � � � � � ���

and
� � � 3 ��� � � � � � 3 � ��� . Note that the bijection � of Definition 2.4.7 extends to a

bijection from � � � � to
� � � 3 � . Let � " and � " for �?< � � � be the crystal operators acting

on the paths in � � � � . In [70] analogous operators
�
� " and

�� " for � < � � � acting on rigged

configurations in
� � � 3 � were defined.



2.4. Bijection 36

Definition 2.4.11. [70, Definition 3.3]

1. Define
�� " � � � � � by removing a box from a string of length � in � � ����� �&" 
 leaving all

colabels fixed and increasing the new label by one. Here � is the length of the string

with the smallest negative rigging of smallest length. If no such string exists,
�� " � � �����

is undefined.

2. Define
�� " � � � � � by adding a box to a string of length � in � � ����� �%" 
 leaving all colabels

fixed and decreasing the new label by one. Here � is the length of the string with

the smallest nonpositive rigging of largest length. If no such string exists, add a

new string of length one and label -1. If the result is not a valid unrestricted rigged

configuration
�� " � � ��� � is undefined.

Example 2.4.12. Let 3 be the multiplicity array of
� � � � � � 
 � � � � 
 �

�
� �

and let

� � ����� � ' 3
' 1

�
�

' 1
' 1

� � � � 3 � �
Then

�� � � � ������� ' 3
' 1

�
�

' 2
' 1

and
�� � � � ������� ' 3

' 1
' 1

� � �

Define �� " � � ����� � . ��� ( � 	 � : �
� " � � � � � �� � ) and �� " � � ��� ��� . ��� ( � 	 � :

�� " � � ����� �� � ) . The following Lemma is proven in [70].

Lemma 2.4.13. [70, Lemma 3.6] Let � � ��� � � � � � 3 � . For fixed � � ((� � � �"�-�"��� � ' � ) , let

	 � 	
�&" 

� be the vacancy number for large 
 and let ��< � be the smallest nonpositive label

in � � � � � �&" 
 ; if no such label exists set � � � . Then �� " � � ��� ��� 	 ' � .
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Theorem 2.4.14. Let
� � � ��� � ��� 
 ����� 
 � � � � � � and 3 the multiplicity array of

�
. Then

the following diagrams commute:

� � � �
�

' '�' � � � � 3 �
�
�

��
�

��
���� �

� � � � ' '�' �� � � � 3 �
� � � �

�
' '�' � � � � 3 �

�
�

��
�

��
� �� �

� � � � ' '�' �� � � � 3 � � (2.4.1)

The proof of Theorem 2.4.14 is given in section 2.7. Note that Proposition 2.4.8 and

Theorem 2.4.14 imply that the operators
�
� " � �� " give a crystal structure on

� � � 3 � . In [70] it

is shown directly that
�� " and

�� " define a crystal structure on
� � � 3 � .

2.4.5 Proof of Theorem 2.4.1

By Proposition 2.4.8 � is a bijection which proves the first part of Theorem 2.4.1. By

Theorem 2.4.14 the operators
�
� " and

�� " give a crystal structure on
� � � 3 � induced by

the crystal structure on � � � � under � . The highest weight elements are given by the

usual rigged configurations and highest weight paths, respectively, for which Theorem 2.4.1

is known to hold by [48]. The energy function
� '�

is constant on classical components.

By [70, Theorem 3.9] the statistics � � on rigged configurations is also constant on classical

components. Hence � preserves the statistic.

2.5 Proof of Propositions 2.4.3 and 2.4.6

In this section we prove Propositions 2.4.3 and 2.4.6, namely that 5 is a well-defined bijec-

tion. The following remark will be useful.

Remark 2.5.1. Let � � ��� � be admissible with respect to � � � ��� � � . Suppose that
� 	

� � 
�  � � � � !
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� 	
� � 
� A � � � � 	 � and

� 	
� � 
� � � � � � � � 
� � � � � � . Then by (2.3.6) there are five choices for the

letters 
 and 
 ! � in columns � and � ! � of � :

1. 
�! � in column � ;

2. 
�! � in column � and � ! � , 
 in column � ! � ;

3. 
 in column � ! � ;

4. 
 in column � and � ! � , 
�! � in column � ;

5. 
�! � in column � , 
 in column � ! � .

In cases 1 and 2 we have � � �  ��
� � � � � � . Changing letter 
 !*� to 
 in column � to form a

new tableau � � has the effect �
� � 
� � � � � � �

� � 
� � � � ' � , �
� �  ��
� � � � � � �

� �  ��
� � � � !)� and all

other lower bounds remain unchanged. In cases 3 and 4 we have � � � A ��
� � � ��� � . Changing

letter 
 to 
 ! � in column ��! � to form a new tableau � � has the effect �
� � 
� � � � ���*�

� � 
� � � � ' � ,

�
� � A ��
� � � � ���*�

� � A ��
� � � � ! � and all other lower bounds remain unchanged. Finally in case

5 either � � �  ��
� � � ��� � or � � � A ��
� � � � � � . Changing 
�!�� to 
 in column � (resp. 
 to 
�!��
in column � ! � ) has the same effect as in case 1 (resp. case 3).

This shows that under the replacement ���� � � we have
� 	

� � 
� � � � � � � and by Lemma 2.3.6

� � ��� � is admissible with respect to some tableau � � � .

Let � be a weight such that � � � � for a given � < !1< � . Set �-� � ' � � . Recall that

� � � ��� A � ! ��� A � ! ����� ! � � is the height of the � -th column of � � � ��� � � . Let us define

the map
� � � � ��� � � � � � � � � with � � � � � � � as follows. If � � � � � � �  � then

� � � � �

���� ��� � � A � � � for � < � < ! ' � and � < 
�� � � ,

� � � � for ! < � < � and �?< 
6< � � .
(2.5.1)
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If � � � � � � �  � then there exists � < � < � � such that � � � � � � �  � � � ' � for � < 
?< � and

� - A � � � � � - � � ' � if � � � � . In this case

� � � � �

������������ �����������

� � A � � � for � < � < ! ' � and �?< 
�� � � ,

� � � � ' � for � � ! and �?< 
6< � ,

� � � � for � � ! and � � 
 < � � ,

� � � � for ! � � < � and � < 
 < � � .

(2.5.2)

Note that by definition the entries of
� � � � � are strictly decreasing along columns. Let

� � � ��� A � ! ����� ! � � . Then we have � � � � � ' � for �?< � < ! ' � and � � � � � for ! < � <
� . Again by definition � - � � � ((� �%� ������� � � � ) for all � < � < � � and � - � � � ((� � � ������� � ���  � )
for all � < � < � � and � < � < � . Therefore,

� � � � � � � � � � � .

Example 2.5.2. Let � �
$ $ �
� �
�

and ! � $ . Then
� � � � ��� � � �

� .

We will use the following lemma and remark in the proofs.

Lemma 2.5.3. Let
� � � ��� � ��� 
 ����� 
 � � � � � � with !���� � � ��� . Let � ��� � ��� 5 � � ��� � and let

$�� � � ��� ��� ! . For � � � � ! let 
 � � � � � . Then one of the following conditions hold:

1. � � � 
� � � ��� � or

2. � � � 
� � � ��� � , in which case 5 selects the part of length 
 in �
� � 
 .

Proof. Note that 
 � � � � � 	 � � . By (2.3.2) we have : � � � 
 : < � � , so that either � � � 
� � � � � �

or 
 � � � and �
� � 
 consists of just one part of size 
 . In this case � � � 
� � � � � � and 5 has to

select this single part.
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Remark 2.5.4. By (2.3.2) we have

: � � � 
 : � : � � �  ��
 : ' � � !
�
��# � �� � � !� 	 ! �

: � � � A ��
 : � : � � �  ��
 : ' � � ' � � A � ! �
�
�$# � �� � ��!� 	 ! � '

�
�$# � �� 5 � � � � �

Note that for � � �

�
�$# � .@0�2 ����� 
 � 3 � � 
� �

�
�$# � �� � � ���,< � � 5 � � � � !

�
�$# � � � ���� � � � 5 � � � � �

Then if : � � �  ��
 : � � �  � ' � for some � 	 � it follows that

' � : � � � 
 :&! : � � � A ��
 :&! �
�$# � .@0�2 ����� 
 � 3 � � 
� � ' � � � A � ' � � A � ! � '

�
�$# � . ��� ���� ' ��� � ��5 � � � � �

Proof of Proposition 2.4.3. To prove that 5 is well-defined it needs to be shown that � � � �����5 � � ����� � � � � 3 � � � . Here 3 is given by 3 �	��
� � 3 �	��
� ' � , 3 �&" 
� � 3 �%" 
� for all other 
 ��� , and

� � � ' � � where ! � $ ��� � ����� .
Let us first show that � indeed has nonnegative entries. Assume the contrary that � � �

� . This can happen only if � � � � . Suppose � � � ������� is such that �
� � 
- � � ��< 	

� � 
- � � � for

all � � � . By (2.3.3), 	
� � 

� � � � � ' � � A � for large 
 . Let � be the size of the largest part in �

� � 

,

so that � � � 
- � � � � � for � � � . By definition of vacancy numbers, 	
� � 

� � � � 	 	

� � 
- � � � for


 	 � 	 � . Also we have �
� � 
- � � � 	 ' � � A � for all � . Hence, ' � � A � < �

� � 
- � � � < 	
� � 
- � � � <

	
� � 

� � � ��� ' � � A � implies

�
� � 

� � � ���*�

� � 
- � � ��� 	
� � 
- � � ��� 	

� � 

� � � � for all �?< �1< 
 . (2.5.3)
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This means that the string of length � in � � ��� � � � 
 is singular and
� 	

� � 
- � � � � � for all � 	 � .
We claim that � � �  ��
- � � ��� � for � � � . By (2.3.6) we get

� � � ' � � � � ��� � � ��! � � � � ��� � � A � ��! � � � ! � � ��� � � � ' � � � ! � � ��� � � A � �
	 � � �  ��
- � � � ! � � � A ��
- � � �

for � � � . Clearly, � � �  ��
- � � � � � unless � <�� <�� . If ��� � we have � ! � � � � � �
and � � ��� � � A � which implies �

� � 
- � � � ���
� � 
- A � � � ��! � , a contradiction to (2.5.3). Hence

���+� is not possible. Similarly, we can show that ��� � is not possible. This proves

that � � �  ��
- � � � � � for � � � . Hence � � �  ��
 < � which contradicts the assumption that

! ��$ � � � ����� since � � ����� � � 
 has a singular string of length � . Therefore � � � � .

Next we need to show that � � � � � is admissible, which means that the parts of � lie

between the corresponding lower bound for some � � � � � � � and the vacancy number. Let

� � � � ��� � be such that � � ����� is admissible with respect to � . By the same arguments as in

the proof of Proposition 3.12 of [48] the only problematic case is when

� � � 

�  � � � ��� � � � 	

� � 

�  � � � � � � � �

� �  ��
 � � and � finite (2.5.4)

where � � � � � 
 .
Assume that

� 	
� � 


� 
�
� � � ! � 	

� � 

� � � � 	 � and (2.5.4) holds. By Remark 2.5.1 with 
 ��� ' � ,

there exists a new tableau � � such that
� 	

� � 

�  � � � � � � � so that the problematic case is avoided.

Hence assume that
� 	

� � 

� 
�
� � � ! � 	

� � 

� � � � � � and (2.5.4) holds. Let �&��� � be maximal

such that � � � 

� � � � � � � . If no such � � exists, set � � � � .

Suppose that there exists � � � � � � such that
� 	

� � 
-  � � � � � � . Let 
 be the maximal such

� . Then by Remark 2.5.1 we can find a new tableau � � such that
� 	

� � 
� � � � � � � and � � �����
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is admissible with respect to � � . Repeating the argument we can achieve
� 	

� � 

�  � � � � � � � � for

some new tableau � � � , so that the problematic case does not occur.

Hence we are left to consider the case
� 	

� � 
� � � ��� � for all � � < 
 < � . If � � �  ��
� � � � � �

for all ����� 
�� � , then by the same arguments as in the proof of Proposition 3.12 of [48] we

arrive at a contradition since � � �  ��
 < � � , but the string of length � � in � � ��� � � � 
 is singular

which implies that � � � 
 < ����� � . Hence there must exist � ��� 
�� � such that � � �  ��
� � � � � �

and � � �  ��
 � 
 . By (2.3.6) the same five cases as in Remark 2.5.1 occur as possibilities for

the letters 
 and 
 !.� in columns � and � ! � of � . In cases 3, 4 and case 5 if � � �  ��
� � � � �)� ,

we have � � � A ��
� � � � � � . Replace 
 in column � ! � by 
 ! � in � to get a new tableau

� � . In all other cases � � �  ��
� � � � � � ; replace the letter 
 ! � in column � by 
 to obtain

� � . The replacement � �� � � yields
� 	

� � 
� � � �
� � � in all cases. The change of lower bound

�
� �  ��
� � � � � � �

� �  ��
� � � � !,� in cases 1, 2 and 5 when � � �  ��
� � � � �� � will not cause any

problems since � � �  ��
� � � ��� � so that after the application of 5 there is no part of length 
 in

the � � ' � � -th rigged partition. Then again repeated application of Remark 2.5.1 achieves
� 	

� � 

�  � � � � ��� � � for some tableau � � � , so that the problematic case does not occur.

Let � � � be the tableau we constructed so far. Note that in all constructions above, either

a letter 
 ! � in column � is changed to 
 , or a letter 
 in column � ! � is changed to


 ! � . In the latter case 
 ! � <�� < : � � � 
 : < � � . Hence � � � satisfies the constraint that

� � �� � � � ((� � � �"�"�-�&��� �  � ) for all 
 � � .

Now let � � � � � � � � � . We know � � � � � � � . We will show that the parts of � lie between

the corresponding lower bound with respect to � � � � � � � and the vacancy number.

If � � �� � � � � �  � then by Lemma 2.5.3 �
� � 
� � � � < �

� � 
� � � � � � for all � and 
 such that

� � � 
� � � � � � . Hence by Lemma 2.3.6 we have that � � � ��� is admissible with respect to � .

Let � � �� � � � � �  � . Then there exists � as in the definition of
� � . We claim that



2.5. Proof of Propositions 2.4.3 and 2.4.6 43

(i) � � �  ��

� � � ��� � for 
 � � �  � ' � and � � �  ��


� 	 � �  - � � � <,� .

(ii) If � � �  ��

� 	 � �  - � � � ��� , then � � �  ��
 � � �  � ' � .

Note that �
� �  ��

� � � ���*�

� �  ��

� � � � � � ! � for � �  � ' � < 
�� � �  � and �

� � 
� � � �'< �
� � 
� � � � � � for

all other � and 
 such that � � � 
� � ��� � � . Hence if the claim is true using Lemma 2.5.3 we

have �
� � 
� � � �'< �

� � 
� � � � ��� for all � and 
 such that � � � 
� � � � � � . Therefore by Lemma 2.3.6

we have that � � � � � is admissible with respect to � .

It remains to prove the claim. Note that if : � � �  ��
 : � � �  � ' � then our claim is trivially

true. Let : � � �  ��
 : � � �  � ' � for some � < � < � . If all parts of �
� �  ��


are strictly less than

� �  � ' � , again our claim is trivially true. Let the largest part in �
� �  ��


be � �  � ' 	 	 � �  � ' �
for some � < 	 < � . Let � be the largest part in �

� � 

.

First suppose � � � �  � ' 	 and � � � � ' � for some � < � � � � . Then �"� � �  � ' � � � ! � �
which implies that

�
� � 
" � � � � � 	 ' � � � ' � � ' � ��!*��� � A � ' � � � � � ' � � A � �

This means 	
� � 
" � � �'<)�

� � 
" � � � � � since 	
� � 
* � � � 	 	

� � 
" � � � for all 	 	 � and 	
� � 
* � � � ' � � A � for

large 	 . If 	
� � 
" � � � � �

� � 
" � � � � � , it contradicts that 	
� � 
" � � � 	 �

� � 
" � � � � � . If 	
� � 
" � � ��� �

� � 
" � � � � � ,
it contradicts the fact that ! � $ ��� � ��� � since we get a singular part of length � in �

� � 

which

is larger than the largest part in �
� �  ��


. Therefore � � � �  � ' 	 is not possible.
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Hence � < � �  � ' 	 . Using Remark 2.5.4 we get,

	
� � 
" � � � � � " � � � �  ��
 � ' � : � � � 
 :&! � " � � � � A ��
 ��! �

�$# � .10$2 ����� 
 ��3 � � 
�< � !#	 ' � ' � : � � � 
 :&! : � � � A ��
 :&! �
�$# � .@0�2 ����� 
 � 3 � � 
�

� � !#	 ' � � � A � ' � � A � '
�
�$# � .���� � �� ' ��� � � 5 � � � � �

(2.5.5)

Since 	
� � 
" � � � 	 �

� � 
" � � � � � 	 ' � � A � we get

� � ' ��	 '
�
�$# � .���� � �� ' ��� � � 5 � � � � � < �@< � � �

Hence � � � � ' � for � < � < 	 ' � �$# � . ��� ���� ' ��� � � 5 � � � � . Then from (2.5.5) with

� � � � ' � we get

	
� � 
" � � �'< 	 ' � ' � � A � '

�
�$# � .���� � ��� ' ��� � � 5 � � � � < � � ' � � A � � (2.5.6)

where we used that � < 	 ' � < � � which follows from � � � � ' � < � �  � ' 	 .

If � � � �  � ' � , as in the case � � � �  � ' 	 we have

�
� � 
" � � � � � 	 ' � � � ' � � ' � ��!)� � � A � ' � ��� � � ' � � A � 	 	

� � 
" � � � �

Hence we get a contradiction unless 	
� � 
" � � � � �

� � 
" � � � ��� . By (2.5.6) and the fact that

� < 	 ' � < � � we know 	
� � 
" � � �-� � � ' � � A � happens only when 	 ' � � � � and

� �$# � . ��� ���� ' ��� � � 5 � � � � � � . This means the largest part in �
� �  ��


is of length � �  � ' 	 �
� � ' � � � . Since we have a singular string of length � in �

� � 

this contradicts the fact that

! ��$ � � � ����� .
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If �@< � �  � ' � then �
� � 
" � � � � � 	 ' ��� � ' � � ! ��� � A � ' � ��� � ' � ' � � A � 	 	

� � 
" � � � because

of (2.5.6) and the fact that � 	 	 . Again we get a contradiction unless 	
� � 
" � � � ���

� � 
" � � � �
� .
But this happens only when 	

� � 
" � � ��� � ' � ' � � A � which gives 	 � � because 	
� � 
" � � � attains

the right hand side of (2.5.6). This means the largest part in �
� �  ��


is � �  � ' � . Furthermore,

for large 
 we have 	
� � 

� � � � ' � � A � 	 � ' � ' � � A � !)� � �  � ' � ' � � � � � ' � � A � which

shows that besides � �  � ' � all parts in �
� �  ��


have to be less than or equal to � . But the

part of length � in �
� � 


is singular, so we have to have � �  � ' � � � and � � �  ��
 � � �  � ' �

else it will contradict the fact that ! � $ ��� � ����� . This proves our claim.

Hence � � � ��� is admissible with respect to ��� � � � � � and therefore 5 is well-defined.

Example 2.5.5. Let 3 be the multiplicity array of
� ��� � � � � � �  and � � � � � � � � � � �%� � . Let

� � � � � � ' 1
�

�
�

' 1
' 1

' 1 � � � � 3 ��� �$�

Let ���

� � $ $
$ � � �
� � �
�

be the corresponding lower bound tableau. Then

5 � � � � � � ' 1 � ' 1 ' 1 �

Note that in this example � � � �  
 �,� and it satisfies (2.5.4) with � � �
. Also

� 	
�  


� 
�
� � � !

� 	
�  


� � � � � � with
� 	

�  

� � � �"� � for all � < 
�< � . Since � �

�

� � � �"��� and � � ��� �  this

is an example where we get the new tableau � � by replacing the � � ��� �  by � and then the

corresponding lower bound tableau for 5 � � ����� is
� � � � � � �

$ � � �
� � �
�

.

Proof of Proposition 2.4.6. Similar to Proposition 2.4.3 we need to show that for � � � ��� �
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� � � 3 � ��� we have 5  � � � � � ��� � � ����� � � � � 3 � ��� where � � � ! � � . Clearly � has

nonnegative parts, so it suffices to show that � � � � � is admissible which means that the parts

of � lie between the corresponding lower bound with respect to some � � � � � ��� and the

vacancy number. Let � � � � � � � be a tableau such that � � � � � is admissible with respect to

� . By similar argument as in the proof of Propostion 2.4.3 the only problematic case occurs

when

� � � 
� A � � � ��� � � � 	
� � 
� A � � � ��� � � � � �

� � A ��

and � finite (2.5.7)

where � � �
� � 
 .

Assume that
� 	

� � 
� � � ��! � 	
� � 
� A
�
� � � 	 � and (2.5.7) holds. By Remark 2.5.1 with 
 � � ! �

there exists a new tableau � � such that
� 	

� � 
� A � � � � � � � so that the problematic case is avoided.

Hence assume that
� 	

� � 
� � � � ! � 	
� � 
� A
�
� � � � � and (2.5.7) holds. Let � ��� � be minimal

such that � � � 
� � � � � � � . If no such � � exists, set � � � � .

Suppose that there exists � ��� � � � such that
� 	

� � 
- A � � � � � � . Let 
 be the minimal such

� . Then by Remark 2.5.1 we can find a new tableau � � such that
� 	

� � 
� � � � � � � and � � � ���
is admissible with respect to � � . Repeating the argument we can achieve

� 	
� � 
� A � � � � � � � � for

some new tableau � � � , so that the problematic case does not occur.

Hence we are left to consider the case
� 	

� � 
� � � � � � for all � � 	 
 	 � . First let us

suppose � � ! ' � . If � � � A ��
� � ��� � � for all � � � 
 � � , then by the similar arguments

as in the proof of Proposition 2.4.3 we arrive at a contradiction since �
� � A ��
 	 � � , but the

string of length � � in � � � ��� � � 
 is singular which implies that �
� � A ��
 � �

� � 
 	 � � � � . Hence

there must exist � � � 
 � � such that � � � A ��
� � � � � � and �
� � A ��
 � 
 . By (2.3.6) the same

five cases as in Remark 2.5.1 occur as possibilities for the letters 
 and 
 ! � in columns

� and � ! � of � . In cases 1, 2 and case 5 if � � � A ��
� � � � � � , we have � � �  ��
� � ��� � � .

Replace 
 !.� in column � by 
 in � to get a new tableau � � . In all other cases � � �  ��
� � � ��� � ;
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replace the letter 
 in column � ! � by 
 !�� to obtain � � . The replacement � �� � � yields
� 	

� � 
� � � � � � � in all cases. The change of lower bound �
� � A ��
� � � � ���*�

� � A ��
� � � � ! � in cases

3, 4 and 5 when � � � A ��
� ��)� will not cause any problems since � � � A ��
� � � so that after the

application of 5  � there is no part of length 
 in the ��� !�� � -th rigged partition. Then again

repeated application of Remark 2.5.1 achieves
� 	

� � 
� A � � � � � � � � for some tableau � � � , so that

the problematic case does not occur.

Now let us consider the case � � ! ' � . Note that � � � � here. Else �
� �  ��
 � � , a

contradiction. So,
� 	

� �  ��

� � � � � � for 
 � � which implies � � �  ��


� � ��� � � for 
 � � , else

�
� �  ��
 � � . Then by (2.3.6) with 
 	 � ! � and � � ! ' � we have

' � ��
 � ��� � �  � � ! � � 
 � ��� � � ��! � � 
�! � � ��� � �  � � ' � � 
 ! � � ��� � � �
	 � � � 

�



� � � ��! � � � 

� � ��� 	 � �

(2.5.8)

If � ! � � ��� � � by (2.5.8) with 
 � � ! � there are seven choices for the letters ��! � and

� ! � in columns ! ' � and ! of � .

1. � ! � in both columns ! ' � and ! ;

2. Both � ! � �$� ! � in column ! ;

3. Both � ! � �$� ! � in columns ! ' � � ! ;

4. � ! � in columns ! ' � � ! and � ! � in column ! ' � ;

5. � ! � in column ! ;

6. � ! � in column ! and � ! � in columns ! ' � � ! ;

7. � ! � in column ! and � ! � in column ! ' � .
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First note that by (2.5.8) � � � 
�



� A � � � ��� � � � 
� A � � � ��� � for cases 1, 2 and 3. For case 4 we have

� � � 
� A � � ��� � � again, else 	
� �  ��
� A � � � � � 	

� �  ��
� � � � � �
� �  ��
� � � � � �

� �  ��
� A � � � � , contradiction to
� 	

� �  ��
� A � � � � � � . In cases 5 and 6 either � � � 
� A � � � � � � or � � � 
�



� A � � � � � � by (2.5.8). When

� � � 
�



� A � � ��� � � and � � � 
� A � � ��� � � in case 5 we have � � � 
�



� � � � � � for all 
 � � ! � , else

	
� �  ��
� A � � � � 	 	

� �  ��
� � � � !�� � �
� �  ��
� � � � !�� 	 �

� �  ��
� A � � � � ' � !�� � �
� �  ��
� A � � � � , a contra-

diction. In case 7 by the same string of inequalities either � � � 
� A � � ��� � � or � � � 
�



� A � � � ��� � .

When � � � 
� A � � ��� � � we construct a new tableau � � from � by replacing � !)� in column

! by the smallest number 
 � � ! � that does not appear in column ! of � . The effect of this

change is �
� � 
� A � � � � � � �

� � 
� A � � � � !*� and �
� �  ��
� A � � � � � � �

� �  ��
� A � � � � ' � . Since � � � 
� A � � � � � �

the first change does not create any problem. When � � � 
� A � � � � � � in cases 6 and 7 we

change the � ! � in column ! ' � to � !)� . The effect of this replacement is �
� � 
�



� A � � � � � �
�

� � 
�



� A � � � � ! � and �
� �  ��
� A � � � � � �,�

� �  ��
� A � � � � ' � . Since � � � 
�



� A � � � � � � there is no problem.

When � � � 
� A � � ��� � � in case 5 we replace the smallest � - � �  � � � ! � by � ! � . This has the

effect that �
� � 
�



� � � � � � �
� � 
�



� � � � !*� for � !*� < 
 � � - � �  � . Since we have � � � 
�



� � �

for all 
 	 � ! � we do not have any problem. In all cases, replacing � by � � the problematic

case (2.5.7) is avoided and we have
� 	

� � 
� � � � � 	 � for all other 
 ��� such that � � � 
� � � � � � .

Let us consider the case � !����� ��� � � . Note that �
� �  ��
� � � � 	 �

� �  ��
� A � � � � . We have

� � � 

� � ���#� � � � � � 

�



� � ��� for all 
 � � , else 	
� �  ��
� A � � � � � 	

� �  ��
� � ���#� �
� �  ��
� � � � 	

�
� �  ��
� A � � � � , contradiction to

� 	
� �  ��
� A � � � ��� � . Using (2.5.8) for 
 � � ! � � � � ! ' � we have

four possible cases for the choice of the letters � ! � and � ! � in columns ! ' � and ! of � .

1. � ! � in column ! ' � ;

2. � ! � in columns ! ' � and ! ;

3. � ! � and � ! � in column ! ' � ;
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4. no � !)� �$� ! � in both columns ! ' � and ! .

We first argue that case 3 cannot occur. Suppose case 3 holds. Then �
� �  ��
� A � � � ���)�

� �  ��
� � � � '
� and �

� �  ��
� A
�

� � � � �
� �  ��
� A � � � � ' � . But we also have

� 	
� �  ��

� � � �#� � for 
 � � and

� � �  ��

� � ��� � � � � 

�



� � ��� � � � � 

� � ��� for 
 � � . Note that

� 	
� �  ��

� � � � � � implies that

	
� �  ��
� A
�

� � � �)	
� �  ��
� A � � ��� ' � �)	

� �  ��
� � � � ' � . On the other hand � � �  ��

� � � � � � � � 

�



� � � � �

� � � 

� � ��� implies that 	

� �  ��
� A
�

� � � 	 	
� �  ��
� � � � and 	

� �  ��
� A � � � � 	 	
� �  ��
� � � � which yields a con-

tradiction.

In cases 1 and 2 we replace the letter � ! � in column ! ' � to �(! � to get a new tableau � � .
The change from � to � � yields

� 	
� �  ��
� A � � � � � � � without any other change. In case 4 if there

exists � - � �  � � ��! � for some � then we replace the smallest such � - � �  � by ��! � to construct

� � . Then again we get
� 	

� �  ��
� A � � � � � � � without any other change since � � � 
�



� � ��� � � for all


 � � . On the other hand if � � � �  � < � then � �  � < � < : � � �  ��
 : < � �  � implies � � � �  � � � .

Note that � � � �  �
	 � . Here we will avoid the problematic case (2.5.7) by constructing a new

tableau � � � � � � � . Let

� � � � �

���������������� ���������������

� � ! � for � � � � 


� �  � ! � for � < � < ! ' � and 
 ��� �

� ! � for � � ! ' � and 
 � � �

� �  � � � for � < � < ! ' � and � � 
6< � � �

� � � � for ! < � < � and �?< 
6< � � .

(2.5.9)

Note that � ��� � � ! � for � < � < ! ' � and � ��� � � for ! < � < � . Clearly � � � � �((� � � �"�"�"����� �  � ) for all 
 ��� . Column-strictness of � follows since � � � � � � � ! � and � � � � �
� � ! � < � �  � !*� for � < � < ! ' � and � !*� � � � � � . Hence � � � � � � � . Note that we
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have �
� �  ��
� A � � � � � �

� �  ��
� A � � � � ' � ��	
� �  ��
� A � � � � , so the problematic case (2.5.7) is avoided.

The fact that � � ��� � is admissible with respect to � is shown later.

Let us now define � � � ��� � � in all other cases. Let � � � � � � � � � be the tableau we

constructed from � so far except in the last case. Note that in all constructions above, either

a letter 
 !�� in column � is changed to 
 , or a letter 
 in column � !�� is changed to 
 !�� . In

the latter case � � � A ��
� � � means 
�! � < �
� � A ��
 < : � � � A ��
 :�< � � A � < � � . Hence � � � satisfies

the constraint that � � �� � � � ((� � � �"�-�"�&� � �  � ) for all 
 � � .

Let us define a new tableau � from � � � in the following way:

� � � � �

������������ �����������

� � ! � for � � � � 


� �  � ! � for � < � < ! ' � and 
 ��� �

� � ��  � � � for � < � < ! ' � and � � 
 < � � ,

� � �� � � for ! < � < � and � < 
 < � � .

(2.5.10)

Similarly as in (2.5.9) we have � � � ��� � � .
Next we show that � � ����� is admissible with respect to � , that is, the parts of � lie

between the corresponding lower bound with respect to � � � � � � � and the vacancy number.

Note that �
� � 
 !�� < : � � � 
 : < � � < � �  � . We distinguish the three cases �

� � 
 ! � � � � ,

�
� � 
 ! � � � � � � �  � and �

� � 
 ! � � � � � � �  � .
If �

� � 
 !*� � � � for all � < � < ! ' � , then �
� � 
� � � � � �

� � 
� � � � � � for all 
 � � such that

� � � 
� � � � � � . If �
� � 
 !*�"� � �  � for some � < � < ! ' � , then �

� � 
� � � � A � � � � ���
� � 
� � � � A � � � � � �

since � �  � 	 � � . Also if �
� �  ��
 ! � � � �  � , then �

� �  ��

� � 	 � ��� A � � � � �*�

� �  ��

� � 	 � ��� A � � � � � � ' � . In both

cases � � ����� is admissible since �
� � 
� � � �'< �

� � 
� � � � � � for all 
 � � such that � � � 
� � � � � � .

Now suppose �
� � 
 ! �#� � ��� � �  � for some � < �)� ! ' � . Then �

� � 
� � � � A � � � � �
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�
� � 
� � � � A � � � � � ��! � . Suppose � is minimal satisfying this condition. Note that in this situation,

�
� � 
 � � � ' �.� � � . This means : � � � 
 : � � � which implies by definition of : � � � 
 : that: � �%" 
 : � � " for � 	 � . Using this we get

� � � �
� � 
 < �

� � A ��
 < ����� < �
�%" 
 < ����� < �

� �  ��
 < : � � �  ��
 : � � �  � < � � �

This implies � " � �
�%" 
 � �

�&" A ��
 � � " A � for all � < �@< ! ' � . When �
�&" 
 � �

�&" A ��

we have

	
�&" 

� �
�
� A � � � � � 	

�&" 

� �
�
� A � � � � . Hence we only need to worry when

� 	
� � 
� � � � A � � � � � � � � . Let � be

the largest part in �
� �  ��
 . If � � �

� � 
 then by definition 	
� � 
� � � � A � � � � � 	

� � 
� � � � � ��� . But we have

�
� � 
� � � � � � � � � 	 �

� � 
� � � � A � � � � � � , hence
� 	

� � 
� � � � A � � � � � � � � . Suppose � < �
� � 
 , then 	

� � 
� � � � A � � � � 	

	
� � 
� � � � � � � since � � � 
� � ��� � � for 
 � �

� � 
 . If �
� � 
 !)� � � � �� � � then �

� � 
� � � � � � � � � �,�
� � 
� � � � A � � � � � � ! �

and we get
� 	

� � 
� � � � A � � � � � � � � . If �
� � 
 ! � �� � � �� � � then there exists � � �- � � � �

� � 
 ! � for some � and

we replace the smallest such � � �- � � by �
� � 
 !*� to get a new tableau � � from � � � ��� � � . This

has the effect that �
� � 
� � � � A � � � � � � �

� � 
� � � � A � � � � ' � �)�
� � 
� � � � A � � � � � � so that

� 	
� � 
� � � � A � � � � � 	 � .

This proves that � � � � � is admissible with respect to � or � � � � � � � � . Hence 5  � is

well-defined.

Example 2.5.6. Let 3 be the multiplicity array of
� ��� � � � � � �  and � � � � � � � � � � � � � . Let

� � � ����� ' 1
�

' 1
�

' 1
' 1

� � � � � 3 � ���$�

Let ���

� � $ �
$ � �
� �
�

be the corresponding lower bound tableau. Then with ! �)$ ,

5  � � ��� � ��� ' 1
�
�

' 1
�

' 1
' 1

� �
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Note that in this example we have �,� ! ' � � � and � � �
�
�

 � � which satisfies

(2.5.7). Also � !,� � $ � ��� � � , hence this is the situation when � � ! ' � in (2.5.7) with
� 	

� �  �
� � � � � � for all 
 � � and since � !*� � ��� � � this is case 7 discussed in the proof. So

we get the corresponding lower bound tableau for � � � � � by replacing $ � � � � � by
�

and then

doing the construction defined in (2.5.10). The lower bound tableau we get is

� � � �� � �
$ �
� �
�

.

2.6 Proof of Proposition 2.4.8

In this section a proof of Proposition 2.4.8 is given stating that the map � of Definition 2.4.7

is a well-defined bijection.

The proof proceeds by induction on
�

using the fact that it is possible to go from
� � � � � � � � 
 � � � � � � � � � � 
 ����� 
 � � � � � � to the empty crystal via successive application of

��� , ��� and ��� . Suppose that
�

is the empty crystal. Then both sets � � � � ��� and
� � � 3 ��� �

are empty unless � is the empty partition, in which case � � � � ��� consists of the empty

partition and
� � � 3 � ��� consists of the empty rigged configuration. In this case � is the

unique bijection mapping the empty partition to the empty rigged configuration.

Consider the commutative diagram (1) of Definition 2.4.7. By induction

� �
�
� � � � � � ��� � � ��� ��� ' �

�
� � � � � � � ����� 3 ��� � �

is a bijection. By Propositions 2.4.3 and 2.4.6 5 is a bijection, and by definition it is clear

that ��� is a bijection as well. Hence � � 5  � � � � ��� is a well-defined bijection.

Suppose that
� � � ��� � 
 � � with ! 	 � . By induction � is a bijection for ����� � � �

� � � � 
 � �  � � � 
 � � . Hence to prove that (3) uniquely determines � for
�

it suffices to show
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that � restricts to a bijection between the image of ��� � � � � � ��� '�� � � ����� � ��� ��� and the

image of ��� � � �
� � � 3 � ��� ' � � � � ����� 3 ��� ��� . Let 	 � 	 � 


	 �
...

	 �  �


 	 � � � � ����� � � � ���

with 	 �  � � 	 � . Let � � ����� � � � 	�� which is in
� � � ����� 3 � � ��� . We will show that � � ��� � �&" 


has a singular string of length one for � < �@< ! ' � .

By induction we know for � � � ��� � � � 	&� where 	 � 	 �  � 

	 �
...

	 �  �


 	 � � ����� � �  � � � 


� � � with 	 �  � � 	 �  � , � � � ��� �%" 
 has a singular string of length one for � < � < ! ' � . Let

	 � �
	 �
...

	 �  �


 	 � and � � � � � � � � � � 	 � � . This ”unsplitting” on the rigged configuration side

removes the singular string of length one from � � � � � �&" 
 for �?< � < ! ' � yielding � � � � � � � .
Let �

�&" 

be the length of the selected strings by 5  � associated with 	 �  � . Note that

�
�%" 
 � � for � < � < ! ' � . Now let �

�&" 

be the selected strings by 5  � associated with 	 � .

Since 	 �  � � 	 � we have by construction that �
�&" A ��
 < �

�&" 

. In particular �

� �  ��
 < �
� � 
�

 �

� and therefore, �
� �  ��
 � � . This implies that �

�&" 
 � � for � < � < ! ' � . Hence � � ��� � �&" 

has a singular string of length one for � < �@< ! ' � .

Conversely, let � � ����� � ��� � � �
� � � 3 � ��� � , that is, � � ����� �%" 
 has singular string of length

one for � < � < ! ' � . Let 	 � �  � � � ��� � � 	 � 

	 �
...

	 �  �


 	 � � � � ��� � � � � ��� . We want

to show that 	 �  � � 	 � . Let � � � ��� � 5 � � ����� and � �%" 
 be the length of the selected string in

� � ��� � �%" 
 by 5 . Then � �&" 
 � � for � < � < ! ' � and the change of vacancy numbers from
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� � ��� � to � � � ��� is given by

	
�%" 

� � ��� � 	

�&" 

� � � � ' � � �

�%"  ��
 < 
�� �
�%" 


��! � � �
�%" 
 < 
�� �

�%" A ��
 �$� (2.6.1)

This implies that � � � ��� � �  ��
 has no singular string of length less than � � � 
 since � � �  ��
 � � .

Let � � � � � � � � ��� � � � ��� � � . Denote by �
�&" 


the length of the singular string selected by 5 in

� �(� � � � � �&" 
 . Then by induction �
�&" 


� � for � < � < ! ' � and by (2.6.1) we get �
�&" 


	 � �&" A ��

for � 	 ! ' � . Therefore �

�&" 

	 � �&" A ��
 for all � < � < � . Hence 	 �  � � 	 � . This proves

that � in (3) is uniquely determined.

Let us now consider the case
� � � ��� � 
 � � where � 	 � . Any map � satisfying (2)

is injective by definition and unique by induction. To prove the existence and surjectivity

it suffices to prove that bijection � maps the image of ��� � � � � ��� � '�� � � ��� � � � � � � to the

image of ��� � � �
� � � 3 ��� � '�� � � � ��� � 3 ����� � . Let 	 � � � 
 � 
 	 � � ��� � � � � � � � � where

� � � � � � ����� � � and � � denotes the ��
 ' � � -th column of � � � ��� �  �
. Let � � �

� �
...

� �
� � ��� �

and � � �
	 �
...

	 �
, so that we have � � < 	 � for ��< 
 < ! . Let � � ��� �"� � ��	&� . We want to

show that � � ����� � ��� � � �
� � � 3 � ��� � . To do that by definition of ��� � � it is enough to show that

� � ��� � � � 
 has no singular string of length less than � .

Let us introduce some further notation. Let 	 � � 
 	 � and � � � � �7� ��� � ��� � ����� � �

 	 � � .

Define � � � � � � � � � ��� 
�

� �
� 5  � � �  � � 5  � � ��� � �7� � for � < 
 < ! and let �

�%" 

� be the length of

the singular strings associated to 	 � . Similarly define � � � ��� � � ��� ��� 
�

� �
� 5  � � �  � � 5  � � �;� ��� �%�

for � < 
 < ! and let �
�&" 

� be the length of the singular strings associated to � � where
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� � � ��� � � � � � 	&� . The change of vacancy number from � � � � �7� � to � � � � � � � is given by

	
�%" 

� � � � ��� 	

�%" 

� � � ����! ��� � � � � �

�&"  ��
� � � < �
�&" 
� � '

��� � � � � �
�&" 
� � � < �

�&" A ��
� ��� (2.6.2)

and the change of vacancy number from � � � � �7��� to � � � � � � � is given by

	
�%" 

� � � � � � 	

�%" 

� � � � ��! ��� � � � � �

�%"  ��
� � � < �
�%" 
� � '

��� � � � � �
�&" 
� � � < �

�&" A ��
� �

' 5 " � � � ��� � � ' � ��!
��� � � � ���

�&"  ��
� � � < �
�&" 
� � '

��� � � � ���
�&" 
� � � < �

�%" A ��
� � �

(2.6.3)

Using this we will show that �
�&" 

� � �

�&" 

� for all � 	 
 and � < 
 < ! by induction on


 . Note that by (2.6.2) in � �/� � � ��� �&" 
 the strings of length �
�%" 

� ! � remain singular for all


 � � . Since � � < 	 � we have �
�%" 
� � �

�%" 
� for all � , this starts the induction. Let �
�&" 

� � �

�&" 

�

for all � and for � < 
 < � . Then by induction hypothesis and (2.6.3) in � � � ��� � � �&" 
 the

strings of length �
�&" 

� !*� remain singular for all � and �"!*� < 
�< ! , which implies that

�
�%" 

� A � 	 �

�%" 

� A � ! � . Hence �

�&" 

� A � � �

�&" 

� A � which proves our claim by induction. In particular

�
� � 
� � �

� � 
� . By induction � � � � � � � � � 
 has no singular string of length strictly less than � ' � ,
so �

� � 
� 	 � ' � which implies �
� � 
� 	 � . But note that by construction of the algorithm

�
�%" 
� � � for � < � < ! ' � and the change of vacancy numbers from � � �  � � � �  � � to

� � � ��� � � ��� � ��� � is given by,

	
�%" 

� � � ��� 	

�&" 

� � � �  � ��! � � �

�&"  ��
� � � < �
�&" 

� � ' � ���

�&" 

� � � < �

�&" A ��
� � �

This implies that � � ����� � � 
 has no singular string less than �
� � 
� which means � � � � � � � 
 has no

singular string less than � and we are done.
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Conversely let � � ����� � ��� � � �
� � � 3 � ��� � and 	 � �  � � � ����� � � � 
 � 
 	 � , same notation

as before. We will show that � � < 	 � for � < 
 < ! . Set � � � ��� � ����� 5 � ��� � �  � � � ����� for � <

 < ! and set � �;� � � � ��� 5 � � 5 � ����� �  � � � ��� � . Let us denote the length of the string selected

by 5 in � � � ��� � � �&" 
 by �
�%" 

� . Similarly set � � � ����� ��� � � � � � ��� � � and � � � � ��� ��� � 5 � ����� �  � � � � ���

for � < 
6< ! and � � � � �7� ��� 5 � � 5 � ����� �  � � � � � � . Denote the length of the string selected

by 5 in � � �� ��� � �&" 
 by �
�&" 

� . We claim that �

�%" 

� � �

�%" 

� for all � < 
 < ! and all 
 < � < � . We

will show this by reverse induction on 
 .

First note that the change in vacancy number from � � ����� to � � � ��� � � is given by

	
�%" 

� � � � � � 	

�&" 

� � � � '

��� � � A � � � �
�%"  ��
� < � � �

�%" 
� ��!
��� � � A � � � �

�&" 
� < � � �
�%" A ��
� � � (2.6.4)

The change in vacancy number from � � ����� to � � � � � � � is given by

	
�&" 

� � � � � � 	

�&" 

� � � � '

��� � � � � �
�&"  ��
� < � � �

�&" 
� ��!
��� � � � � �

�%" 
� < � � �
�&" A ��
� �

! 5 " � � � ��� � � ' � � '
��� � � A � � � �

�&"  ��
� < � � �
�&" 
� ��!

��� � � A � � � �
�%" 
� < � � �

�%" A ��
� �$�

(2.6.5)

(2.6.4) implies that �
�%" 

� � �

�%" 

�  � and the string of length �

�&" 
- ' � remains singular in � � � ��� � � �&" 

for 
 ! � < � < ! . Recall that � � ��� � � � 
 has no singular string of length less than � . So,

�
� � 
� 	 � . By construction of the algorithm �

�%" 

� � � for � < � < ! ' � . By induction � ��� � � � � 


has no singular string of length less than � ' � and hence by (2.6.5) � ' � < � � � 
� � �
� � 
�

since the string of length �
� � 
� ' � 	 � ' � is singular. Now by using (2.6.4) the algorithm

of 5 acting on � � � ��� gives that �
�%" 

� � �

�%" 
� for � 	 ! . This starts the induction. Suppose

�
�%" 

� � �

�%" 

� for all � < 
 < ! and all 
 � � < � . Induction hypothesis along with (2.6.5)
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implies that in � � �  � � � �  � � �%" 
 we have �
�&" 

� � �

�&" 

�  � for 
 	 �"!�� and the string of length

�
�%" 
- ' � remains singular for �@< � < � ' � . Therefore �

�&" 

�  � � � for �1< � < � ' � and

in � � �  � � � �  � � � �  ��
 , the smallest singular string we know is of length �
� �  ��

�  � ' � . Hence

�
� �  ��

�  � < � � �  ��
�  � ' � � �

� �  ��

�  � . Then by using (2.6.5) the algorithm of 5 acting on � ��� � � � �

gives that �
�%" 

�  � � �

�%" 

�  � for � � � ' � . This proves our claim.

But �
�%" 

� � �

�&" 

� for all �?< 
6< ! and all 
 < �1< � implies � � < 	 � . So we are done.

2.7 Proof of Theorem 2.4.14

In this section we prove that the crystal operators on paths and rigged configurations com-

mute with the bijection � .

The following Lemma is a result of [48, Lemma 3.11] about the convexity of the va-

cancy numbers.

Lemma 2.7.1. (Convexity) Let � � ��� � � � � � 3 � .
1. For all 
 � � 	 � we have ' 	

� � 

�  � � � � ! ��	

� � 

� � � � ' 	

� � 

� A � � � � 	 � � �  ��


� � � � ' � � � � 

� � � � !

� � � A ��

� � � � .

2. Let � � � 

� � � � � � for � � � � 	 . Then 	

� � 

� � � � 	 .10$2 �
	 � � 
" � � ��� 	

� � 
* � � � � .

3. Let � � � 

� � � � � � for � � � � 	 . If 	

� � 
" � � � � 	
� � 
" A � � � � and 	

� � 
" A � � � �@< 	
� � 
* � � � then

	
� � 
" A � � � � � 	

� � 

� � � � for all � < � < 	 .

4. Let � � � 

� � � � � � for � � � � 	 . If 	

� � 
* � � � � 	
� � 
*  � � � � and 	

� � 
*  � � � � <�	
� � 
" � � � then

	
� � 
*  � � � ��� 	

� � 

� � � � for all � < � < 	 .

Proof. The proof of (1) is given in [49, Appendix] (see also (2.3.5)), (2) follows from

repeated use of (1), and the proof of (3) and (4) follow from (1) and (2).
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Lemma 2.7.2. Let
� � � � � � 
 � � and let 3 and 3 � be the multiplicity arrays of

�
and

� � .
For �?< 
�� � the following diagrams commute if

�
� � is always defined:

� � � 3 � �' '�' � � � � 3 � �
�
� �

�
�
�

�
�
���� �

� � � 3 � ' '�' �
�

� � � 3 � �
� � � 3 � �' '�' � � � � 3 � �
�
� �

�
�
�

�
�
� �� �

� � � 3 � ' '�' �
�

� � � 3 � � (2.7.1)

Proof. We prove (2.7.1) for
�
� � here; the proof for

���� is similar. Let us introduce some

notation. Let � � ����� � � � � 3 � and let � �&" 
 be the length of the singular string selected by5 in � � ��� � �%" 
 for � < �.� � . Let � � � � � �85 � � ����� and � �� �
�
� � �

�
��� � � ��� � . Let

�
� �%" 
 be the

length of the singular string selected by 5 in � �� �
�
��� �&" 
 for � < ��� � and � (respectively � )

be the length of the string selected by
���� in � � ����� � � 
 (respectively in � � � ��� � � 
 ). A string of

length � and label , � in � � ��� � �&" 
 is denoted by ��� ��, � � .
Using the definition of

�
� � it is easy to see that the diagram (2.7.1) commutes trivially

except when � � �  ��
 ' � < � < � � � 
 . We list the nontrivial cases as follows:

(a) � � �  ��
 � �*� � � � 
 � � , � ! � 	 � � �  ��
 .

(b) � � � 
 � �*� � � �  ��
 < � ! �?< � � � 
 .
(c) � � � 
 � � and � � � 
 � � .

Note that since
�
��� fixes all the colabels, the singular strings (except the new string of length

� ! � ) remain singular under the action of
�
��� . Let � � ��, � � be the string selected by

�
� � in

� � ��� � � � 
 . The new string of length ��!#� can be singular in � �� �
�
��� � � 
 only if 	

� � 

� A � � � ��� , � ! � .

Also note that by the definition of
�� � if � � � 


� � � � � � and � � � ,�� � is a string in � � ����� � � 
 then

, � � ,��?< 	
� � 

� � � ��� if � � � �

, � < ,��?< 	
� � 

� � � � � if � � � �

(2.7.2)
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Let us now consider all the nontrivial cases.

Case (a): If the new string of length � !.� in � �� �
�
��� � � 
 is nonsingular, then (2.7.1) commutes

trivially. Let us consider the case when the new string of length ��!#� in � �� �
�
� � � � 
 is singular.

We have 	
� � 


� A � � � � � , � !*� and since � � �  ��
 � �*� � � � 
 ��� we have 	
� � 
- � ��� � 	

� � 
- � � � ' �
for � 	 � � �  ��
 . In particular 	

� � 

� A � � � � � 	

� � 

� A � � � � ' � � , � . The labels in � � � � � � � 
 are the

same as in � � ��� � � � 
 . Hence � � � , but the result is not a valid rigged configuration since

	
� � 


� A � � ��� ' � � , � ' � . So,
�
� � � � � � � is undefined, which contradicts the assumptions of

Lemma 2.7.2.

Case (b): If the new string of length � ! � in � �� �
�
� � � � 
 is singular, we show that the following

conditions hold:

(i) 	
� � 


� � � �  � � ��� < , � ;

(ii) � � � A ��
- � � ��� � for � � � � � � � 
 .

The above conditions imply that diagram (2.7.1) with
�� � commutes for the following reason.

Condition (i) implies that
�
��� acts on the new string of length � � � 
 ' � in � � � � � � � 
 . Condition

(ii) implies that if � � � A ��
 � � then
�
� � � A ��
 � � � � A ��
 . Hence

�
� �%" 
 � � �%" 
 for � �� 
 and

�
� � � 
 � � ! � . This gives

���� � 5 � � � � ��� 5 �
�� � � � ����� .

If the new string of length � !�� in � �� �
�
� � � � 
 is nonsingular then the diagram (2.7.1)

with
�
��� commutes if

�
� � acts on the same string of length � in � ��� � � � � 
 as it did on � � ����� � � 
 .

In this case if � � � �  ��
 ' � �	
� � 


� � � �  � � � � � is the new string created by 5 we need to show that

, � ��	
� � 


� � � �  � � � � .
Let us now consider the proof of conditions (i) and (ii) in the case when the new string

of length � !�� in � �� �
�
� � � � 
 is singular. Note that 	

� � 

� A � � � � � , � ! � < , - for � � � and

� � � 
- � � � � � by (2.7.2). In particular if � � � 

� A � � � � � � and � � ! � � , � A � � is a string in � � ����� � � 


then 	
� � 


� A � � � � < , � A � <�	
� � 


� A � � � � . This implies 	
� � 


� A � � � � � , � A � , hence � � ! � � , � A � � is a
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singular string which is a contradiction if � � �  ��
 <�� ! � � � � � 
 . If � ! � � � � � 
 , it is easy to

see that (2.7.1) commutes. Hence we may assume that � !*� � � � � 
 , so that � � � 

� A � � � � � � .

Let � � � be smallest so that � � � 

� � � � � � . Then by Lemma 2.7.1 (2) we have

	
� � 


� A � � � � 	 .@0�2 �
	 � � 
� � � ��� 	
� � 

� � � � �$� (2.7.3)

If 	
� � 


� � � � � 	
� � 

� � � � then by (2.7.3) we get 	

� � 

� A � � � � 	 	

� � 

� � � � . But

	
� � 


� A � � � �'< ,�� �.	
� � 

� � � � if � � � � �

� � 
 �

	
� � 


� A � � � �'< ,�� � 	
� � 

� � � � if � ���

� � 
 �
(2.7.4)

Hence � ��� � � 
 which implies 	
� � 


� A � � � � � 	
� � 


� � � � � � � � 	
� � 


� � � � and � � � 
- � � � � � for � � � �
� � � 
 . But now using Lemma 2.7.1 (1) we get the following contradiction:

� �)' 	
� � 


� � � ��! � 	
� � 


� A � � � � ' 	
� � 


� A
�
� � � 	 � � �  ��


� A � � � � ! � � � A ��

� A � � � � 	 � �

Hence 	
� � 


� � � �'< 	
� � 

� � � � and by (2.7.3) we 	

� � 

� A � � � � 	 	

� � 

� � � � . Recall that we have

	
� � 


� A � � � ��� , � ! � < 	
� � 


� � � ��� if �
� �  ��
 � � � �

� � 

or � � � , � � is nonsingular �

	
� � 


� A � � � ��� , � ! � � 	
� � 


� � � � ! � � if � ���
� �  ��
 ' � and � � ��, � � is singular �

This gives us two possible situations:

1. 	
� � 


� A � � � ��� 	
� � 


� � � � if � � �  ��
 � � � � � � 
 or � � ��, � � is nonsingular,

2. 	
� � 


� A � � � ��� 	
� � 


� � � ��! � if � � � � �  ��
 ' � and � � ��, � � is singular.

In situation (1) using Lemma 2.7.1 (3) we get 	
� � 


� A � � � � � 	
� � 
- � � � for � ! � � � < � .
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Using (2.7.4) this implies � � � � � 
 and by convexity we get condition (ii). Also this gives

	
� � 


� � � �  � � � ��� 	
� � 


� A � � � � � , � ! � and hence 	
� � 


� � � �  � � ��� � , � , which proves condition (i).

In situation (2) we have

	
� � 


� A � � � � � 	
� � 


� A � � � � ' � since �
� �  ��
 � ��! � � �

� � 


� 	
� � 


� � � � since 	
� � 


� A � � � ��� 	
� � 


� � � ��! �

� 	
� � 


� � � � since � � �
� �  ��
 �

Also note that 	
� � 

� � ��� ��	

� � 

� � � � ' � if � � � � � 
 and 	

� � 

� � � � � 	

� � 

� � � � !*� if ��� � � � 
 . Now

using (2.7.4) and (2.7.2) we get 	
� � 


� A � � � � � 	
� � 

� � ��� . Since � � � 


� � � � � � � � 

� � � � � � using

Lemma 2.7.1 (3) we get 	
� � 


� A � � ��� �)	
� � 


� � ��� �)	
� � 
- � ��� for � !�� < ��< � . This contradicts

that 	
� � 


� A � � ��� ��	
� � 

� � � � , hence situation (2) cannot occur.

Now let us consider the case when the new string of length � !�� in � �� �
�
��� � � 
 is nonsingu-

lar. If ��! � � � � � 
 the commutation of (2.7.1) is again fairly easy to see. Hence assume that

� ! � � � � � 
 . Then we have 	
� � 


� � � �  � � � ��� 	
� � 


� � � �  � � � � ' � . If � � � 

� � � �  � � � � � � and � � � � 
 ' � � , � � � �  � �

is a string in � � ��� � � � 
 then , � � � �  � ��	
� � 


� � � �  � � � � since � � �  ��
 < � ! �?< � � � 
 ' � � � � � 
 . Hence

by (2.7.2) we have , � � , � � � �  � ��	
� � 


� � � �  � � � � which implies , � ��	
� � 


� � � �  � � ��� and we are

done.

If � � � 

� � � �  � � � � � � let �@< �#� � � � 
 ' � be smallest such that � � � 
- � � � � � . By Lemma

2.7.1 (2) we get

	
� � 


� � � �  � � � � 	 .@0�2 �
	 � � 
- � � ��� 	
� � 


� � � � � � � �$� (2.7.5)

Note that if �.� � � � � � 
 then the string � � ��, - � in � � � � � � � 
 is nonsingular and therefore

	
� � 
- � � � � , - � , � by (2.7.2). Also if � � � � 
 ��, � � � � � is the singular string 	

� � 

� � � � � � � � , � � � � � , �

by (2.7.2). So .@0�2 ��	 � � 
- � � ���	
� � 


� � � � � � � � 	 , � ! � . Hence by (2.7.5) 	
� � 


� � � �  � � � � 	 , � ! � .
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Suppose 	
� � 


� � � �  � � � ��� , � !#� . Since 	
� � 
- � � � � , � !#� we get by (2.7.5) , � ! � � 	

� � 

� � � �  � � � � 	

	
� � 


� � � � � � � 	 , � !)� which implies 	
� � 


� � � �  � � � � � 	
� � 


� � � � � � � . Since 	
� � 


� � � �  � � � � � , � !*� < 	
� � 
" � � �

for all � � � � � � � 
 by Lemma 2.7.1 (4) we get 	
� � 
- � � � � , � !)� which is a contradiction.

Hence 	
� � 


� � � �  � � � � � , � ! � and we get , � ��	
� � 


� � � �  � � ��� as desired.

Let us consider the case � � � . If the string � � � , � � is nonsingular by similar argument

as in the previous case we have that 	
� � 


� � � �  � � � � 	 , � !)� . Suppose 	
� � 


� � � �  � � � � � , � !)� . By

(2.7.5) if 	
� � 


� � � �  � � � � 	 	
� � 


� � � � � � � 	 , � !*� we get as before that 	
� � 


� � � �  � � � � � 	
� � 


� � � � � � � . Using

Lemma 2.7.1 (4) we can show as before that 	
� � 


� A � � � ��� , � ! � which is a contradiction since

the string of length � !,� is not singular in � �� �
�
��� � � 
 . By (2.7.5) if 	

� � 

� � � �  � � � � 	 	

� � 

� � � � 	

, � !*� we get 	
� � 


� � � �  � � � � �)	
� � 


� � � � � , � !*� . This implies that 	
� � 


� � � �  � � � �?<�	
� � 
" � � � for all

� � � . If we use this in Lemma 2.7.1 (1) for �-� � � � 
 ' � we get 	
� � 


� � � �  � � � � ��	
� � 


� � � � � � � and

then using Lemma 2.7.1 (4) we get 	
� � 


� A � � � ��� , � ! � which is a contradiction as before.

Hence the only case left to be considered is when �.��� ��� � �  ��
 ' � and the string

� � � , � � is singular in � � ����� � � 
 . Here .10$2 ��	 � � 
� � � � �	
� � 


� � � � � � � ��� 	
� � 


� � � � and therefore by (2.7.5)

	
� � 


� � � �  � � � � 	 , � . Suppose 	
� � 


� � � �  � � � � � , � . Since 	
� � 


� � � � � � � 	 , � !,� we have 	
� � 


� � � �  � � � � �
	
� � 


� � � � � � � . Also, 	
� � 


� � � �  � � � � 	 .10$2 ��	 � � 
� � � ���	
� � 


� � � � � � � � �*	
� � 


� � � � � , � �*	
� � 


� � � �  � � � � . Using this

in Lemma 2.7.1 (1) for � ��� � � 
 ' � we get the following contradiction:

� � ' 	
� � 


� � � � 
�
� � ��! � 	

� � 

� � � �  � � � � ' 	

� � 

� � � � � � � 	 � � �  ��


� � � �  � � � ��! � � � A ��

� � � �  � � � � 	 � � (2.7.6)

Hence 	
� � 


� � � �  � � � � � , � . Suppose 	
� � 


� � � �  � � � �.� , � ! � . Here 	
� � 


� � � �  � � � � < 	
� � 


� � � � � � � . If

	
� � 


� � � �  � � � � � 	
� � 


� � � � � � � as before we can show that 	
� � 


� A � � � � � , � !,� , which is a contradic-

tion. Suppose 	
� � 


� � � �  � � � � � 	
� � 


� � � � � � � then 	
� � 


� � � � 
�
� � � 	 .@0�2 �
	 � � 
� � � ���	

� � 

� � � � � � � � � 	

� � 

� � � � �

, � � 	
� � 


� � � �  � � � � ' � . If 	
� � 


� � � � 
�
� � � � 	

� � 

� � � �  � � � � we again get the contradiction (2.7.6).

If 	
� � 


� � � � 
�
� � � � 	

� � 

� � � �  � � � � using Lemma 2.7.1 (1) for � � � � � 
 ' � we get 	

� � 

� � � � � � � �
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� � 


� � � �  � � � � which is a contradiction to our assumption. Hence 	
� � 


� � � �  � � � � � , � ! � giving

, � ��	
� � 


� � � �  � � � � .
Case (c): Note that since

�� � acts on the string � � � , � � in � � � � � � � 
 we have

	
� � 


� A � � � � 	 , � ! � � 	
� � 


� � � ��! ��� (2.7.7)

If
�� � and 5 select the same string of length � in � � ��� � � � 
 then � � � 


� � � � � � . But if
�� � and 5

select different strings of length � in � � ��� � � � 
 then � � � 

� � � � � � . We will consider each of

these two cases separately.

If � � � 

� � � � � � let � � ��, � � be the string selected by

�
� � and � � �	

� � 

� � � � � be the string selected

by 5 in � � ��� � � � 
 . Note that , � < 	
� � 


� � � � . To prove that the diagram (2.7.1) with
���� commutes

it is enough to show that
�
��� acts on the same string � � � , � � in � ��� � � � � 
 as it did in � � ����� � � 
 .

Hence it suffices to show that the new label in � ��� � � � � 
 satisfies 	
� � 


�  � � � � 	 , � . Note that

	
� � 


�  � � ����� 	
� � 


�  � � � � ' � if � � �
� �  ��


,

	
� � 


�  � � ����� 	
� � 


�  � � � � if � ���
� �  ��
 �

If � � � 

�  � � � � � � let � � ' � � , �  � � be a string in � � ��� � � � 
 . Then

, � < , �  � �.	
� � 


�  � � � � if � � �
� �  ��


,

, � < , �  � < 	
� � 


�  � � � � if � � �
� �  ��


,

which implies 	
� � 


�  � � � � 	 , � .

If � � � 

�  � � � � � � let � � � ' � be largest such that � � � 
- � � � � � and � � � , - � be a string in

� � ��� � � � 
 . Then by Lemma 2.7.1 (2) we have 	
� � 


�  � � � � 	 .10$2 �
	 � � 
- � � ��� 	
� � 


� � � � � .
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If 	
� � 
- � � � < 	

� � 

� � � � then using (2.7.2) we have

	
� � 


�  � � � � 	 	
� � 
- � � � � , - 	 , � if �

� �  ��
 < � � � ' � ,

	
� � 


�  � � � � 	 	
� � 
- � � � 	 , - 	 , � if � � �

� �  ��

.

Hence 	
� � 


�  � � ��� 	 , � unless

	
� � 


�  � � � ��� 	
� � 
- � � � � , - � , � < 	

� � 

� � � � with � � �

� �  ��
 < � ' � . (2.7.8)

But if this happens by Lemma 2.7.1 we get 	
� � 


� � � � ��� � � � �)	
� � 


� � � � ���  � � � � <�	
� � 


� � � � ��� A � � � � . Note

that here � � � 

� � � � ��� � � � � � and � � �  ��


� � � � ��� � � � � � . Using all these we get the following contra-

diction:

� 	 ' 	
� � 


� � � � ���  � � � � ! ��	
� � 


� � � � ��� � � � ' 	
� � 


� � � � ��� A � � � � 	 � � �  ��

� � � � ��� � � � ! � � �  ��


� � � � ��� � � � 	 ���

This shows that (2.7.8) can not happen.

If 	
� � 
- � � � � 	

� � 

� � � � then 	

� � 

�  � � � � 	 .10$2 ��	 � � 
- � � � �	

� � 

� � � � � � 	

� � 

� � � � 	 , � . Again

	
� � 


�  � � ��� 	 , � unless

	
� � 


�  � � � ��� 	
� � 


� � � ��� , � with �
� �  ��
 < � ' � . (2.7.9)

But this implies by Lemma 2.7.1 that 	
� � 
- � � ��� 	

� � 

� � � ��� , � which is a contradiction to our

assumption. Hence (2.7.9) does not occur. This completes the proof when � � � 

� � � � � � .

If � � � 

� � � ��� � we claim that

(i) 	
� � 


� A � � � ��� , � ! � � 	
� � 


� � � � ! � ,
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(ii) 	
� � 


�  � � � ��� , � ,

(iii) If � � � A ��
 � � then � ! � < � � � A ��
 .
It is easy to see that diagram (2.7.1) with

�� � commutes if our claim is true. Condition (i)

implies that the new string � ��! � � , � ' � � in � �� �
�
��� � � 
 is singular and

�
� � � 
 � ��! � . Condition

(iii) implies that
�
� � � A ��
 ��� � � A ��
 . On the other hand condition (ii) implies � � � ' � , the new

string created by 5 in � � � ��� � � 
 .
Let us prove our claims now. Using Lemma 2.7.1 (1) we have

�
	
� � 


� � � � ' 	
� � 


�  � � � � � !)��	
� � 


� � � � ' 	
� � 


� A � � � � � 	 � � �  ��

� � � � ' � ! � � � A ��


� � � � �

which can be rewritten as

��	
� � 


� � � � ! � ' 	
� � 


�  � � � � � !��
	
� � 


� � � ��! � ' 	
� � 


� A � � � � � 	 � � �  ��

� � � ��! � � � A ��


� � � � 	 � � (2.7.10)

Suppose � � �  ��
 � � � � � � 
 . If � � � 

�  � � � � � � then the string � � ' � � , �  � � is nonsingular and

hence by (2.7.2) 	
� � 


� � � � � , � < , �  � � 	
� � 


�  � � � � . If � � � 

�  � � � � � � let �-� � ' � be largest

such that � � � 
- � � � � � . Note that 	
� � 
- � � � 	 , � �*	

� � 

� � � � , so by Lemma 2.7.1 (2) we have

	
� � 


�  � � � � 	 .10$2 �
	 � � 
- � � ��� 	
� � 


� � � � ��� 	
� � 


� � � � . Hence 	
� � 


�  � � � � � 	
� � 


� � � � unless

	
� � 


�  � � � ��� 	
� � 


� � � ��� 	
� � 
- � � ��� , � with � � �

� �  ��
 � � . (2.7.11)

But if this happens by Lemma 2.7.1 we get 	
� � 


� � � � ��� � � � �)	
� � 


� � � � ���  � � � � � 	
� � 


� � � � ��� A � � � � which

gives us the following contradiction since � � �  ��

� � � � ��� � � � � � :

� 	 ' 	
� � 


� � � � ���  � � � � ! ��	
� � 


� � � � ��� � � � ' 	
� � 


� � � � ��� A � � � � 	 � � �  ��

� � � � ��� � � � ! � � �  ��


� � � � ��� � � � 	 ���



2.7. Proof of Theorem 2.4.14 66

Hence (2.7.11) cannot happen and we have 	
� � 


�  � � � � � 	
� � 


� � � � . Now using this and (2.7.7)

in (2.7.10) we get

� 	 ��	
� � 


� � � ��! � ' 	
� � 


�  � � � � ��!)��	
� � 


� � � � ! � ' 	
� � 


� A � � � � � 	 � � �  ��

� � � ��! � � � A ��


� � � � 	 � �

which implies 	
� � 


� � � ��� 	
� � 


�  � � � � ' � , 	
� � 


� A � � � ��� 	
� � 


� � � � ! � , � � �  ��

� � � ��� � and � � � A ��


� � � ���
� . This proves (i) and (iii). Also 	

� � 

� � � � � 	

� � 

�  � � � � ' � implies 	

� � 

�  � � � � � 	

� � 

�  � � � � ' � �

	
� � 


� � � ��� , � . This proves (ii).

Suppose � � �  ��
 � � � � � � 
 . This means � � �  ��

� � � � 	 � and as before if � � � 


�  � � � � � �

we have 	
� � 


� � � � � , � < , �  � < 	
� � 


�  � � � � . If � � � 

�  � � � � � � again as in the previous case we

have 	
� � 


�  � � � � 	 .@0�2 �
	 � � 
- � � ��� 	
� � 


� � � � � � 	
� � 


� � � � . Using this and (2.7.7) in (2.7.10) we get

	
� � 


� � � � ��	
� � 


�  � � � � , 	
� � 


� A � � � � � 	
� � 


� � � ��!�� , � � �  ��

� � � � � � and � � � A ��


� � � � � � . Note that

since � � �  ��
 � � , 	
� � 


�  � � � ��� 	
� � 


�  � � � ��� 	
� � 


� � � � � , � . So we proved (i), (ii) and (iii).

Lemma 2.7.3. Let
� � � ��� � 
 � � , ! 	 � and let 3 be the multiplicity array of

�
. For

�?< 
 � � the following diagrams commute:

� � � 3 � ��� 	
	' '�' � � � � ��� � 3 � �
�
� �

�
��

�
�� �� �

� � � 3 � ' '�' ���� 	
	
� � � ��� � 3 � �

� � � 3 � ��� 	
	' '�' � � � � ����� 3 � �
�
� �

�
��

�
�� �� �

� � � 3 � ' '�' ���� 	
	
� � � ����� 3 � � (2.7.12)

Proof. Note that if 
 � ! ' � then the proof of (2.7.12) is trivial. Suppose � < 
'< ! ' � .
The proof for

��� is very similar to the proof for
�� � , so here we only prove (2.7.12) for

�� � . Let

� � ��� � � � � � 3 � . Let � � � , � � be the string selected by
�
��� in � � ����� � � 
 . Let � � � ����� ��� � � � � ����� .

By definition of ��� � � we get � � � � � � � 
 by adding a singular string of length one to � � ����� � � 


for � < � < ! ' � . Hence to show that the diagram (2.7.12) commutes it suffices to show

that the label for the new singular string of length one in � � � � � � � 
 satisfies 	
� � 
� � ��� 	 , � .
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Note that 	
� � 
� � � � � 	

� � 
� � � � for all � < 
 < ! ' � .

If � � � 
� � � � � � then ,
� � 
� 	 , � by (2.7.2). So, 	

� � 
� � ��� � 	
� � 
� � � � 	 ,

� � 
� 	 , � . If

� � � 
� � � � � � let � be smallest such that � � � 
- � � � � � and � � ��, - � be a string in � � � � � � � 
 . By

Lemma 2.7.1 (2) we get 	
� � 
� � � � 	 .@0�2 ��	 � � 
� � � ���	

� � 
- � � � � . Recall that 	
� � 
� � � ��� � and , � < �

by the definition of
�� � . So, if 	

� � 
- � � � 	 � then 	
� � 
- � � � �)	

� � 
� � � � 	 � 	 , � . If 	
� � 
- � � � � �

then 	
� � 
� � � � 	 	

� � 
- � � � . But 	
� � 
- � � � 	 , - 	 , � . Hence 	

� � 
� � ��� � 	
� � 
� � � � 	 	

� � 
- � � � 	 , � and

we are done.

Lemma 2.7.4. Let
� � � ��� � 
 � � , ! 	 � �$� 	 � and let 3 be the multiplicity array of

�
.

For �?< 
�� � the following diagrams commute:

� � � 3 �
��� 	
	' '�' � � � � ��� � 3 � �

�
� �

�
�
�

�
�
���� �

� � � 3 � ' '�' ���� 	
	
� � � ��� � 3 � �

� � � 3 � ��� 	
	' '�' � � � � ��� � 3 � �
�
� �

�
�
�

�
�
� �� �

� � � 3 � ' '�' ���� 	
	
� � � ��� � 3 � � (2.7.13)

Proof. Let � � � � � � � � � 3 � . By definition ��� � � only changes the vacancy numbers in

� � ��� � � � 
 . Hence the proof of this lemma is trivial.

Now we will prove Theorem 2.4.14.

Proof of Theorem 2.4.14. To prove this theorem we will use a diagram of the form

� � //

�

��

��@
@@

@@
@@

�

�

��

��~~
~~

~~
~

� //

��

�

��� // �

� � //

� ??~~~~~~~ �

__@@@@@@@
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We view this diagram as a cube with front face given by the large square. By [48, Lemma

5.3] if the squares given by all the faces of the cube except the front commute and the map

� is injective then the front face also commutes.

We will prove Theorem 2.4.14 by using induction on
�

as we did in the proof of the

bijection of Proposition 2.4.8. First let
� � � � � � 
 � � . We prove Theorem 2.4.14 for

�� � by

using Lemma 2.7.2 and the following diagram when � � and
�� � are defined:

� � � �
�

//

� �

��

���

$$HH
HH

HH
HH

H

� � � 3 �

�
� �

��

�
yyttttttttt

� � � ���
�

//

� �
��

� � � 3 �
�
�
� �

��
� � � � �

�
//
� � � 3 � �

� � � � � //

��� ::vvvvvvvvv � � � 3 �
�

eeJJJJJJJJJ

Note the top and the bottom faces commute by Definition 2.4.7 (1). The right face com-

mutes by Lemma 2.7.2. The left face commutes by definition of � � on the paths and we

know ��� is injective. By induction hypothesis the back face commutes. Hence the front

face must commute.

Let us now prove Theorem 2.4.14 when not all � � (resp.
���� ) in the above diagram are

defined. Let � � ������� � � � 3 � , � � � � � � 5 � � ����� , 	 � �  � � � � � � and 	 ��� �  � � � � ��� . We

need to show the following cases:

1. ��� � 	�� is defined and � � ��	 � � is undefined if and only if
�
��� � � � � � is defined and

�
� � � � � ���

is undefined. In addition � � �	� ��	�� ���
���� � � � � � .

2. ��� � 	�� is undefined and �	� � 	 � � is defined if and only if
�� � � � ����� is undefined and

�� � � � � ���
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is defined.

3. ��� � 	�� and � � ��	 � � are both undefined if and only if
�
��� � � ��� � and

�
� � � � � ��� are both unde-

fined.

For Case (1) suppose that
�� � � � � � � � � �� �

�
��� is defined, but

�� � � � � ��� is undefined. Then

we are in the situation described in Case (a) of Lemma 2.7.2. That is � � �  ��
 � � , � � � 
 � � ,

� !,� 	 � � �  ��
 and the new string of length � !�� is singular in � �� �
�
� � � � 
 . In this situation

note that � � � 

� A � � ��� � � , else 	

� � 

� A � � ��� 	 , � A � � , � by (2.7.2), which is a contradiction to

	
� � 


� A � � ��� � , � as discussed in Case (a) of Lemma 2.7.2. Suppose � � � be smallest such

that � � � 
- � � � � � . Then

	
� � 
- � ��� 	 , - � , � � 	

� � 

� A � � ���$� (2.7.14)

By Lemma 2.7.1 (2), 	
� � 


� A � � ��� 	 .@0�2 �
	 � � 
� � �����	
� � 
- � ��� � . By (2.7.14) this implies 	

� � 

� A � � ��� 	

	
� � 


� � � � . But , � � 	
� � 


� A � � � � 	 	
� � 


� � � � 	 , � , hence we get 	
� � 


� A � � � � � 	
� � 


� � � � . Again by

Lemma 2.7.1 (3) since � � � 

� � � �.� � for � � � � � we get 	

� � 

� A � � ���#� 	

� � 
- � ��� which

contradicts (2.7.14). Hence � � � 
- � � � � � for � � � . Also by Lemma 2.7.1 (1) 	
� � 


� A � � ��� �
	
� � 


� � � � with � � � 
- � � � � � for � � � implies that � � � A ��
- � ��� � � for � � � . Since �
� � A ��


and
��
� � A ��
 have the same shape we get � � � A ��
- � �� � � � for � � � . Hence

�
� �&" 
 � � �&" 
 for

� < � < 
 ' � ,
�
� � � 
 � � ! � and

�
� � � A ��
 � � . Therefore we proved that if �  � � � � ��� �

	 � � � � then �  � � � �����"� 
 
 	 � and �  � � �� �
�
���"� 
 ! � 
 	 � . But

�
� � � � � ���"� � implies

� � � �  � � � � � � � � � since by induction we have that �  �
�

�
� � � ��� � �  �

for
� � . Hence

� � � �  � � � ��� � � � �  � � ����
�
� � � �  � �

�� � � � ����� � , so that indeed �	� � 	�� is defined, � � � 	 � � and

� � ��� � 	�� � �
�
� � � � ����� .

Now suppose that �	� ��	�� is defined and � � � 	 � � is undefined. This implies that 	 � 
 
 	 � .
By induction

�
� � � � � ��� is undefined so that by Lemma 2.4.13 we have 	�� � where 	 �

	
� � 
- � � � for large � and � is the smallest label occurring in � � � ��� � � 
 . Since 	 is obtained from
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	 � by adding 
 it follows that the vacancy numbers change as 	 � � 	
� � 
- � � ��� 	"! � for large

� under 5  � and the new smallest label occurring in � � ����� � � 
 is � � � . Hence �� � � � ��� � �
	 ' � ��� , so that

�� � � � ����� is defined. It remains to prove that � � �	� � 	�� � �
���� � � ��� � . Note

that � � ��	�� � 
 ! � 
 	 � . Let � be the length of the largest part in � � � � � � � 
 . Suppose that �
� �  ��


or �
� � A ��
 has a part strictly bigger than � . In this case 	

� � 

� � � � � 	 � � contradicting the fact

that � < 	
� � 


� � ��� is the smallest label occurring in � ��� � � � � 
 . Hence both �
� �  ��
 and �

� � A ��

have only parts of length less or equal to � . Also by Lemma 2.3.6 we have 	

� � 

� � ����� � � �

which shows that both 5  � adding 
 !�� and
�� � pick the string of length � in � � � ��� � � 
 . Hence

� � ��� � 	�� � �
�� � � � ����� .

Let us now consider Case (2). Suppose that
�
��� � � ��� � is undefined and

�
� � � � � ��� is defined.

Again by Lemma 2.4.13 we have that 	 � � where 	 � 	
� � 
- � � � for large � and � is the

smallest label in � � ��� � � � 
 . If $ ��� � ��� � � 
 ! � , then � is still the smallest label in � � � � � and

by the change in vacancy numbers 	 < 	 . Hence by Lemma 2.4.13 �� � � � � � � � 	 ' � < �

contradicting that
�� � � � � ��� is defined. Hence we must have $ � � � ����� 	 
�! � . In fact we want

to show that $�� � � ��� � � 
 !*� . Suppose $�� � � � � � � 
 !*� . Then by the change in vacancy

numbers by 5 we have 	.�,	�� � , so that �� � � ��� � � � � ' � . So to achieve �� � � � � � � � �

we need �"� � . This can only happen if 	
� � 


� � � �  � � � � � � and � � �  ��
 � � � � 
 . If � � � 

� � � �  � � � � � � ,

then the string of length � � � 
 ' � is singular. Since � � �  ��
 � � � � 
 this contradicts the fact that5 picks the string of length � � � 
 in � � ��� � � � 
 . If � � � 

� � � �  � � � � � � , by convexity Lemma 2.7.1,

we get a similar contradiction. Hence we have that 	 � 
 ! � 
 	 . Note that the above

arguments also shows that �� � � � � � � ��� since � 	 � and 	 � 	 ' � if $ � � � ����� � 
 !�� .
Hence � � � 	�� is undefined since � � ��	 � ��� �� � � � � ��� ��� .

Consider Case (2) where �	� � 	�� is undefined and � � ��	%��� is defined. This implies that

	 � 
 ! � 
 	 � . By induction �� � � � � ��� � � � � 	 ��� � � so that by Lemma 2.4.13 we have

	 � � !�� . Hence �� � � � ��� ��� 	 ' � � 	 ' � ' � � � ' � by the change of vacancy numbers.
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Therefore �� � � � ��� � � � if � � � . It remains to show that 	
� � 


� A � � � � 	 � where � � � �
� � 


is the length of the string in � � � ��� � � 
 selected by 5  � . Hence the only problem occurs if

	
� � 


� A � � ��� � � and �
� �  ��
 � � . If � � � 


� A � � ��� � � , this means that there is a singular string of

length � ! � � �
� � 
 in � � � ��� � � 
 contradicting the maximality of �

� � 
 . If � � � 

� A � � � ��� � one can

again use convexity to arrive at similar contradiction.

By exclusion Case (3) follows from all the previous cases where at least one � � or
�
� � is

defined.

Now let
� � � ��� � 
 � � where ! 	 � . Consider the following diagram:

� � � �
�

//

� �

��

���

%%KK
KKK

KKK
KK

� � � 3 �
�
� �

��

��� 	
	
xxqqqqqqqqqq

� � ����� � � �
�

//

� �
��

� � � ����� 3 � �
�
� �

��
� � ����� � � �

�
//
� � � ����� 3 � �

� � � � � //

��� 99ssssssssss � � � 3 �
��� 	 	ffMMMMMMMMMM

Again the top and the bottom faces commute because of Definition 2.4.7 (3). The right face

commutes by Lemma 2.7.3. The left face commutes by definition of � � on the paths and we

know ��� is injective. By induction hypothesis the back face commutes too. Hence the front

face commutes.
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Finally let
� � � ��� � 
 � � where � 	 � . Consider the following diagram:

� � � �
�

//

� �

��

���

%%KKKKKKKKK

� � � 3 �
�
� �

��

��� 	
	
xxrrrrrrrrrr

� � ��� � � � �
�

//

� �
��

� � � ��� � 3 � �
�
� �

��
� � ��� � � � �

�
//
� � � ��� � 3 � �

� � � � � //

��� 99sssssssss � � � 3 �
��� 	
	ffLLLLLLLLLL

As in the previous cases by Definition 2.4.7 (2), Lemma 2.7.4 and induction hypothesis all

the faces commute except the front. Since the map ��� is injective the front face of the above

diagram commutes. This completes the proof of Theorem 2.4.14.
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Chapter 3

Fermionic formulas for the characters of

� �
and � � superconformal

algebras

3.1 Introduction

Bailey’s lemma is a powerful method to prove � -series identities of the Rogers–Ramanujan-

type [7]. One of the key features of Bailey’s lemma is its iterative structure which was first

observed by Andrews [4] (see also [63]). This iterative structure called the Bailey chain

makes it possible to start with one seed identity and derive an infinite family of identities

from it. The Bailey chain has been generalized to the Bailey lattice [1] which yields a

whole tree of identities from a single seed.

The relevance of the Andrews–Bailey construction to physics was first revealed in the

papers by Foda and Quano [23, 24] in which they derived identities for the Virasoro char-

acters using Bailey’s lemma. By the application of Bailey’s lemma to polynomial versions
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of the character identity of one conformal field theory, one obtains character identities of

another conformal field theory. This relation between the two conformal field theories

is called Bailey flow. In [10] it was demonstrated that there is a Bailey flow from the

minimal models ����	 ' � �	�� to � � � and � ��� superconformal models. More pre-

cisely, it was shown that there is a Bailey flow from ���
	 ' � �	�� to ���
	��	"! � � , and from

���
	 ' � � 	�� to the � � � superconformal model �����
	��	 !*� � and the unitary � � �
superconformal model with central charge � � $�� � ' �� � . In the conclusions of [10] it

was conjecture that this construction can also be carried out for the nonunitary minimal

models ���
	��	 ��� where 	 and 	�� are relatively prime. In this chapter of the thesis we con-

sider the nonunitary case. We show that starting with character identities for the nonunitary

minimal model ���
	��	���� of [11, 84], characters of the � � � superconformal models

������	 � � ��	 ! 	 � � , ������	 � � $&	 � ' ��	�� and of the � � � superconformal model with central

element �"� $ � � ' �
�
��� � can be obtained via the Bailey flow. We also give a new Ramond

sector character formula for a representation of the � � � superconformal model with

central element � �*$�� � ' �
�
��� � and calculate the corresponding fermionic formula.

The chapter is organized as follows. In section 3.2 we provide the necessary background

about Bailey pairs and discuss how Bailey lemma can be used to prove RR type identities.

In section 3.3 we derive new Bailey pairs using the Bose-Fermi identity for the minimal

model � ��	��	 � � . In section 3.4 we state the fermionic formulas of the ����	��	 � � models

following [10, 11, 12]. In section 3.5 necessary background for � � � superconformal

algebras is stated and the characters of the ����� supersymmetric models ����� ��	 ! 	 � �	 � �
and � � � $&	 � ' � 	��	 �
� are derived using the Bailey flow. Explicit fermionic expressions

for these characters are given. In section 3.6 the background regarding � � � supercon-

formal models is stated and a new character for the Ramond sector is derived. Then it is

demonstrated how to obtain the characters of the � � � superconformal model with central
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element � �*$�� � ' � �� � � via the Bailey flow along with the explicit fermionic expressions for

these characters. In section 3.7 we conclude with some remarks.
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3.2 Bailey’s lemma

A pair �	� � ��� � � of sequences (�� � ) � #�� and (�� � ) � #�� is called a Bailey pair with respect to

� if

� � �
�� - � � � -

� � � �� - � � � � ��A - (3.2.1)

where

� � � � � ��� � � � � � �
�� ��
� � � � � ' � � � � �

Theorem 3.2.1. (Bailey lemma) If � � � ��� � � is a Bailey pair with respect to � then for two

parameters � � ��� � ,
��
� � � ��� � � � ��� � � � � � � � � � � � � � � �

� � � � � � � ��� ��� � � � � ���� � � ��� ��� � � � � � � � �
��
� � � ��� � � � ��� � � � � � �

� � � � � �
� � �

��� � � � � � � ��� � � � � � �
�

(3.2.2)
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Putting different Bailey pairs in this lemma many RR type identities were proved by

Rogers [64, 65], Bailey [7] and Slater [81, 82] by considering the following two special-

izations of the parameters:

� � ' � �*� � � '�� � (3.2.3)

� � '�� �*� � � � finite � (3.2.4)

Let us discuss here briefly how RR identities (1.2.14) and (1.2.15) were proved using

Bailey pairs and specialization (3.2.3). Let � � '�� �*� � � ' � � in the Bailey lemma.

We obtain ��
� � � � � � � � � � � �

� � � ���
��
� � � � � � � � � � (3.2.5)

The Bailey pair used to prove (1.2.14) is given by

� � � �

� � ��� ' � � � � �
�
� ��

��
 �
� � � ! �

� � � � 	 �

� � � �
��� � � � 	 �

Inputing this Bailey pair in (3.2.5) with � ��� and simplifying we find,

��
� � � � �

�
� � � � � �

� � � �
��

� �  � � ' � � � � �
��� �� ��
 �

� (3.2.6)

Note the left-hand side is exactly the left-hand side of (1.2.14). To prove that the right hand

side of (3.2.6) equals the right hand side of (1.2.14) we use Jacobi’s triple product identity,

� � ��
� �  � � � ��� � � ��� � � ' �

�

� ' � �
� � � � ��� � (3.2.7)
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where � � � ��� � ��� �
� � � ���)� ��� � � � � � � � � �

� � � � � � � �
� � � ��� .

Using (3.2.7) we can rewite right-hand side of (3.2.6) as

�
��� ���

��
� �  � � ' � � � � �

� � �  ��
 �
� � �

��� ���
��

� �  � � ' � � � � ' �
� �
� � � � �

� �
� � �
�

� �
��� ��� � ���

� � �
�
� � � � � � � �

�
� � � ��� � � �

�
���

�
��
� � � �

� � ' �
� �� � �&� � ' �

� ��  �

which is the right hand side of (1.2.14). Similarly, the second RR identity (1.2.15) can be

proved using the Bailey pair

� � ��� ' � � � �
� � � ��A ��
 � � � � ' � �

��A � �
� ' � � � 	 � �

� � � �
� � � � � 	 � �

Upon the discovery of CFTs [13, 14] from Slater’s famous list of 130 identities [81] it

was observed that the specialization (3.2.3) leads to characters of minimal model ����	��	 � �
and the second specialization (3.2.4) leads to the characters of � � � superconformal

model. Hence by putting suitable Bailey pairs and then using some appropiate special-

ization of the parameters one can derive Bose-Fermi type character identities for CFTs.

Therefore, the main question is: how do we find suitable Bailey pairs? The sources for

the list of bailey pairs used by Rogers, Bailey and Slater were some well known hypergeo-

metric series identities. In physics Foda and Quano [24] observed the remarkable fact that

the finitized Bose-Fermi identities of the configuration sum of the ABF model are of the

form (3.2.1). Hence one can read off Bailey pairs from this. This fact has been used in

[5, 10, 12, 24, 85] to derive Bose Fermi identities for some subset of the minimal models,
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superconformal models and higher level coset models. Berkovich, McCoy and Schilling

explored this in [10] for the Minimal model ���
	 ' � �	�� . They calculated the Bailey pairs

using the Bose Fermi identity for the unitary minimal model ���
	 ' � �	�� and used the

specialization (3.2.4) and the additional specialization:

� � � finite � � � � finite � (3.2.8)

to obtain the characters of � ��� �%� superconformal models, hence demonstrated a Bailey

flow between these CFTs.

Following [10], we are going to use an extended definition of Bailey pair called the

bilateral Bailey pair. A pair �	� � � � � � of sequences (�� � ) � � � and (�� � ) � � � is said to be a

bilateral Bailey pair with respect to � if

� � �
��- �  � � -

��� � �  - � � � � ��A - � (3.2.9)

Theorem 3.2.2 (Bilateral Bailey lemma [4, 7, 10]). If � � � ��� � � is a bilateral Bailey pair

then

��
� �  � ��� � � � ��� � � � � � �

� � � � � �
� � �

� � � � � � � ��� ��� � � � � � �� � � ��� ��� � � � � � � � �
��

� �  � ��� � � � ��� � � � � � �
� � � � � �

� � �
��� � � � � � � ��� � � � � � �

�
(3.2.10)

This lemma has been used with various Bailey pairs and different specializations of the

parameters � � and � � to prove many � -series identities (see for example [1, 10, 24, 81]).

In this paper the bilateral Bailey lemma is used to derive character identities for � � � �%�
superconformal algebras from nonunitary minimal models ���
	��	 � � .
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A useful way to obtain new Bailey pairs from old ones is the construction of dual Bailey

pairs. If �	� � � � � � is a bilateral Bailey pair with respect to � , the dual Bailey pair � � � � � � �
is defined as

� � � ��� � ��� � � � �
�
� � � �  � � �  � � �

� � � ��� � ��� �  � �  �
�  � � � � �  � � �  � � � (3.2.11)

Then � � � � � � � satisfies (3.2.9) with respect to � .

3.3 Bailey pairs from the minimal models
� ����������	

In this section we derive new Bailey pairs using the Bose Fermi identity for the minimal

model ����	�� 	 � � .
As shown by Foda and Quano [24], the Bose-Fermi character identities [9, 11, 25, 84]

for the minimal models ����	��	 � � are of the form

� � � � � � 
� � * 
 � � � 3 ��	 � � ��� �
�
 	 ��� � � �� � � � � � 
� � * 
 � � � 3 ��	 � � � � (3.3.1)

where the bosonic side is given by

� � � � � � 
� � * 
 � � � 3 ��	 � � ���
��- �  �

�
�
- � - � � � A � � * 
 � �  � � 
 ��� 3

�
�
� 3 ! � ' 	�� ' � 	 �

���
�
	

' �
� - �  � 
 � - � �  � 
 ��� 3

�
�
� 3 ' � ' 	���! � 	 �

� �
� 	�� �

(3.3.2)

The function fermionic formula  � � � � � 
� � * 
 � � � 3 ��	 � � � will be discussed in the next section. The
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normalization constant � � � * 
 � � is explicitly calculated in [11]. Since the explicit expression

is not used any where in our calculations we will exclude the details.

We will now construct new Bailey pairs using (3.3.1). For simplicity we are going to

write ! for ! � 	�� . Let us set 3 � � � ! 	 ' � !���, to rewrite the q-binomial coefficients in

(3.3.2), ��
� ��� ! 	 ' � ! ��,

� ! , ' 	 � �

���
� 	 �

�
� *  � A ��� A ���

�
�

��� � �  � ��� -  � 
 ��� *  � A ��� A � � ��A � � � -  � 
 ���
� ��� ! 	 ' � ! ��,
� ! , ' � !#	 � �

���
�
	 �

�
� *  � A ��� A � �

�
�

��� � �  � � � -  *  � 
 ��� *  � A ��� A � � ��A � � � -  *  � 
 �
Following [10, 24] we rewite (3.3.1) as

�
�
 	 ��� � � �� � � � � � 
� � * 
 � � � 3 � 	 � � ���

��- �  �
�
�
- � - � � � A � � �  � � 
 �

� *  � A ��� A ���
�
�

� � � �� � ��� -  � 
 � � *  � A ��� A � � �BA � ��� -  � 

' �

� - �  � 
 � - � �  � 
 �
� *  � A ��� A � �

�
�

� � � �� � ��� -  *  � 
 � � *  � A ��� A � � �BA � ��� -  *  � 
 � �

where 3 � � � ! 	 ' � !,��, . This is in the form of (3.2.9), hence we can read off the

bilateral Bailey pair relative to � � � *  � A ���

� � �

�������� �������
� - � - � � � A � � �  � � 
 if �-� � 	 � ' ,

' � � - �  � 
 � - � �  � 
 if �-� � 	 � ' 	 ' ,

� otherwise

� � � � �
 	
� �
��� � �

�
�
 � � � � � 
��� � � � � ! 	 ' � ! ��, ��	 � � � �

(3.3.3)
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where , � �  � �  * A �
�

.

Using the definition (3.2.11) we calculate the Bailey pair dual to (3.3.3) relative to

� � � *  � A ��� and denote it by ���� � � �� � � where

�� � �

�������� �������
� - � � � � � �  � 
  - � � � �  * 
  - � � � �  � 
  � � * A �  � 
 if � � � 	 � ' ,

' � � - � �  � 
 � - � � �  � 
 A �  * 
  � � * A �  � 
 if � � � 	 �(' 	 ' ,

� otherwise

�� � � � 
 	
� �
� � � �

�
� �

�
�
� �  � � � � � 
��� � �� � ! 	 ' � ! ��, ��	 � � 

�
� �

(3.3.4)

Inserting (3.3.3) and (3.3.4) into the bilateral Bailey lemma yields

��
� � � ��� � � � ��� � � � � � � � � � � � � � �

�
 	 ��� � � �
� � � �

�
�
 � � � � � 
��� � ���� ! 	 ' � ! ��, ��	 � � �

� � � � � � � ��� ��� � � � � � �� � � ��� ��� � � � � � � � �
��- �  �

�
��� � � - ���  � ��� � � - ���  �� � � � � � � - � �  � � � � � � � � - � �  � ��� � � � � � � �

- � �  �
� �

- � - � � � A � � �  � � 
 ' ��� � � - ���  *  � ��� � � - � �  *  �� � � � � � � - ���  *  � ��� � � � � � - ���  *  �
� � � � � � � � � �

- � �  *  � � � - �  � 
 � - � �  � 
 �
(3.3.5)
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and

��
� � � ��� � � � ��� � � � � � � � � � � � � � �


 	 ��� � � �
� � � �

�
� �

�
�
� �  � � � � � 
��� � �� � ! 	 ' � ! ��, ��	 � � 

�
�

� � � � � � � ��� ��� � � � � � �� � � ��� ��� � � � � � � � �
��- �  �

�
��� � � - ���  � ��� � � - ���  �� � � � � � � - � �  � � � � � � � � - � �  � ��� � � � � � � �

- � �  �
� �

- � � � � � �  � 
  - � � � �  * 
  - � � � �  � 
  � � * A �  � 
 ' ��� � � - � �  *  � ��� � � - � �  *  �� � � � � � � - � �  *  � ��� � � � � � - ���  *  �
� � � � � � � � � �

- � �  *  � � � - � �  � 
 � - � � �  � 
 A �  * 
  � � * A �  � 
 � �

(3.3.6)

As in [10], we are going to consider different specializations of the parameters � � and � � in

(3.3.5) and (3.3.6) to get character identities for � � � � � superconformal algebras.

3.4 Fermionic formulas for
� � � ��� � 	

So far we have only considered the bosonic side of (3.3.1) explicitly. For the fermionic side

we will consider two cases 	��,	 � � ��	 and 	 � � ��	 separately with 	 and 	 � relatively

prime and ! �$� being pure Takahashi length.

3.4.1 Fermionic formula for
� ���������
	

with
������������

We need to introduce a lot of notations to give the explicit fermionic formula and we fol-

low [12, Section 4] here. The fermionic formula depends on the continued fraction decom-
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position

	 �
	 � ' 	 � � ! �;� ! �

� � !
�

� � ! �����
�

� ��� ! �

�

Define � � � � �  �- � � � - for �1< 
 < � � !*� and the fractional level incidence matrix
�
� and

corresponding Cartan matrix
�

as

� � � � - � � �

�������� �������
5 - � � A � ! 5 - � �  � for � < � � � ����A � � � �� � �

5 - � � A � ! 5 - � � ' 5 - � �  � for � � � � � �?< 
 < � � ' 5 ��� � � �
5 - � � A � ! 5 ��� � � ��5 - � � for � � � � � A �

� �*� � � � � � � ' �
� �

where � � is the identity matrix of dimension � . Recursively define

� � A � � � �  � !)� � �#! 5 � � � ! � 5 � � � � � � � � �  � � � � � � � � �
� � A � � � �  � !)� ��� ! 5 � � � ! � 5 � � ��� � � � � �  � � ' � � � � � ���

Then the Takahashi length and truncated Takahashi length are given by

� - A � � � �  � !*� � ' �� � � �
� - A � � � �  � !)� � ' �� � � � for ���� �@< �� A � ! 5 � � ��� with � < � < � � .

Let us define the � ����A � -dimensional vectors �
� - 
 � � �+� � � � ����� � � ���A � !�� � which we

will need to specify the parity of the summation variables in the fermionic formula. For

� < 
'< � ���A � and � < � < � � such that ��� � � < �� A � ! 5 � � ��� the components of �
� - 
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are defined recursively as

�
� - 

� �

�������� �������

� for � < 
 < � ����A � �
� ' 
 for �� < 
�� ���

�
� - 

� A � ! �

� - 
��� � A � for �� �  � < 
�� �� � � �?< � � < � �

(3.4.1)

When � ��� � � , so that � ���A � � � ��� , we need to set the initial condition �
� � � � A ��
� � � A � � � . Also

define

� � �
� � � � � A �� - � � � - �

� - 
 �
and for � � � � < � � A � ,

� � � � � � - �

���� ��� � - for 
 odd �

� - for 
 even �
(3.4.2)

For 	 � ��� A � , ! ��	�� � ��� A � with ��� � � < ��� A � !45	� � ��� and � ����
 A � with ��� �� <
��� A � ! 5�� � � � the fermionic formula is given by

 � � � � � 
��� � � 3 ��	 � � ��� � � � � � �
������� ��� �������

�

 �
�� ����� �  �� � � � � � � � � � ��- � �

��
� � - ! � -� -

� �
�
�

	 (3.4.3)

where � * � � is a normalization constant and � � 	 � � � � � � � such that

� ! 	 � �
�
� �
� 	 ! � ! � ! 3"! �$# (3.4.4)

with ! � the standard 
 -th basis element of � � � � � � , � �%!&� ' � ���
� �'� A � ! � � and � �%!(
 '

� ���
���)� A � ! � � . The notation 	 * � ��A � � . ��& � � stands for � - even when � � ��A � � - is even
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and � - is odd when � � ��A � � - is odd.

The � -binomial is also defined for negative entries��
� � ! ��

���
�
�

	 � � � �BA � ���
��� ��� �

Note that ��
� � ! ��

���
�
�

	 � � � �
 � � ��

� � ! ��
���
�
�

	 � (3.4.5)

In fact using (3.4.5) we get the following dual form of the fermionic formula that will be

useful later on

 � � � � � 
��� � � 3 ��	 � � 
�
���

�
 ��� � � �

� ��� � � � �
�� � � ���  �� �/� � A �� � � � � �  �� � � � ��A � 
 � � � � ��- � �

��
� � - ! � -� -

���
�
�

	 � (3.4.6)

3.4.2 Fermionic formula for
� ���������
	

with
��� � ���

:

We use the fermionic formula  � � � � � 
� � * 
 � � � 3 ��	 � � � derived in [11, section 10] with notations

defined in [11, section 2, section 3] . In this case the fermionic formula depends on the

continued fraction decomposition of

	 �
	 � �;� ! � !

�

� � !
�

� � ! �����
�

� ��� ! �
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Let � � for � < 
 < � � ! � be the same as in the previous case along with � ��� ' � .

Recursively define

� � A � � � �  � !)� � �#! 5 � � � ! � 5 � � � � � � � � �  � � � � � � � � � � < � < � �
� � A � �

� �  � !*� ��� A � ! �/5 � A � � ��� � � � �
�  � � � �

� � � � � � < � < � � ' ���

Then the Takahashi length and truncated Takahashi length are given by

�
� � 
- A � �

���� ��� � ! � for � � � and � < � < � �

� �  � !)� � ' �� � � � for �?< � < � � and � ! �� < � < � � A � ! 5 � � � �
�
�
� � 
- A � �

���� ���
� �  � !*� � ' �� �

� �  � for � ! ���� �1< �� A � ! 5 � � ��� with � < � < � �
� for � � � �

Let us define the corresponding Cartan matrix
�

in this situation. The nonzero elements of

the matrix
�

are given by the �/� � �;� matrix

+  �� �

���������������
�

� � � ����� �
� � � ����� �
� � $ ����� $
� � � ����� �

� � � ����� �

� � $ ����� �;�

����������������
�

(3.4.7)
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as

� � � - � � � +  �� �
� � - for �?< 
 � � < �;�

� � �A � � - � � - � � � A � for � < � < �;�
� - � - � � �

� 5 - � � �A � ! � � ' �
�

� � ��
� � � 5 - � � � � for �;� ! � < � < � ���A � ' �

� � � � � � � � � � � � ���
� - � - A � � ' �

� !
����
� � � 5 - � � � for � � �;�

� - A � � - � ' �
� for � � �;�

(3.4.8)

Define the � ����A � -dimensional vector ! � and � ! � ����A � -dimensional vector ! � by

� ! � � - �

���� ��� 5 - � � for �?< � < � ����A �
� for � � � � � ! � ����A � (3.4.9)

� ! � � - �

���� ��� 5 - � � for � < � < � � � A � ! �
� for � � � �

(3.4.10)
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The � ����A � -dimensional vectors � � � A � �  � � and � " � * are defined by

�#� � A ! � 

� A �
� ��
� � � � � ! �

�  �
� � � � ��
� � � ��A � � � ! �

� �
� ��
� � � 
 ! �

� " � * � *�
� � " ! �

(3.4.11)

We will write � � �
� * 
 ! �

� � 

where the � ���A � -dimensional vectors �

� * 

and �

� � 

are

defined as

�
� * 

� �

���� ��� '
�
�
� � for � in an even, nonzero zone �

� otherwise �
(3.4.12)

where � is a � ����A � ! � -dimensional vector.

�
� � 

� �

���� ��� '
�
�
� � � � � '

�
�
� � � � � � � 5 � � � �A � for � in an odd zone �

'
�
�
! � � � � � � A for � in an even zone �

(3.4.13)

where � ����A � -dimensinal vector � ��� � is given by: for �?< � < � ����A �
� � ��� � � � �

���� ��� 5 � � - � ' � � �
� � � � A � for � ! � � � < � � < � � � A � and � � < � ' � �

5 � � - � for � � � � � � � � � �
(3.4.14)
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For � � 	 ��������� �	� define



	 ����� � � � � ��������� �

� � � � � ��A � � � � �A
� ��������� � � � � � � �
� ��� � � � � � ��������� � � � � � � �A � � � � ��A
� � ������� � �

� � � � �

such that


� ! 

	 � �	� � � � A � ' � � 
	 ! 3 � � � � � ! 3

� ! � �A � ! �
� � A ! �

� ! � �A � � � � A � � ��! �
� �  (3.4.15)

For 	 � �
� � 
-�� A � � ! � 	�� � 5 � � � ! �

�
� � 
-�� A � with � ! � � � � �1< � � A � ! 5 � � ��� and � � �

� � 
-� A � with

� ! ��� � ��� < ��� A � ! 5 � � ��� the fermoinic formula can be written as:

 � � � � � 
� � * 
 � � � 3 ��	 � � ��� �
� � � � �

���� � � �����$�
�

 �
�� �� � � ��
A�� � �� � � � � ��- � �

��
� �� - ! �� -�� -

���
�
�

	 (3.4.16)

where the normalization constant + * � � � + � � � � is defined in [11, (8.33)] as

+ � �B����� � for � < �B��< � �

+ � � � ��� �
� � ' � � � !)� � � ' � � ��( ' � � ! �� � � � odd ��! � � � � ��! � � � �  � � )

for � � ! �?< � � < � � A � ! �/5 � � ��� for � < � < � �
(3.4.17)

where � � � ����� if � is true and � ������ � if � is false.

Also in our case ��� ! -�� ' � ���
� � � A � ! � . To explain the sum



	 * � � � . � &-� � let us

introduce the following notation. For � < � < � ���A � ��� � � ! 5 � � � � ! � < � < � � ��A � ! 5 � � � ��� ,
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for some � < �7��< � � ,

 
� - 

� �

�������� �������

� for � 	 ���

� ' � for � � � < � � ���

 
� - 

� A � !  

� - 
� � � � A � for � � < � � � � A � � � < � � � �"�
then define

� � � � A � � � � � � � � �
� � � � ��
��� � ! �

� � � A � � � � �  � � A � � � � �
� !

� � � � �� - � �  � - 

� � - � �

With the notations above


	 * � � � . ��& � � means



	  � �/� � � � � �  � � ! �  � � � A � � � � �%� � � ,and

� A �4� � �
. This restriction makes sure that the entries of all � -binomials in (3.4.16) are

integers as long as � ��� � A � � � � � .
Again using (3.4.5) we get the following useful fermionic formula:

 � � � � � 

� � * 
 � � � 3 � �  � ��� �

 � � � � �
�� � � � �

�� ���� � ��  � ���� � � � � �  � � ������ � � � �
� �

 � � ��  �� �� � ��� �  �� �� � � � � � � � � � � � � 
  �� �� � � � �

� � � � ��- � �
��
� �� - ! �� -�� -

���
�
�

	 (3.4.18)

We will use this in the later sections.
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3.5
� � �

Superconformal character from
� ��� � � � 	

The � � � superconformal algebra is the infinite dimensional Lie super algebra [59, 66,

39] with basis 3 � ��� � �
�+ and (anti)-commutation relation given by

� 3 � ��3 � � � � � ' ��� 3 � A � !
�+ � � � � ' � � 5 � A � � �

� 3 � ��� � � � � � � ' ! ���?� A �
(�� � ��� � ) �)� 3 � A � ! �+ � ��! � ' �� ��5 � A � � �

where � � � are integers
�+ is the central charge and its eigen value is parametrized by

�� � �
�
' �

� �  � � 
 �
� ��� . If ! �$� are integers the algebra is called Neveu-Schwarz (NS) algebra and

if ! �$� are half integers then the algrebra is called Ramond (R) algebra. Let us denote these

algebras by � � ��	��	 � � .
The character formula of these algebras are calculated in [28] and are given by,

�� � � � � � 
��� � � � � � �� � � � � � 
�  ��� � �  � � � � � � ' �	� 	 � � � �
� � � �

��- �  � � � � � � � � � � 	 � � � � � �� ' �
� � � � 	 � � � � � � � �� # � (3.5.1)

where � < !�< 	 ' � � �?< � < 	 � ' � , 	 and ��	 � ' 	�� � � are relatively prime and

��� �

���� ���
�
�

if 
 is even (NS-sector),

� if 
 is odd (R-sector).

(3.5.2)

In this section we are going to consider the specialization of the form of (3.2.4) in (3.3.5)

and (3.3.6). We will see that these give Bailey flows from the minimal model ����	�� 	 � � to

the superconformal models � � ��	 � � ��	"! 	 � � and ������	 � �%$&	 �(' � 	�� .
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3.5.1 The model � � ��� � � ����� ����	

Specializing � � '�� � and � � � ' �
� � � � �� with , � � in (3.3.5) and comparing with (3.5.1)

we find for 	 ' � even (NS sector)

�� � � � � � � A � � 
� �
�
� A * ��� � �

�
� #�� �

�� � � � A � *  � � 
 � ' � �� � ��A � *  � 
 � ���� � � �BA *  � �
�
 	 � �  � � � � � 
��� � � � � ! 	 ' � ��	 � � � (3.5.3)

and for 	 ' � odd (R-sector)

�� � � � � � � A � � 
� �
�
� A * � � � �

�
� #�� �

�� � � � A � *  � � 
 � ' � � ��A � *  �  ��
 � �� � � � ��A *  � �
�
 	
� �  � � � � � 
��� � �� � ! 	 ' � ��	 � � � � (3.5.4)

Hence there is a Bailey flow from ����	�� 	 � � to the superconformal model �����
	 � � � 	 !
	 �
� . Let us calculate the fermionic formula using section 3.4.

Fermionic formula for � � ���	 ! 	 � � 	 � � with 	-�.	 � � ��	 : To obtain an explicit fermionic

formula set � � � 3 �*� � ! 	 ' � and insert (3.4.3) into (3.5.3). Then using

� ' �
�� � � �� �

� ���
��� � � �� �

� ��  � 
 � ��� � ��
�

���
� 	 (3.5.5)

we find

�� � � � � � � A � � 
� �
�
� A * � � � � �

 �� � *  � 
 � �
 	
� � A ��� � � ��� � � �� � even

� ���
��� � �

������� ��� �
�� � �� A �� � � ��  � 
 �

� �
�� � � ���  �� � � � � � �

�
��� ��� �

��
� � ��
�

� �
� 	 � � � � ��- � �

��
� � - ! � -� -

� �
�
�

	 � (3.5.6)
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Setting � � ����� � � � 	 � ��� � � � � � A � we can write

�� � �� ! �
� � � �� ' � � � ! �� 	 � �

	 � �� � � ��
� (3.5.7)

where

�� �

�����
�

� ' � �

' � � �
� ' � �

������
� (3.5.8)

Using this the NS-sector character (3.5.6) can be rewritten as

�� � � � � � � A � � 
� �
�
� A * ��� � � �

 �� � *  � 
 � �
 	
� � A � � � � �
� � � � � � � � � �
� � � � �� � � � 
 � � �$# �

�
�� � � ����  �� �� � � � �

�
�

��� � � �
� � � � � A ��- � � � -��� �

��
� �
�
� � �� � ! �

� ! �� � -
	 -

���
�
�

	 (3.5.9)

where
�
�� �*� � � � � � � A � ' ��

,

�
� � � � � � � � � � � � � � ���

�
�
� � � � � � � � � ���

�� � � � � � � � � � ���
�

�
�
��A � � � � � � � �

�
��A � � �

(3.5.10)

Similarly setting � � � � � ! 	 ' � in (3.5.4) and using

� ' � � � � � �� � �
�

� � � ���
��� � � �� �

� � � ��  � 
 �
� � � ��  � 


��
� � � A ��

�

���
� 	 (3.5.11)
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we get the fermionic formula in the R-sector,

�� � � � � � � A � � 
� �
�
� A * � � ��� �

� �
 �� � � *  � 
 � A ��
 �
 	
� � A � � � � �

� � � � � � � � � �
� � � � �� � � � 
 � � �$# �

�
�� � � ����  �� �� � � � �

�
�

��� � � �
� � � � � A ��- � � � - �� �

��
� �
�
� � �� � ! �

� ! �� � -
	 -

���
�
�

	 (3.5.12)

where
�� �

�
�"� �� are as in (3.5.10) and

�
�
� ��� � � � � � � � ,

�
� �
��A � � � � � � � � �

��A � � .
Fermionic formula for ������ 	 ! 	 � �	 � � with 	 ��� � 	 : In this section we will just state the

formulas without showing the calculations. The calculation is very similar to the previous

case.

Using (3.4.16) in NS sector we get,

�� � � � A � � � � � 

�
� A * � � ��� � � �

 �� � *  � 
 � �
 	 � � A � � � � �
��� �� � �

�� � � � �  �� �� � �
�

�
� � � � �

��
� � ��
	 �

���
� 	

�

� � � � � A ��- � �
��
� �
�
� � � � ! �

�
�� A ! �! � �A � � �� � A � �� ��! ��  � -

	 -
���
�
�

	
(3.5.13)
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where

� � ��� � � � � 
	 � � � � ��� � � A �

� �

��������������������������������
�

� ' � � � � � � � � � �

' � � � � � � � � � � �

� ' �
� �

� �

� ' � � �

� ' �
� �

� �

� �
� �

� �������������������������������
�

� � � � � � � � � � A � ' �

�
� � � � � � � � � � � for

� � � � ��� � �

�
� �

�����
�
� � �

� � �

� � �

� ����
�

� * �� � � �

�������� �������

� < � < � �
�

� � 	 � � � � is even



	 * � �

Note � is a � � � � A � ! � � � � � A � ! � � matrix, number of 2 in second row is �/� and number of
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-2 in second column is �/� .
In R sector we get,

�� � � � A � � � � � 

�
� A * � � ��� � � �

 �� � � *  � 
 � A ��
 �
 	
� � A � � � � �
��� �� � �

�� � � � �  �� �� � �
�

�
��� � � �

��
� � � A ��

	 �

� �
� 	

�

� � � � � A ��- � �
��
� �
�
� � � ��!

��

�
�� A !

�
�
�! � �A � � �� � A � �� ��!

�
�
��  � -

	 -
���
�
�

	
(3.5.14)

where � � ��"� ���� �� are as in (3.5.14) and

� * �� � � �

�������� �������

� < � < � ��A �
�

� � 	 � � � � is odd



	 * � �

3.5.2 The model � � ��� � ��� � ��� ��� 	

Similarly using the same specialization with the dual Bailey pair in (3.3.6) and comparing

the bosonic side with (3.5.1) with we find for 	 ' � even in the NS-sector

�� � � � � � � �  � � 
� � � *  � � � � � �
�
� #�� ���

�� � ��A *  � 
 � ' � �� � �BA � *  � 
 � �� � � � ��A *  � �

 	
� �  � � � � � 
��� � ���� ! 	 ' � ��	 � � 

�
� (3.5.15)

and for 	 ' � odd in the R-sector

�� � � � � � � �  � � 
� � � *  � � � � � �
�
� #�� ���

�� � �BA *  � 
 � ' � � ��A � *  �  ��
 � ���� � � �BA *  � �

 	 � �  � � � � � 
��� � � � � ! 	 ' � ��	 � � 

�
�$� (3.5.16)



3.5. ����� Superconformal character from ����	�� 	 � � 97

Fermionic formula for ������	 � �%$&	 � ' ��	�� with 	�� 	 � � � 	 : To obtain the fermionic

formula, as before we are going to set � � � ��� ! 	 ' � . Inserting (3.5.11) and (3.4.6) into

(3.5.16) we get in the R-sector

�� � � � � � � �  � � 
� � � *  � � ��� � � �
� �

 �� � � � *  � 
 � A ��
 A 
 	
� �  ��� � � ��� � � �� � odd

� � � ���
��� � �

� ��� � ���
� �

�� � � �� A � �  � � �  � � � � 
 � �� � � ���  �� � � � ��A � 
 A �� � � � � �
�

�
� � �� �

��
� � ��A ��

�

���
� 	 � � � � ��- � �

��
� � - ! � -� -

���
�
�

	 �
(3.5.17)

Define �#� ��� � � � � 	 � ��� � � � � � A � , so that (3.5.17) in the R-sector can be rewritten as

�� � � � � � � �  � � 
� � � *  � � ��� � � �
� �

 �� � � � *  � 
 � A ��
 A 
 	
� �  ��� � � �
� � � � � � � � � �

� � � � �� � � ��� 
 � � ��# �
�
�� � � �� � � A �� �� � � � �

�
�

��� � � �
� � � � � A ��- � � � -��� �

��
� �
�
� � �� � � ! �

� ! �� � -
	 -

���
�
�

	 (3.5.18)
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where
�
�� � �)� � � � � � � A � ' �� � , �� as in (3.5.10),

�
�
� ��� � � � � � � � , �

�
� � ��A � � � � � � � � � � �

��A � � , and

�� � �

�����
�

� ' � �

' � � ' �
� ' � �

� ����
�

�
� � � � ��� � � � � � � � � ' �

� ' � � �$�
(3.5.19)

Similarly, for the NS-sector it follows from (3.5.15)

�� � � � � � � �  � � 
� � � *  � � ��� � � �
 �� � *  � 
 � A 
 	 � �  ��� � � �

� � � � � � � � � �
� � � � �� � � ��� 
 � � �$# �

�
�� � � �� � � A �� �� � � � �

�
�

��� � � �
� � � � � A ��- � � � -��� �

��
� �
�
� � �� � � ! �

� ! �� � -
	 -

���
�
�

	 (3.5.20)

with
�� � and

�
� � � � as in (3.5.19), �

�
� � ��A � � � � � � � � � � �

��A � � , �
�
� � � � � � � � � � and

�� � ��� � � � � � � � .

Fermionic formula for ����� $&	 � ' � 	��	 � � with 	 � � ��	 : Again we state the formulas

without showing the calculations.
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Using (3.4.18) in NS sector we get,

�� � � � �  � � � � � 
� *  � ��� � � � � � �
 �� � *  � 
 � A 
 	
� �  � � � � �

��� �� � �
�� � � � � �

� �
 �� � �  �� � � �� �� �  �� � � �� � � � � � �� � � � �

� 
  �� � � �� �
�

�
� � � � �

��
� � ��
	 �

���
� 	

�

� � � � � A ��- � �
��
� �
�
� � � � ��!

��

�
�� A !

�
�
�! � �A � � �� � A � �� ��!

�
�
��  � -

	 -
� �
�
�

	
(3.5.21)

where

� � ����� � � � 
	 � � � � ��� � � A � (3.5.22)

� � �

��������������������������������
�

� ' � � � � � � � � � �

' � � ' � � � ' � ' � � � � �

� ' �
� �

� �

� ' � � �

� ' �
� �

� �

� �
� �

� �������������������������������
�

� � � � � � � ��� � � A � ' � �
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In R sector we get,

�� � � � �  � � � � � 
� *  � ��� � ��� � � �
 �� � *  � 
 � A 
 	 � �  � � � � �

��� �� � �
�� � � � � �

� �
 �� � �  �� � � �� �� �  �� � � �� � � � � � �� � � � �

� 
  �� � � �� �
�

�
� � � � �

��
� � � A ��

	 �

���
� 	

�

� � � � � A ��- � �
��
� �
�
� � � � ��!

��

�
�� A !

�
�
�! � �A � � �� � A � ��"��!

�
�
��  � -

	 -
� �
�
�

	
(3.5.23)

where � � is as in (3.5.22) and

� * �� � � �

�������� �������

� < � < � �
�

� � 	 � � � � is even



	 * � �
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3.6
� � �

Character formulas

3.6.1 � � �
superconformal algebra and Spectral flow

The � ��� superconformal algebra
�

is the infinite dimensional Lie super algebra [21]

with basis 3 � � � � ������ � + and (anti)-commutation relation given by

� 3 � ��3 � ����� � ' ����3 � A � ! +� � � � � ' � ��5 � A � � �
	 3 � ��� �� 
 ��� �� � ' ! � � �� A �
� 3 � � � � ��� ' � � � A �
� � � � � � ��� �

$ � � 5 � A � � �
	 � � ��� �� 
 ��� � �� A �(�� A� ��� � ) � � 3 � A � !)��! ' � � � � A � ! + $ ��! � ' �� � 5 � A � � �
� 3 � � + ��� � � � � + � � 	 � �� � + 
 � �

(�� A� ��� A� ) � (�� � ��� � ) � �

where � � � ��� , but ! �$� are integers in R-sector and half-integer in NS-sector. The element

+ is the central element and its eigenvalue � is parametrized as � � $�� � ' �
�
��� � , where 	��	 �

are relatively prime positive integers. Let us denote this algebra by
� ��	��	 � � .

It was observed in [35, 72] that there exits a family of outer automorphisms ��� � � � �



3.6. ���)� Character formulas 102

which maps the � � � superconformal algebras to itself. These are explicitly given by

� � � � A� ��� �� A� � � A�  �
� � � � � ��� �� � � � � A �
� � � 3 � ��� �3 � � 3 � ' � � � ! �� � � 5 � � �
� � � � � ��� �� � � � � ' �

$
� 5 � � �

(3.6.1)

This family of automorphisms is called spectral flow and � ��� is called the flow param-

eter. When � � � each sector of the algebra is mapped to itself. When � � � !
�
�

the

Neveu-Schwarz sector is mapped to the Ramond sector and vice-versa. We are going to

use the spectral flow � � �
�
�

to map the NS-sector to the R-sector.

3.6.2 Spectral flow and characters

We denote the Verma module generated from a highest weight state :*��� � ��� � with 3 � eigen-

value � , � � eigenvalue � and central charge � by ��� � � . The character � ��� � � of a highest

weight representation �	� � � is defined as

�
��� � � � � �

�

����
 $ ��� � � � � � �  �
�
�
 � � � � �

Following [35] the character transforms under the spectral flow in the following way


 $ � � � � � �
�� �  �

�
�
 � �� � � ��
 $ � �� � �  � � � �  �

�
�
 � � � ��� (3.6.2)

where � � and � � are the eigenvalues of �3 � and �� � , respectively, as defined in (3.6.1).

This means the new character � � �  � �  � � �
�

� which is the trace of the transformed operators
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over the original representation equals the character of the representation defined by the

eigenvalues � � and � � of �3 � and �� � , respectively. So the new character is the character of

the representation � �  � �  .
For � �

�
�

the spectral flow � �� takes a NS-sector character to an R-sector character.

Let � � �� � � � ��� �
�

� be a NS-sector character corresponding to the representation � � � � . Then

by (3.6.2) and (3.6.1) the new R-sector character � �
� �� � �  ��� �

�

� is derived using

� �
� �  � �  ��� �

�

����
 $ � � � � ���
�� �  �

�
�
 � �� � ��� 
 $ � � � � ��� � � 

�� � �A 	� �  	� � � � �  	�
�

� �
	� � �  	 �


 $ � � � � ��� � � 
	� � � � �  �� � � � ��� �

	� � �  	� � � �
� � � � � � �

�

�
 �� �$� (3.6.3)

3.6.3 R-sector character from NS-sector character

To simplify notation we are going to use a slightly different notation for characters. Since

we are only dealing with the vacuum character in the NS-sector for which � � � � � � � ,

we write �
� � �� � � � ��� � � � . The R-sector character is denoted by �

� �
� � � � � � �

�

� with the corresponding

����� � � specified separately.

Following [20, 21, 35, 36] the vacuum character for the � �*� superconformal algebra

with central element � �)$�� � ' �
�
��� � in the NS-sector is given by

�
� � �� � � � ��� � � ��� �

 �
�
�
 ��
� � � � � !

�

� ��
�� �&� � !

�  � � � 
�� �

� � ' � � � �

�
�
� '

��
� � � � � � � ��A ��
 � � � ��A ��
  ��
 !

�

� � �
� � � ��A ��
 A � � �BA ��

� !
�

� � �BA �� !
�  � � � �

� � � ��A ��
 A � � ��A ��
� !

�  � � � �BA ��
!

��
� � � � � � � � � ��A ��
 !

�

� � �
� � � �BA ��
  � � �� ��

� !
�

� � ��
�� !

�  � � � �
� � � �BA ��
  � � �  ��

� !
�  � � � ��

�� # � (3.6.4)

This formula can be verified using the embedding diagram for the vacuum character as
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described in [21, 35] and can be rewritten as (as will be useful later)

�
� � �� � ��� ��� � � ��� �

 �
�
�
 ��
� � � � � !

�

� ��
�� �&� � !

�  � � � 
�� �

� � ' � � � �

�

��- �  � �
� - � � � - A ��
 � ' � �

� � - A �
� � !

�

� � � - A �� � � � !
�  � � � � - A �� � � (3.6.5)

In particular if we put
�

� � in (3.6.5) we obtain the following formula derived in [21]

�
� � �� � � � � � ��� �

 �
�
�
 ��
� � � � � ! � ��

�� � �
� � ' � � � �

��- �  � � � - � � � - A ��
 � ' � �
� - A ��

� ! � � � - A �� � (3.6.6)

Let us apply (3.6.3) to the NS-sector vacuum character (3.6.5) to get a Ramond sector

character. From (3.6.1) it follows that

�3 � � 3 � ' �
� � � ! �

� �
�� � � � � ' �� �

For the vacuum character in the NS-sector � ��� �"� � � � � � � , so the new eigenvalues are

��� � � � � � � � �
�
 � ' �� � in the R-sector. Hence the new character in the R-sector corresponds

to ��� � � � � � and by (3.6.3)

�
� �
� � ��� ��� �

�

��� �
	� � �  	�

�
� � �� � � � � � � � �  �� �

�
�  	� � '

�

��� � '
�  � � ���

��� � � �
��- �  � � � - � � � - A ��
 � ' � �

� � - A �
� � !

�

� � � - � � � !
�  � � � � - A � � � (3.6.7)
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3.6.4 Bailey flow from the minimal model
� ����� ����	

to � � �
super-

conformal

We will consider two set of special values for ! and 	 to find Bailey flows from the minimal

model ����	�� 	 � � to � � � superconformal models.

First we use ! � � and 	 � � in (3.3.5) and we obtain

��
� � � ��� � � � ��� � � � ��� � � � � � � � � �

�
 � � �
��� � �

�
�
 � � � � � 
� � � � � � ! � ' � ! ��, � � � � �

� ��� � � � � � � � � � � � � ������ � � � � � � � � � � � ���
��- �  �

�
��� � � - ���  � ��� � � - ���  ���� � � � � � - ���  � � � � � � � � - ���  � � � � � � � � � �

- � �  �
' ��� � � - ���  �  � ��� � � - ���  �  ���� � � � � � - � �  �  � � � � � � � � - � �  �  � � � � � � � � � �

- � �  �  � � � - � � - � �  � 
 � (3.6.8)

Then we are going to assume ! � 	���� 	 � � in (3.3.6). This gives us

��
� � � ��� � � � ��� � � � ��� � � � � � � � � � 
 � � �

��� � �
�
� �

� �  � � � � � 
� � � �� � ! � ' � ! ��, � � � � 
�
�

� ��� � � � � � � � � � � � � ������ � ��� � � � � � � � � ���
��- �  �

�
��� � � - ���  � ��� � � - ���  ���� � � � � � - � �  � � � � � � � � - � �  � � � � � � � � � �

- � �  �
' ��� � � - � �  �  � ��� � � - � �  �  ���� � � � � � - � �  �  � � � � � � � � - � �  �  � ��� � � � � � � �

- � �  �  � � � - � � � � � �  � 
  - � � � �  � 
  � �	� A �  � 

(3.6.9)

In (3.6.8) and (3.6.9) we consider the specialization

� � � finite � � � � finite �
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so that
" 	

� � � � '�� � . Taking the limit
" 	

� � � � '�� � in (3.6.8), we find

��
� � � ��� � � � ��� � � � �

�
 � � �
��� � �

�
�
 � � � � � 
� � � � � � ! � ' � ! ��, � � � � �

� ��� � ��� ��� � ������ � � � � � ��� ���
��- �  � �

- � � - � �  � 
 � � � � � �
� - � �  �  ��
 ' �

� � ' � � � - ���  �  � �&� � ' � � �
- ���  �  � � � (3.6.10)

Similarly taking the limit
" 	

� � � � '�� � in (3.6.9), we find

��
� � � ��� � � � ��� � � � � 
 � � �

��� � �
�
� �

� �  � � � � � 
� � � �� � ! � ' � ! ��, � � � � 
�
�

� � �
� �  � 

��
 ��� � � � ��� � � ���� � � � ��� ��� ���
��- �  � � - � � � � � �  � 
  - � � � �  � 
 � � � � � �

� - � �  �  ��
 ' �
� � ' � � � - ���  �  � � � � ' � � �

- ���  �  � �
(3.6.11)

Now we will consider appropiate finite values for � � and � � .

Remark 3.6.1. We like to mention that the fermionic formula in section 3.4 for 	-�.	 � � ��	
is not valid for ! � 	 � � and the fermionic formula for 	 ��� ��	 is not valid for ! � � ��	 ��� .

Hence we can calculate the fermionic side of (3.6.10) only for 	�� 	 � � ��	 and the

fermionic side of (3.6.11) only for 	�� � ��	 .

Here we set

� � � '
�

� � A �� and � � � '
�  �

� � A �� � (3.6.12)
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3.6.5 Fermionic formula for
� � ����� � �

Let us use the specialization (3.6.12) in (3.6.10), which implies � � � ��� and � � � . Making

the variable change � '�� ' � in (3.6.10) and setting , � � we obtain

��
� � � � ' �

�
�� � � � ' �  �

�
�� � � � �
 � � ���� �

�
�
 � � � � � 
� � � �� � � � � � �

� � '
�

�
�� ��� � '

�  � �
�� ���

� � � � �
��- �  � � - � � - � � A ��
 � ' � �

- � � A �
� � !

�

� - � � A �� � � � !
�  � � - � � A �� � � (3.6.13)

Comparing with (3.6.5), we obtain

�
� � �� � � � � � � � ��� �

 	� � �
 � � � ��
� � � � '

�

�
�� � � � ' �  � �

�� � �
��� �
�
�

 � � � � � 
� � � �� � � � � � � � (3.6.14)

This gives us a Bailey flow from ����	�� 	 � � model to � � � superconformal model in the

NS sector. Now we calculate the fermionic side for 	-�.	 � � ��	 .

Setting
�

� � and inserting the fermionic formula (3.4.3), we find

�
� � �� � ��� ��� ��� �

 	� � �
 � � � A � � � � ��
� � �

�
� ' �

�� � ��
� � � � �

�
������� ��� �

�� � � � �  �� � � � � �
�

� � � � ��- � �
��
� � - ! � -� -

� �
�
�

	 � � (3.6.15)
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Let us set � � � ��� and use (3.5.5) to get

�
� � �� � ��� ��� ��� �

 	� � �
 � � � A � � � � ��� � � �� � even

� ���
� � � �

� ���
� � � � �

� ��� � � � �
�� � � ��  � � 
 � A �� � � ��  � � 
 �

� �
�� � � ���  �� � � � � � �

��� ��� �
��
� � ��
� �

���
� 	

��
� � ��
� �

���
� 	 � � � � ��- � �

��
� � - ! � -� -

���
�
�

	 � (3.6.16)

Define � � � � � ��� � � � � � 	 � � � � � � � � A � , so that (3.6.16) can be rewritten as

�
� � �� � � � ��� ��� �

 	� � �
 � � � A � � � � �
� � � � � � � � � �� � � � �� � � � 
 � � ��# �

�
�� � � � �  �� �� � � � �

�
�

� � � � �

� � � � � A ��- � � � -��� �
��
� �
�
� � � � ! �� ! �� � -

	 -
���
�
�

	 � (3.6.17)

where
�

� � ��� � � � � � A � ' �
and

� �

��������
�

� � ' � �

� � ' � �

' � ' � � �
� � ' � �

���������
�

�

�� � � � � � � � � � � � � � � � � �
��
� � � � � � � � � � � � �

�� � � � � � � � � � � � ���
��
�
� � � � � � � � � � � �

�
��A � �$�

(3.6.18)
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This gives a new fermionic expression for the NS-sector character.

Ramond sector characters: Let us set � � � '
�

� � � � � � '
�  � � � A � in (3.6.11), which

implies � � � ��� and � � � . Setting , � � and changing � '�� ' � we obtain

��
� � � � '

�

� � � '
�  � � � �

� � � � �
�
�
 � � �  � � � � � 
� � � � � � � � � � �

� � '
�

� � � '
�  � � � �

��� � � �
��- �  � � - � � - � � A ��
 � ' � �

- � � A �
� � !

�

� - ��� � � � !
�  � � - ��� A � � � (3.6.19)

Comparing with (3.6.7) we get

�
� �
� � ��� � � �

�

� �
�  	�

�
�
 � � � ��

� � � � '
�

� � � '
�  � � � �

� � � � �
 � � � � � 
� � � �� � � � � � � � (3.6.20)

This shows a Bailey flow from ����	�� 	���� to � � � superconformal algebra in the R-sector.

Again using (3.4.3) in a similar way to the NS-sector and setting
�

� � we find

�
� �
� � ��� ��� ���*� � �
 � � � A � � � � ��

� � �
�
� ' � � �  � � ' � � �

� � � � �
�

� ��� � ��� �
�� � � ���  �� � � � � �
�

� � � � ��- � �
��
� � - ! � -� -

���
�
�

	 � � (3.6.21)

Using

� , � � �
��
��� � � ' , � � �  � 
 � �� � �� � 
 � �  �  ��


��
� �
�

���
� 	
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and setting � � �*� � , equation (3.6.21) can be rewritten as

�
� �
� � ��� ��� ���*� � �
 � � � A � � � � ��� � � �� � even

� ��  ��
� � � �

� ���
� � � � �

� ��� � � � �
�� � � �� A � � � � A � � ��  � � � � �  � � � � � 


� �
�� � � ���  �� � � � � �'A �� � � �  � � 
 �

��� ��� �
��
� � �� ' �

� �

���
� 	

��
� � ��
� �

���
� 	 � � � � ��- � �

��
� � - ! � -� -

���
�
�

	 � (3.6.22)

Setting � ��� � � � � � � � � � 	 � ��� � � � � � A � this becomes

�
� �
� � � � ��� ���*� � �
 � � � A � � � � �

� � � � � � � � � �� � � � �� � � � 
 � � �$# �
�
�� � � � �  �� �� � � � �

�
�

� � � � �

� � � � � A ��- � � � -��� �
��
� �
�
� � � � ! �� ! �� � -

	 -
���
�
�

	 � (3.6.23)

with the same notations as in (3.6.18) except

�� � � � � � � � ' � � � � � � � � � � ��
� � � ' � � � � � � � � ��� �� � � � ' � � � � � � � � �$�

This gives a new fermionic expression of the new R-sector character.

3.6.6 Fermionic formula for
� � � ���

Now we use the same specialization (3.6.12) in (3.6.11). All the calculations are done in a

similar way as in the previous section but using the fermionic formula for 	 � � ��	 . Hence

we just state the result here.
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The explicit fermionic formula in this case looks like

�
� � ����  � � ��� � � ���
�  �

� � �  � � � � 
 A 
 � � �  � � � � �
��� ��

�
�
�� � � � � �  �� � �

� �
 �� � � �� � �� �  �� � � �� � � � � � �� � � � �

� 
  �� � � �� �
�

�
� � � � �

��
� � ��
	 �

���
�'	

��
� � ��
	 �

���
� 	

�

� � � � � A ��- � 
��
� �
�
� � �� � ! �

� � �� A ! �! � � �A � � �� � � A � �� � ��! �� �  � -
	 -

� �
�
�

	 �
(3.6.24)
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where

� � �

�����������������������������������
�

� � ' � � � � � � � � � �

� � ' � � � � � � � � � �

' � ' � � ' � � � ' � ' � � � � �

� � ' �
� � �

� � �

� � ' � � �

� � ' �
� � �

� � �

� � �
� � �

� ����������������������������������
�

�
� � � � � � � � � � A � ' � �
�� � � � � � � � � � � � (3.6.25)

�
� � � � � � � � � � � � �

� * �� � � � �

������������ �����������

� < � � < � �
�

� < � � < � �
�

� � 	 � � � � is even



	 * � �

Note that
� � is a � � ����A � ! $ � � � � ���A � !�$ � matrix and number of -2 in the third row and

column is �/� .
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Ramond sector: In this case we state the formula only. We get

�
� �
���  � � ��� � � � � � � 
 � � �  � � � � �

��� ��
�
�
�� � � � � �  �� � � �

� �
 �� � � �� � �� �  �� � � �� � � � � � �� � � � �

� 
  �� � � �� �
�

�
� � � � �

��
� � �� ' �

	 �

���
� 	

��
� � ��
	 �

���
�'	

�

� � � � � A ��- � 
��
� �
�
� � � � � ! �

� � �� A ! �! � � �A � � �� � � A � �� � ��! �� �  � -
	 -

� �
�
�

	 �
(3.6.26)

with the same notations as in (3.6.25) except

� * �� � � � � � �

������������ �����������

� < � � < � �
�

' �
� < � � < � �

�

� � 	 � � � � is even

	 * � � � �
(3.6.23)and (3.6.26) gives us new fermionic expressions of the new R sector character.

3.7 Conclusion

In this thesis we only considered the vacuum character for the � � � superconformal

algebra with central charge � � $�� � ' �
�
��� � with 	 � 	 � in the NS-sector and the Ramond

sector character derived from the vacuum character. We believe that similar Bailey flows

exist for the general � � � superconformal characters, but explicit formulas are not yet

available in the literature.
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We would also like to mention that unlike in section 3.5 we did not carry out the Bailey

flow for both the Bailey pairs (3.3.3) and (3.3.4) in section 3.6. As we mentioned in section

3.6 the fermionic formulas  � � � � � 
��� � � 3 ��	 � � � when 	 � 	 � ����	 and !#� 	 � � and when

	 � � ��	 and ! � � ��	 ��� are not given in [11, 12]. We believe that a formula for these

cases does appear in [84]. One can easily calculate the fermionic side in these cases using

the formula given in [84] by similar calculations.
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Chapter 4

Implementation

In this chapter we describe the programs that were used to verify the conjectures for our

results on unrestricted Kostka polynomials presented in Chapter 2. The bijection � in

Chapter 2 has been implemented as a program written in C++. Several different versions

of this program have been used to carry out calculations regarding the unrestricted rigged

configurations. We used six different programs to verify conjectures regarding the lower

bound conditions, the convexity property of the unrestricted rigged configurations, and the

fact that the bijection � preserves the statistics. We describe three of these programs in

this chapter. The programs presented here can be used by anyone studying unrestricted

Kostka polynomials. The code for these programs are provided in the appendix and can be

downloaded at http://math.ucdavis.edu/˜deka.

The progams have also been incorporated into MuPAD-Combinat as a dynamic module
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by Francois Descouens [58]. For example, the command

riggedConfigurations::RcPathsEnergy::

fromOnePath([[[3]],[[2],[1]],[[4,5,6],[1,2,3]]])

calculates � � 	�� with 	 as in Example 2.4.9.

The programs have been compiled and tested using the gnu c++ compiler, (g++), ver-

sion 3.2.3.

4.1 Program: ����� � �����	� 
�������������������

The program named � � � 	�������� 	�
��%������
�������� performs the bijection � from the set of un-

restricted paths � � � � � � to the set of unrestricted rigged configurations
� � � 3 ��� � for a

fixed value of � and 3 . Let us recall that � is the weight vector for the unrestricted

paths in � � � � ��� and 3 is the multiplicity matrix for the shape of the tensor product
� � � � � � � � 
 ����� 
 � � � � � � . Let us denote the shape of

�
by a sequence of rectangular

partitions � . This program first calculates the set � � � ��� � . Then, for each 	 � � � � � ���
it calculates � � 	�� , thus calculates the set

� � � 3 � � � . The program sorts the elements of
� � � 3 � ��� so that all the rigged configurations with the same shape appear together. It also

calculates the statistics for each pair ��	 � � � 	�� � and finally prints out the unrestricted Kostka

polynomial
� � � � � � .

Input: Here we explain how to input data for the program. The input file for this pro-

gram is called 
�� 	 � � � � � 	�������� . The input data for this program are:
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� = The rank of the Lie algebra of type � � and we input it in the 1st line of the input file.

� = The fixed weight of the unrestricted paths. � is an � !�� tuple of non-negative

numbers. We enter this in the 2nd line of the input file with exactly � ! � parts including �

if necessary.

� = The fixed shape of the paths. � is a sequence of rectangular partitions. We enter a

rectangular partition columnwise. For example, 2 2 2 0 represents a rectangular partition

with 2 boxes in the 1st column, 2 boxes in the 2nd column and 2 boxes in the 3rd column.

The 0 at the end indicates the end of that partition. We input each component of � in a new

line.

We illustrate how to enter � , � and � to the program using a small example given below.

�-� � � � � � � �%� � � � � � � � � � �-��� � � � � ��� � $ �%$ � � �

The input file is:

5

1 2 2 2 1 0

2 0

2 2 2 0

WARNING: Do not leave any extra blank space at the end of a line. Do not forget to

include 0 if necessary to make � an � ! � tuple. Do not forget to put � at the end of a part

of � . The program will read the input data incorrectly if you forget any of these and you

will get a wrong answer.
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Remark 4.1.1. The maximum size of the rank � of the algebra � � is limited by ‘RIGSIZE’

which is defined to be 20. For a larger � , the ‘RIGSIZE’ needs to be increased accordingly

in the beginning of the program. For a very large � , the program might take longer to

compile and run.

Output: Let us consider the input data: � � $ � � ��� � � � � � � � � and � ��� � � � � � � � � � � .
Input file is

3

0 1 1 1

1 0

2 0

The output of the program for this example is shown below.

n = 3

Lambda is: 0 1 1 1

mu is :

..........

1

..........

2

---------------------------------------

There are 3 unrestricted paths.

---------------------------------------

Path (1):
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---------------------------------------

2

---------------------------------------

3

4

Corresponding rigged configuration is:

---------------------------------------

(1)

___ ___

| | -1| -1

--- ---

---------------------------------------

(2)

___

| -1| -1

---

| -1| -1

---

---------------------------------------

(3)

___

| 0| 0

---

Statistic is = 0
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************************************************

Path (2):

---------------------------------------

3

---------------------------------------

2

4

Corresponding rigged configuration is:

---------------------------------------

(1)

___ ___

| | -1| -1

--- ---

---------------------------------------

(2)

___ ___

| | 0| 0

--- ---

---------------------------------------

(3)

___

| -1| -1

---
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Statistic is = 0

************************************************

Path (3):

---------------------------------------

4

---------------------------------------

2

3

Corresponding rigged configuration is:

---------------------------------------

(1)

___

| -1| -1

---

| -1| -1

---

---------------------------------------

(2)

___

| 0| 0

---

| 0| 0

---
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---------------------------------------

(3)

___

| 0| 0

---

Statistic is = 1

************************************************

Unrestricted Kostka polynomial is: 2qˆ0 + 1qˆ1

The output means there are 3 unrestricted paths. Each of the path and the corresponding

rigged configuration are printed together along with the statistic. Finally the unrestricted

Kostka polynomial,
� � � � � � �*� ! � .

4.2 Program: ��� � � ����� 
�� �� �

The program called ����� 	������ 	�
������ calculates the image of an unrestricted path 	 � � � � ��� �
under the map � . The output is an unrestricted rigged configuration in

� � � 3 � ��� . The pro-

gram also calculates the corresponding statistic.

Input: The input file for this program is called inputpath. We explain how to enter a

path to the program using an example. Suppose we want to input the following path:

	 � � $ � 
 � � $
� $ �
$ � � 
 �� 
 � � �

$ � � for the algebra of type � � .

This path has 4 parts and the rank �-� �
. The input for this example will be

5 4 [First entry is n=5, 2nd is number of parts=4]

2 3 4 [This is the 1st part of the path]
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0 [0 separates the parts]

1 2 3

2 3 4 [2nd part]

3 5 6

0 [0 separates the parts]

2 [3rd part]

4

0 [0 separates the parts]

2 4 5 [4th part of the path]

3 5 6

0 [0 to indicate the end of the path]

WARNING: Do not leave any extra blank space at the end of a line. The program will

read the input incorrectly in that case and you will get a wrong answer.

Output: Now the output for our example is

n=5

Given path is:

---------------------------------------

2 3 4

---------------------------------------

1 2 3

2 3 4

3 5 6

---------------------------------------

2



4.2. Program: ����� 	������ 	�
������ 124

4

---------------------------------------

2 4 5

3 5 6

---------------------------------------

Corresponding rigged configuration is :

---------------------------------------

(1)

___ ___ ___ ___ ___ ___ ___

| | | | | | | -4| -4

--- --- --- --- --- --- ---

| | -1| 0

--- ---

---------------------------------------

(2)

___ ___ ___ ___ ___ ___

| | | | | | -1| -1

--- --- --- --- --- ---

| | | 0| 1

--- --- ---

| | 1| 1

--- ---

---------------------------------------

(3)
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___ ___ ___ ___

| | | | -1| -1

--- --- --- ---

| | | 0| 0

--- --- ---

| | -1| 0

--- ---

---------------------------------------

(4)

___ ___ ___

| | | -1| 0

--- --- ---

| | -1| 0

--- ---

---------------------------------------

(5)

___ ___

| | 0| 0

--- ---

---------------------------------------

Statistic = 5

For the path, the dotted lines separates the parts of the path. For the rigged configuration

the program gives the component number for the rigged partition and separates the different

components with dotted lines. In the end, the program gives the statistics corresponding



4.3. Program: 
���� �"!#��� 	$
�%���$��
����&�'� 126

to the path and the rigged configuration. We proved in Chapter 2 that the statistics for the

path and the rigged configuration are preserved under the bijection.

4.3 Program: � ������� ��� 
��  ������� �������

The program called 
 �����"!���� 	�
��%������
�������� computes the inverse map of � . It takes an unre-

stricted rigged configuration � � � � � � � � � 3 � ��� as an input and finds the image under the

inverse bijection. The output is a path in � � � ��� � .
Input: Let us explain the input file with an example. The input file is called 
 � 	 � ��!�
 � � ���

for this program. Suppose we want to find the image of the rigged configuration

� � ����� � ' 1
�

�
' 1
' 1

' 1
� ' 1

with �,� �
and � � � � � ��� � � ��� � $ �%$ ��� � � � � � � � � . To enter components of � � we use the

dimension of the rectangular box. For example, the third component of � in our example

is entered as 2 3 indicating a 2 by 3 rectangle.

The input file for this example is

5 4 [n=5, 4 is the number of components in mu]

1 1 [first component of mu]

1 1 [2nd component of mu]

2 3 [3rd component of mu]

3 2 [4th component of mu]

4 1 [first rigged partition]

-1 0 [riggings for respective parts right below]

4 3 [2nd rigged partition]
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-1 0 [riggings for respective parts]

4 1 1 [3rd rigged partition]

0 -1 -1 [riggings for respective parts]

3 1 [4th rigged partition]

-1 0 [riggings for respective parts]

2 [5th rigged partition]

-1 [riggings for respective parts]

WARNING: As in the previous cases, do not leave any extra blank space at the end of a

line. The program will get confused and will give a wrong result.

Output: The output for our example is:

n = 5 L= 4

mu

1 1

1 1

2 3

3 2

Given rigged configuration is:

---------------------------------------

(1)

___ ___ ___ ___

| | | | -1| -1

--- --- --- ---

| 0| 0
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---

---------------------------------------

(2)

___ ___ ___ ___

| | | | -1| 0

--- --- --- ---

| | | 0| 0

--- --- ---

---------------------------------------

(3)

___ ___ ___ ___

| | | | 0| 1

--- --- --- ---

| -1| -1

---

| -1| -1

---

---------------------------------------

(4)

___ ___ ___

| | | -1| -1

--- --- ---

| 0| 0

---

---------------------------------------
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(5)

___ ___

| | -1| -1

--- ---

---------------------------------------

The corresponding path is:

-------------------------

3

-------------------------

2

-------------------------

1 3 5

2 4 6

-------------------------

1 2

3 4

5 6

-------------------------

Note that the program first prints out the input data and then prints the image of the

rigged configuration under the inverse map which is an unrestricted path. The different

parts of the path are separated by dotted lines. The output of the above example is the path

$ 
 � 
 � $ �

� � � 
 � �
$ �
� �

.
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.1 Code for ����� � ����� � 
�������������������

This program computes the bijection for all unrestricted paths, finds all the unrestricted

rigged configurations for a fixed � and � . It also calculates the statistics and the unre-

stricted Kostka polynomial corresponding to the � and � .

#include <stdio.h>

#define UNUSED 9999

#define RIGSIZE 20

int n, l, num_shapes;

int lambda[100];

int tab_shape[100];

int tableau[100][100];

int r, tab_indx, num_rc_lb_tab;

int *cum_lambda;

int *new_lambda;

int bigL [RIGSIZE][RIGSIZE];

int curL [RIGSIZE][RIGSIZE];

int path_index;

int tblu_index;

int num_paths;

int exp[1000];

FILE *fp;

class shape_class;
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class tblu_row {

public:

int *col;

int num_col;

tblu_row(int c);

void print_row();

};

tblu_row::tblu_row(int c):num_col(c) {

col = new int[c];

for (int i=0; i < c; i++) col[i] = UNUSED;

}

void tblu_row::print_row() {

if (col[0] == UNUSED) return;

int i = 0;

while (col[i] != UNUSED && i < num_col) {

fprintf(stderr, "%2d ", col[i]);

i++;

}

fprintf (stderr, "\n");

}

A doubly linked list of objects of type �+	 � � � � ����� makes up a path. Each object of type

�+	 � � � � � ��� represents a tableau which is a part of a path.

class tblu_class {

public:
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int tblu_id;

tblu_row* row;

int* tab_lambda;

int num_row;

tblu_class* next;

tblu_class* prev;

shape_class* tblu_shape; // pointer to the mu

// from which we got the shape

tblu_class(int r, int c);

void print_tblu();

};

tblu_class::tblu_class(int r, int c):num_row(r) {

row = new tblu_row [r](c);

tab_lambda = new int[n+1];

for (int i=0; i<=n; i++) tab_lambda[i] = 0;

next = NULL;

prev = NULL;

tblu_shape = NULL;

}

Prints a tableau

void tblu_class::print_tblu(){

fprintf (stderr,"------------------------\n");

for (int i=0; i < num_row; i++) {

row[i].print_row();
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}

}

tblu_class *tblu_list;

tblu_class *tblu_list_end;

typedef tblu_class* tblu_class_ptr;

tblu_class_ptr *tblu_array;

class shape_class {

public:

int* shape;

int num_col;

int num_row;

shape_class* prev;

shape_class* next;

tblu_class* first_tblu;

shape_class(int ncol, int nrow);

};

shape_class::shape_class (int ncol, int nrow){

num_col = ncol;

num_row = nrow;

shape = new int[ncol];

for (int i=0; i<ncol; i++) shape[i]=nrow;

first_tblu = NULL;

prev = NULL;

next = NULL;

}
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shape_class* shape_list;

shape_class* shape_list_end;

An object of type path class represents a path. A doubly linked list of objects of type

path class has all the unrestricted paths and the corresponding rigged configuration for

each path.

class path_class {

public:

int path_len;

int index;

int rigged[RIGSIZE][5][RIGSIZE];

// the rigged set for this path

tblu_class_ptr *path;

// the array of pointers to tableaux

path_class* next;

path_class* prev;

int cocharge;

int Energy;

path_class(int path_len);

void print_path();

void path_class::reset_flags(int pathi);

void path_class::print_rigged_for_this_path();

int path_class::

find_largest_inside_outside_others

(int index,int old_largest_index,int pathi);
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int path_class::

find_largest_inside_outside_first

(int index, int pathi) ;

void path_class::add_new_col

(int index, int pathi);

void path_class::init_unused_rigged

(int index, int pathi);

void path_class::add_to_rigged

(int index, int column_index, int pathi) ;

int path_class::num_box_1k_col

(unsigned int i, int k, int pathi);

int path_class::add_box_to_rigged

(int index, int begin,

int old_largest_index, int pathi) ;

int path_class::second_func(int part_size,

int rig_num);

void path_class::calc_outer_label

(int rig_num, int pathi);

void path_class::calc_inner_label

(int i, int pathi);

void path_class::insert_element_to_rigged

(int num, int row_indx, int col_indx,

int nrow, int ncol);

void path_class::insert_tableau_to_rigged

(tblu_class* cur_tblu);
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void path_class::build_rigged_for_path () ;

void path_class::calculate_cocharge();

int path_class::alpha(int k, int i);

};

path_class::path_class(int len):path_len(len) {

path = new tblu_class_ptr [len];

for (int i=0; i<len; i++) path[i] = NULL;

next = NULL;

prev = NULL;

index=0;

for (int i=0; i < RIGSIZE; i++) {

for (int j = 0; j < 3; j++)

for (int k = 0; k < RIGSIZE; k++)

rigged [i][j][k] = UNUSED;

for (int j = 3; j < 5; j++)

for (int k = 0; k < RIGSIZE; k++)

rigged [i][j][k] = 0;

}

};

Prints a path.

void path_class::print_path() {

for (int i=0; i <path_len; i++) {

if (path[i] != NULL) path[i]->print_tblu();

}
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}

typedef path_class* path_class_ptr;

path_class_ptr tmp_path;

path_class_ptr path_list;

path_class_ptr path_list_end;

path_class_ptr *path_array;

int *print_order;

void reset_tableau() {

for (int i=0;i<RIGSIZE; i++){

for (int j=0; j<RIGSIZE;j++){

tableau[i][j]=UNUSED;

}

}

}

void initialize_lambda() {

int i, j, k,m;

for (i=0; i < RIGSIZE; i++) {

lambda[i] = -1;

tab_shape[i]=-1;

}

for (i=0; i<1000; i++);

exp[i]=0;

reset_tableau();

}
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Reads the input file.

void read_input(){

int i, tmp;

tmp = UNUSED;

i = 0;

l = 0;

fp = fopen ("input_allpaths","rw");

fscanf(fp,"%d\n", &n);

while (i< n+1) {

fscanf (fp, "%d", &tmp);

lambda[i] = tmp;

l = l + tmp;

i++;

}

}

Prints the input data: � , � and � .

void print_input() {

int i;

fprintf (stderr, "n = %d \n", n);

fprintf (stderr, "Lambda is: ");

for (i=0; i <=n; i++) {

if (lambda[i] == -1) break;

fprintf (stderr, "%d ", lambda[i]);

}
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fprintf (stderr, "\n");

}

Copies the tableau constructed to the tableau list.

void print_and_copy_tableau(int k, int nrow,

int ncol, shape_class* shape_obj ) {

int i, j;

i=0;

tblu_class *my_tblu =

new tblu_class(nrow,ncol);

my_tblu->tblu_id = tblu_index;

tblu_index += 1;

while (tableau[i][0] != UNUSED){

j=0;

while ( tableau[i][j]!=UNUSED){

my_tblu->row[i].col[j] = tableau[i][j];

my_tblu->tab_lambda[tableau[i][j] - 1] =

my_tblu->tab_lambda[tableau[i][j] - 1]

+ 1;

j++;

}

i++;

}

if (shape_obj->first_tblu == NULL)

shape_obj->first_tblu = my_tblu;
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my_tblu->tblu_shape = shape_obj;

if (tblu_list == NULL){

tblu_list = my_tblu;

tblu_list_end = my_tblu;

} else {

tblu_list_end->next = my_tblu;

my_tblu->prev = tblu_list_end;

tblu_list_end = my_tblu;

}

}

Builds a tableau recursively.

void build_tableau(int m,int row,int col, int nrow,

int ncol, shape_class* shape_obj){

int k,p,q,m1,h,h1,valid,num,a,b,c ;

if ( (col == 0 && row == 0) ||

((col == 0) && (m > tableau[row - 1][col]) )

|| (row == 0 && m >= tableau[row][col-1]) ||

(row > 0 && col > 0 && m >

tableau[row-1][col] && m >=

tableau[row][col-1]))

{

tableau[row][col]=m;

if ( row == tab_shape[col]-1) {
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if ( tab_shape[col+1] < 1) {

print_and_copy_tableau(tab_indx,

nrow, ncol, shape_obj);

tab_indx=tab_indx+1;

return;

}

else{

for ( k=1; k <= n+1; k++) {

build_tableau(k,0,

col+1,nrow,ncol, shape_obj);

}

}

} else{

for ( k=m+1; k<=n+1; k++) {

build_tableau(k,row+1,col,nrow,

ncol, shape_obj);

}

}

}

}

Finds all possible tableaux of a given shape.

void find_tableau(){

int i,j,k,h,tmp;
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int nrow, ncol;

tab_indx=0;num_rc_lb_tab=0;

num_shapes = 0;

for (i=0;i<RIGSIZE;i++){

tab_shape[i]=0;

}

j = 0;

tblu_list = NULL;

tblu_list_end = NULL;

shape_list = NULL;

shape_list_end = NULL;

tblu_index = 0;

fprintf (stderr, "mu is :\n");

while (fscanf (fp, "%d", &tmp) != EOF){

if (tmp == 0) {

k = 0;

shape_class* my_shape_obj

= new shape_class(k,tab_shape[0]);

if (shape_list == NULL){

shape_list = my_shape_obj;

shape_list_end = my_shape_obj;

} else {

my_shape_obj->prev = shape_list_end;

shape_list_end->next = my_shape_obj;

shape_list_end = my_shape_obj;
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}

fprintf (stderr, "..........\n");

while (tab_shape[k] != 0) {

fprintf (stderr, "%2d ", tab_shape[k]);

k++;

}

num_shapes++;

fprintf (stderr, "\n");

nrow = tab_shape[0];

ncol = k;

reset_tableau();

for (int i = 1; i <= n+1; i++){

build_tableau(i, 0, 0,

nrow, ncol, my_shape_obj);

}

for (int i = 0; i < RIGSIZE; i++)

tab_shape[i] = 0;

j = 0;

} else {

tab_shape[j] = tmp;

j++;

}

}
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}

Finds the possible parts (which are tableaux) of a path with the given � and � .

void find_path_element(int position, shape_class*

cur_shape, tblu_class* cur_tblu) {

if (cur_tblu == NULL) {

return;

}

int *this_lambda = cur_tblu->tab_lambda;

bool satisfy = true;

for (int i=0; i<= n; i++) {

new_lambda[i] =

cum_lambda[i] + this_lambda[i];

if (new_lambda[i] > lambda[i]) {

satisfy = false;

break;

}

}

if (satisfy == false) {

return;

} else {

for (int i=0; i<=n; i++)

cum_lambda[i] = new_lambda[i];
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tmp_path->path[position] = cur_tblu;

if (position == num_shapes - 1) {

bool found= true;

for (int i=0; i<=n; i++)

if (cum_lambda[i] != lambda[i])

found = false;

if (found) {

path_class* tmp_path_list =

new path_class (num_shapes);

path_index=path_index+1;

tmp_path_list -> index=path_index;

for (int i=0; i<num_shapes; i++) {

tmp_path_list->path[i] =

tmp_path->path[i];

}

if (path_list == NULL) {

path_list = tmp_path_list;

path_list_end = tmp_path_list;

} else {

path_list_end->next =

tmp_path_list;

tmp_path_list->prev =

path_list_end;

path_list_end = tmp_path_list;

}
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}

} else {

tblu_class* this_tblu =

cur_shape->next->first_tblu;

shape_class* this_shape =cur_shape->next;

while (this_tblu != NULL &&

this_tblu->tblu_shape == this_shape){

find_path_element(position +1,

this_shape, this_tblu);

this_tblu = this_tblu->next;

}

}

for (int i=0; i<=n; i++) cum_lambda[i] =

cum_lambda[i] - this_lambda[i];

tmp_path->path[position] = NULL;

}

}

Builds paths of shape � and weight � .

void build_paths() {

cum_lambda = new int [n+1];

new_lambda = new int [n+1];

path_index = 0;

for (int i = 0; i <=n; i++) {

cum_lambda[i] = 0;
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new_lambda[i] = 0;

}

tmp_path = new path_class (num_shapes);

path_list = NULL;

path_list_end = NULL;

tblu_class* this_tblu = shape_list->first_tblu;

while (this_tblu != NULL &&

this_tblu->tblu_shape == shape_list) {

find_path_element (0, shape_list, this_tblu);

this_tblu = this_tblu->next;

}

path_class* tmp_path_list = path_list;

while (tmp_path_list != NULL) {

tmp_path_list = tmp_path_list->next;

}

}

void path_class::reset_flags (int pathi) {

int i, k;

for (i=0; i < RIGSIZE; i++) {

for (k=0; k < RIGSIZE; k++) {
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rigged [i][3][k] = 0;

}

}

}

This finds the cocharge for a given rigged configuration.

int path_class::alpha(int k, int i){

int num_coln,j;

num_coln=0;

if (k>=n) num_coln=0;

else{

for (j=0; j<RIGSIZE;j++){

if (rigged[k][0][0]==UNUSED){

num_coln=0 ;

break;

}

else{

if (rigged[k][0][j]!=UNUSED){

if (rigged[k][0][j]>=i+1){

num_coln=num_coln+1;

}

}

}

}

}
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return num_coln;

}

void path_class::calculate_cocharge(){

int k,j,i,sum,cosum;

sum=0;

for (k=0;k<=n-1;k++){

if (rigged[k][0][0]!=UNUSED){

for (i=0;i< rigged[k][0][0];i++){

sum=sum+alpha(k,i)*(alpha(k,i)-alpha(k+1,i));

}

}

}

cosum=sum;

for (k=0;k<=n-1;k++){

for (j=0;j<RIGSIZE;j++){

if (rigged[k][2][j]==UNUSED) break;

if ( rigged[k][2][j]!=UNUSED){

cosum=cosum + rigged[k][2][j];

}

}

}

cocharge=cosum;

fprintf (stderr, "Statistic is = %d \n", cosum );

exp[cosum]=exp[cosum]+1;

}
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Prints the rigged configuration corresponding to a path.

void path_class::print_rigged_for_this_path() {

int i, j, k, l,a,b;

for (i = 0; i < n ; i++) {

if (rigged[i][0][0]==UNUSED) {

fprintf (stderr,"-------------------\n");

fprintf(stderr,"(%d) Empty\n", i+1);

} else {

if (rigged[i][0][0] != UNUSED) {

fprintf (stderr,"----------------\n");

fprintf(stderr, "(%d)\n", i+1);

j=0;

if (rigged[i][0][j] != UNUSED)

for (k=0; k <rigged[i][0][j]; k++)

fprintf (stderr, " ___");

fprintf (stderr,"\n");

while (rigged[i][0][j] !=UNUSED){

k=rigged[i][0][j];

for (l=0; l<k-1;l++){

fprintf (stderr, "| ");

}

if (l==k-1) fprintf (stderr,
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"| %2d",rigged[i][2][j]);

fprintf (stderr,

"| %d\n",rigged[i][1][j]);

for (l=0; l<k; l++){

fprintf (stderr, " ---");

}

fprintf (stderr,"\n");

j++;

}

}

}

}

calculate_cocharge();

fprintf (stderr, "********************\n");

fprintf (stderr,"\n");

}

Finds the largest singular string in a rigged partition other than the first one which is bigger

or equal to the string selected in the previous rigged partition.

int path_class::find_largest_inside_outside_others

(int index, int old_largest_index,

int pathi) {

int i = 0;
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int largest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED) &&

i < RIGSIZE) {

if ((rigged[index][1][i] ==

rigged[index][2][i]) &&

(rigged[index][1][i] != UNUSED) &&

(rigged[index][0][i]

<= old_largest_index)) {

largest_index = i;

break;

}

i++;

}

return largest_index;

}

Finds the largest singular string in the first rigged partition

int path_class::find_largest_inside_outside_first

(int index, int pathi) {

int i = 0;

int largest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED) &&

i < RIGSIZE) {

if ((rigged[index][1][i] ==

rigged[index][2][i]) &&
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(rigged[index][1][i] != UNUSED)) {

largest_index = i;

break;

}

i++;

}

return largest_index;

}

void path_class::add_new_col(int index, int pathi){

int i=0;

while (rigged[index][0][i] != UNUSED) i++;

rigged[index][0][i] = 1;

rigged [index][3][i] = 1;

}

void path_class::init_unused_rigged

(int index, int pathi) {

rigged [index][0][0] = 1;

rigged [index][3][0] = 1;

}

void path_class::add_to_rigged (int index,

int column_index, int pathi) {

rigged [index][0][column_index] += 1;

rigged [index][3][column_index] = 1;

}
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Calculates the number of boxes in the first � columns of a rigged partition.

int path_class::num_box_1k_col

(unsigned int i, int k, int pathi){

int j, l;

int num_boxes = 0;

for (l=1; l <= k; l++) {

for (j = 0; j < RIGSIZE; j++){

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][0][j] >= l){

num_boxes += 1;

}

}

}

return num_boxes;

}

This adds a box to a rigged partition while doing the bijection.

int path_class::add_box_to_rigged (int index,

int begin, int old_largest_index, int pathi){

int largest_index;

if (index == begin) {

largest_index =

find_largest_inside_outside_first(index,

pathi);

} else {
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largest_index =

find_largest_inside_outside_others(index,

old_largest_index, pathi);

}

if (largest_index == UNUSED) {

if (rigged[index][0][0] == UNUSED)

init_unused_rigged (index, pathi);

else

add_new_col (index, pathi);

return 0;

} else {

add_to_rigged (index, largest_index, pathi);

return (rigged [index][0][largest_index] - 1);

}

}

This calculates the second function in the definition of vacancy numbers.

int path_class::second_func

(int part_size, int rig_num) {

int sum = 0;

for (int i=1; i<RIGSIZE; i++) {

if (curL[rig_num+1][i] != 0) {

int minimum = part_size;

if (i < part_size) minimum = i;

sum =sum + minimum * curL[rig_num+1][i];
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}

}

return sum;

}

This calculates the vacancy numbers.

void path_class::calc_outer_label (int rig_num,

int pathi){

int part_num=0;

int part_size, p;

if (rig_num == 0) {

for (int part_num=0; part_num < RIGSIZE;

part_num++) {

part_size = rigged[0][0][part_num];

if(part_size == UNUSED) break;

p = (-2*num_box_1k_col (0, part_size,

pathi)) +

(num_box_1k_col (1, part_size, pathi)) +

second_func(part_size, rig_num);

rigged [0][1][part_num] = p;

}

} else {

for (part_num=0; part_num < RIGSIZE;

rt_num++) {
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part_size = rigged[rig_num][0][part_num];

if(part_size == UNUSED) break;

p = -2*num_box_1k_col (rig_num, part_size,

pathi) +

num_box_1k_col (rig_num-1, part_size,

pathi) +

num_box_1k_col (rig_num+1, part_size,

pathi) +

second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

}

}

}

This calculates the labels or the riggings.

void path_class::calc_inner_label

(int i, int pathi) {

int j,k;

int tmp;

for (j = 0; j < RIGSIZE; j++) {

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][3][j] == 1) {

rigged [i][2][j] = rigged [i][1][j];

}



.1. Code for � � � 	�������� 	�
��%������
�������� 158

}

for (j = 0; j < RIGSIZE; j++) {

for (k = 1; k < RIGSIZE; k++) {

if (rigged[i][0][k] == UNUSED) break;

if (rigged[i][0][k] == rigged[i][0][k-1]

&& rigged[i][1][k] == rigged[i][1][k-1]

&& rigged[i][2][k-1] < rigged[i][2][k])

{

tmp = rigged[i][2][k-1];

rigged[i][2][k-1] = rigged[i][2][k];

rigged[i][2][k] = tmp;

}

}

}

}

This inserts each element of a part in the path into the bijection

void path_class::insert_element_to_rigged

(int num, int row_indx, int col_indx,

int nrow, int ncol) {

int old_largest_index;

reset_flags(0);

for (int i = (num-2); i >= row_indx; i--) {

old_largest_index =

add_box_to_rigged(i, num-2, old_largest_index, 0);
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}

for (int i=0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];

if (row_indx == nrow - 1) {

curL [nrow][1] += 1;

if (col_indx != ncol - 1) {

curL [nrow][ncol - col_indx - 1] += 1;

}

} else {

curL [nrow][ncol - col_indx - 1] += 1;

curL [row_indx + 1][1] += 1;

}

for (int i = 0; i < n; i++) {

calc_outer_label (i, 0);

}

for (int i = 0; i < n; i++) {

calc_inner_label (i, 0);

}

if (row_indx == nrow - 1) {

for (int i=0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];

// update curL - this is different from above
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curL [nrow][ncol - col_indx] += 1;

for (int i = 0; i < n; i++) {

calc_outer_label (i, 0);

}

}

}

This inserts each part of a path into the bijection

void path_class::insert_tableau_to_rigged

(tblu_class* cur_tblu) {

int nrow = cur_tblu->num_row;

int ncol = cur_tblu->row[0].num_col;

for (int j = ncol-1; j >=0; j--) {

for (int i = 0; i < nrow; i++) {

insert_element_to_rigged

(cur_tblu->row[i].col[j], i,j,nrow, ncol);

}

}

bigL [nrow][ncol] = bigL [nrow][ncol] + 1;

for (int i = 0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];

}

This insert all the parts of a path to the bijection

void path_class::build_rigged_for_path () {
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int j;

for (int i=0; i < RIGSIZE; i++) {

for (j =0; j < RIGSIZE; j++)

bigL[i][j] = 0;

curL[i][j] = 0;

}

for (int i = path_len - 1; i >= 0; i--) {

insert_tableau_to_rigged (path[i]);

}

}

Sorts the rigged configurations in a order so that the configurations with the same shape

appears together.

void sort_rigged(){

int i,j,k,a,b,p,T,m,h,a1,b1;

a=0;p=0;a1=0;

for (int a=0; a < num_paths; a++) {

if (path_array[a]->rigged[0][4][0] != 0)

continue;

print_order[p] = a;

p = p + 1;

for (int i=a+1; i < num_paths; i++){

if (path_array[i]->rigged[0][4][0] != 0)

continue;
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T = 0;

for (b=0;b<=n-1;b++){

// pick the b-th rig-element of

// a-th path with i-th path

k=0;

while(path_array[a]->rigged[b][0][k]

!=UNUSED) {

if (path_array[i]->rigged[b][0][k] !=

path_array[a]->rigged[b][0][k]){

T=1;break;

}

if (path_array[i]->rigged[b][4][k]

!=0) {

T=1;break;

}

k++;

}

// Make sure if we exited while

// loop because a[..] unused

if (path_array[a]->rigged[b][0][k]

!= path_array[i]->rigged[b][0][k])

T = 1;

// if unequal quit searching

if (T == 1) break;
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}

// if rig-element comparison failed

// quit path comparison

if (T==1) {

continue;

}

print_order[p]=i;

path_array[i]->rigged[0][4][0]=1;

p=p+1;

} // inner for loop - i

} // outer for loop - a

}

Calculates the rigged configurations corresponding to each of the possible paths.

void build_rigged() {

path_class* tmp_path_list = path_list;

num_paths = 0;

while (tmp_path_list != NULL) {

tmp_path_list->build_rigged_for_path ();

tmp_path_list = tmp_path_list->next;

num_paths++;

}

path_array = new path_class_ptr [num_paths];

print_order = new int [num_paths];

for (int i=0; i<num_paths; i++) {
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print_order[i] = i;

}

tmp_path_list = path_list;

while (tmp_path_list != NULL) {

path_array[tmp_path_list->index - 1] =

tmp_path_list;

tmp_path_list = tmp_path_list->next;

}

sort_rigged();

fprintf(stderr,"-----------------------\n");

fprintf(stderr,"There are %d unrestricted

paths.\n", num_paths);

fprintf(stderr,"-----------------------\n");

fprintf(stderr,"\n");

for (int i=0; i<num_paths; i++) {

fprintf (stderr, "Path (%d): \n",i+1);

path_array[print_order[i]]->print_path();

fprintf (stderr, "\nCorresponding rigged

configuration is:\n");

path_array[print_order[i]]->

print_rigged_for_this_path();

}

fprintf(stderr,

"Unrestricted Kostka polynomial is: ");
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int begin=1;

for (int i=0; i<1000; i++) {

if (exp[i]!= 0) {

if (!begin)

fprintf(stderr, " + ");

begin=0;

fprintf(stderr, "%dqˆ%d ", exp[i],i);

}

}

fprintf(stderr,"\n");

}

Main program.

int main() {

int i;

initialize_lambda(); // initialization.

read_input(); // this reads the input.

print_input(); // this prints the input.

find_tableau();// this finds all the tableaux of

// all the shapes from mu

build_paths(); // this finds all the paths for

// given lambda and mu

build_rigged();// this calculates all the rigged

// configurations via the bijection

// and sorts them in the order so
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// that all the configurations

// with the same shape appear together.

}

.2 Code for the program ��� � � � ��� 
����� � ��� ���

This program does the bijection from the set of paths to the set of rigged configurations.

Input data is a single path and the program calculates the corresponding rigged configu-

ration using the bijection. It also calcutales the statistics.

#include <stdio.h>

#define UNUSED 9999

#define RIGSIZE 50

int n,l;

int tab_shape[100];

int tableau[100][100];

int r;

int rigged[RIGSIZE][5][RIGSIZE];

int bigL [RIGSIZE][RIGSIZE];

int curL [RIGSIZE][RIGSIZE];

int path_index;

int tblu_index;

FILE *fp;
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A doubly linked list of objects of type tblu class makes up a path. Each object of type

tblu class represents a tableau which is a part of a path.

class tblu_class {

public:

int tblu_id;

int** tb; // 2-dimensional array of integers

// holding the tableau

int* tab_lambda;

int num_row;

int num_col;

tblu_class* next;

tblu_class* prev;

tblu_class(int r, int c);

void print_tblu();

};

tblu_class::tblu_class(int r, int c)

:num_row(r),num_col(c) {

tb = new int* [r];

for (int i=0; i < r; i++) {

tb[i] = new int [c];

for (int j = 0; j < c; j++)

tb [i][j] = UNUSED;

}
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tab_lambda = new int[n+1];

for (int i=0; i<=n; i++) tab_lambda[i] = 0;

next = NULL;

prev = NULL;

}

Prints a tableau.

void tblu_class::print_tblu(){

fprintf (stderr, "------------------------\n");

for (int i=0; i < num_row; i++) {

for (int j=0; j < num_col; j++)

fprintf (stderr, "%2d ", tb[i][j]);

fprintf (stderr, "\n");

}

}

typedef tblu_class* tblu_class_ptr;

tblu_class_ptr *tblu_array;

An object of type path class represents a path. In this program it has only one object and

the corresponding rigged configuration.

class path_class {

public:
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int path_len;

int index;

int rigged[RIGSIZE][5][RIGSIZE];

// this is the rigged set for this path

tblu_class_ptr *path; // this is the array

// of pointers to tableaux

path_class* next;

path_class* prev;

int cocharge;

path_class(int path_len);

void print_path();

void path_class::reset_flags(int pathi);

void path_class::print_rigged_for_this_path();

int path_class::find_largest_inside_outside_others

(int index, int old_largest_index, int pathi);

int path_class::find_largest_inside_outside_first

(int index, int pathi) ;

void path_class::add_new_col

(int index, int pathi);

void path_class::init_unused_rigged

(int index, int pathi);

void path_class::add_to_rigged (int index,

int column_index, int pathi) ;

int path_class::num_box_1k_col (unsigned int i,

int k, int pathi);
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int path_class::add_box_to_rigged (int index,

int begin, int old_largest_index,

int pathi) ;

int path_class::second_func

(int part_size, int rig_num);

void path_class::calc_outer_label

(int rig_num, int pathi);

void path_class::calc_inner_label

(int i, int pathi);

void path_class::insert_element_to_rigged

(int num, int row_indx, int col_indx,

int nrow, int ncol);

void path_class::insert_tableau_to_rigged

(tblu_class* cur_tblu);

void path_class::build_rigged_for_path () ;

void path_class::calculate_cocharge();

int path_class::alpha(int k, int i);

};

path_class::path_class(int len):path_len(len) {

path = new tblu_class_ptr [len];

for (int i=0; i<len; i++) path[i] = NULL;

next = NULL;
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prev = NULL;

index=0;

for (int i=0; i < RIGSIZE; i++) {

for (int j = 0; j < 3; j++)

for (int k = 0; k < RIGSIZE; k++)

rigged [i][j][k] = UNUSED;

for (int j = 3; j < 5; j++)

for (int k = 0; k < RIGSIZE; k++)

rigged [i][j][k] = 0;

}

};

void path_class::print_path() {

fprintf (stderr, "Given path is:\n");

for (int i=0; i <path_len; i++) {

if (path[i] != NULL) path[i]->print_tblu();

}

}

typedef path_class* path_class_ptr;

path_class_ptr input_path;
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void reset_tableau() {

for (int i=0;i<RIGSIZE; i++){

for (int j=0; j<RIGSIZE;j++){

tableau[i][j]=UNUSED;

}

}

}

This reads the input file. 1st number we input is ” � ” which is the number of nodes in the

Dynkin diagram of type A n. 2nd number we input is the number of parts in the path, called

path length. Then we input each part of the path which is a tableau, we seperate the parts

by putting a ”0”. At the end of the last part we put a ”0” to ensure the end of the path.

void read_input(){

int i, j, k, tmp, c;

int path_len, path_index;

int col;

tmp = UNUSED;

path_index = 0;

i = 0;

j = 0;

k = 0;

col = 0;

l = 0;
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fp = fopen ("inputpath","rw");

fscanf(fp,"%d %d\n", &n, &path_len);

input_path = new path_class (path_len);

reset_tableau();

while (fscanf (fp, "%d", &tmp) != EOF) {

if (tmp == 0) {

tblu_class *my_tblu =

new tblu_class(i,col);

i = 0;

my_tblu->tblu_id = tblu_index;

tblu_index += 1;

while (tableau[i][0] != UNUSED){

j=0;

while ( tableau[i][j]!=UNUSED){

my_tblu->tb[i][j] = tableau[i][j];

my_tblu->tab_lambda[tableau[i][j] - 1] =

my_tblu->tab_lambda[tableau[i][j] - 1] + 1;

j++;

}

i++;

}

input_path->path[path_index] = my_tblu;

reset_tableau ();

path_index += 1;
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i = 0; j = 0;

continue;

}

tableau[i][j] = tmp;

j += 1;

c = fgetc(fp);

if (c == ’\n’) {

i += 1;

col = j;

j = 0;

}

}

}

void path_class::reset_flags (int pathi) {

int i, k;

for (i=0; i < RIGSIZE; i++) {

for (k=0; k < RIGSIZE; k++) {

rigged [i][3][k] = 0;

}

}

}
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This prints the rigged configuration obtained from the bijection and prints the correspond-

ing statistic.

void path_class::print_rigged_for_this_path() {

int i, j, k, l,a,b;

for (i = 0; i < n; i++) {

if (rigged[i][0][0]==UNUSED) {

fprintf (stderr,"--------------------\n");

fprintf(stderr,"(%d) Empty\n", i+1);

}

else {

if (rigged[i][0][0] != UNUSED) {

fprintf (stderr,"------------------\n");

fprintf(stderr, "(%d)\n", i+1);

j=0;

if (rigged[i][0][j] != UNUSED)

for (k=0; k <rigged[i][0][j]; k++)

fprintf (stderr, " ___");

fprintf (stderr,"\n");

while (rigged[i][0][j] !=UNUSED){

k=rigged[i][0][j];

for (l=0; l<k-1;l++){

fprintf (stderr, "| ");

}

if (l==k-1) fprintf
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(stderr, "| %2d",rigged[i][2][j]);

fprintf (stderr,

"| %d\n",rigged[i][1][j]);

for (l=0; l<k; l++){

fprintf (stderr, " ---");

}

fprintf (stderr,"\n");

j++;

}

}

}

}

fprintf (stderr,"--------------------------\n");

calculate_cocharge();

}

Finds the largest singular string in a rigged partition other than the first one which is

bigger or equal to the string selected in the previous rigged partition by 5 .
int path_class::find_largest_inside_outside_others

(int index, int old_largest_index, int pathi) {

int i = 0;

int largest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED) &&



.2. Code for the program ����� 	(�)��� 	�
����*�+�-,.�'� 177

i < RIGSIZE) {

if ((rigged[index][1][i] ==

rigged[index][2][i])

&& (rigged[index][1][i] != UNUSED) &&

(rigged[index][0][i] <= old_largest_index)) {

largest_index = i;

break;

}

i++;

}

return largest_index;

}

Finds the largest singular string in the first rigged partition.

int path_class::find_largest_inside_outside_first

(int index, int pathi) {

int i = 0;

int largest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED)

&& i < RIGSIZE) {

if ((rigged[index][1][i] ==

rigged[index][2][i]) &&

(rigged[index][1][i] != UNUSED)) {

largest_index = i;
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break;

}

i++;

}

return largest_index;

}

void path_class::add_new_col (int index, int pathi)

{

int i=0;

while (rigged[index][0][i] != UNUSED) i++;

rigged[index][0][i] = 1;

rigged [index][3][i] = 1;

}

void path_class::init_unused_rigged (int index,

int pathi) {

rigged [index][0][0] = 1;

rigged [index][3][0] = 1;

}

void path_class::add_to_rigged (int index,

int column_index, int pathi) {

rigged [index][0][column_index] += 1;

rigged [index][3][column_index] = 1;
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}

Calculates the number of boxes in the first � columns of a rigged partition.

int path_class::num_box_1k_col (unsigned int i,

int k, int pathi){

int j, l;

int num_boxes = 0;

for (l=1; l <= k; l++) {

for (j = 0; j < RIGSIZE; j++){

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][0][j] >= l){

num_boxes += 1;

}

}

}

return num_boxes;

}

This adds a box to a rigged partition while doing the bijection.

int path_class::add_box_to_rigged (int index,

int begin, int old_largest_index,

int pathi) {

int largest_index;
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if (index == begin) {

largest_index =

find_largest_inside_outside_first

(index, pathi);

} else {

largest_index =

find_largest_inside_outside_others

(index, old_largest_index, pathi);

}

if (largest_index == UNUSED) {

if (rigged[index][0][0] == UNUSED)

init_unused_rigged (index, pathi);

else

add_new_col (index, pathi);

return 0;

} else {

add_to_rigged (index, largest_index, pathi);

return

(rigged [index][0][largest_index] - 1);

}

}

This calculates the second function in the definition of vacancy numbers.

int path_class::second_func(int part_size,
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int rig_num) {

int sum = 0;

for (int i=1; i<RIGSIZE; i++) {

if (curL[rig_num+1][i] != 0) {

int minimum = part_size;

if (i < part_size) minimum = i;

sum =sum + minimum * curL[rig_num+1][i];

}

}

return sum;

}

This calculates the vacancy numbers.

void path_class::calc_outer_label

(int rig_num, int pathi){

int part_num=0;

int part_size, p;

if (rig_num == 0) {

for (int part_num=0; part_num < RIGSIZE;

part_num++) {

part_size = rigged[0][0][part_num];

if(part_size == UNUSED) break;

p = (-2*num_box_1k_col (0, part_size,
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pathi))

+ (num_box_1k_col (1, part_size,

pathi))

+ second_func(part_size, rig_num);

rigged [0][1][part_num] = p;

}

} else {

for (part_num=0; part_num < RIGSIZE;

part_num++) {

part_size = rigged[rig_num][0][part_num];

if(part_size == UNUSED) break;

p = -2*num_box_1k_col (rig_num, part_size,

pathi) + num_box_1k_col (rig_num-1,

part_size, pathi) + num_box_1k_col

(rig_num+1, part_size, pathi) +

second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

}

}

}

This calculates the labels or the riggings.

void path_class::calc_inner_label
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(int i, int pathi) {

int j,k;

int tmp;

for (j = 0; j < RIGSIZE; j++) {

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][3][j] == 1) {

rigged [i][2][j] = rigged [i][1][j];

}

}

for (j = 0; j < RIGSIZE; j++) {

for (k = 1; k < RIGSIZE; k++) {

if (rigged[i][0][k] == UNUSED) break;

if (rigged[i][0][k] == rigged[i][0][k-1]

&& rigged[i][1][k] == rigged[i][1][k-1]

&& rigged[i][2][k-1] < rigged[i][2][k]){

tmp = rigged[i][2][k-1];

rigged[i][2][k-1] = rigged[i][2][k];

rigged[i][2][k] = tmp;

}

}

}

}

This inserts each element of a part in the path into the bijection.
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void path_class::insert_element_to_rigged (int num,

int row_indx, int col_indx,int nrow, int ncol)

{

int old_largest_index;

reset_flags(0);

// add the new element - num - to rigged and

// add box if necessary

for (int i = (num-2); i >= row_indx; i--) {

old_largest_index =

add_box_to_rigged(i, num-2,

old_largest_index, 0);

}

// initialize curL to bigL

for (int i=0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];

// update curL to include the part of the

// tableau seen so far

// we just finished a column

if (row_indx == nrow - 1) {

curL [nrow][1] += 1;

if (col_indx != ncol - 1) {
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curL [nrow][ncol - col_indx - 1] += 1;

}

// we are in the middle of a column

} else {

curL [nrow][ncol - col_indx - 1] += 1;

curL [row_indx + 1][1] += 1;

}

// calculate outer and inner labels

// based on curL

for (int i = 0; i < n; i++) {

calc_outer_label (i, 0);

}

for (int i = 0; i < n; i++) {

calc_inner_label (i, 0);

}

// only if we are at the end of a column

// initialize curL to bigL - we’ll update

// curL differently now in a FUSED way

// and recompute outer labels

if (row_indx == nrow - 1) {

for (int i=0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];
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// update curL -

// this is different from above

curL [nrow][ncol - col_indx] += 1;

for (int i = 0; i < n; i++) {

calc_outer_label (i, 0);

}

}

}

This inserts each part (which is a tableau) of a path to the bijection.

void path_class::insert_tableau_to_rigged

(tblu_class* cur_tblu) {

int nrow = cur_tblu->num_row;

int ncol = cur_tblu->num_col;

for (int j = ncol-1; j >=0; j--) {

for (int i = 0; i < nrow; i++) {

insert_element_to_rigged(

cur_tblu->tb[i][j], i, j, nrow, ncol);

}

}

bigL [nrow][ncol] = bigL [nrow][ncol] + 1;

for (int i = 0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];
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}

This inserts all the parts of a path to the bijection.

void path_class::build_rigged_for_path () {

int j;

for (int i=0; i < RIGSIZE; i++) {

for (j =0; j < RIGSIZE; j++)

bigL[i][j] = 0;

curL[i][j] = 0;

}

for (int i = path_len - 1; i >= 0; i--) {

insert_tableau_to_rigged (path[i]);

}

}

Calculates the � function used in the definition of cocharge.

int path_class::alpha(int k, int i){

int num_coln,j;

num_coln=0;

if (k>=n) num_coln=0;

else{

for (j=0; j<RIGSIZE;j++){

if (rigged[k][0][0]==UNUSED){
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num_coln=0 ;

break;

} else{

if (rigged[k][0][j]!=UNUSED){

if (rigged[k][0][j]>=i+1){

num_coln=num_coln+1;

}

}

}

}

}

return num_coln;

}

Calculates the cocharge for the rigged configuration corresponding.

void path_class::calculate_cocharge(){

int k,j,i,sum,cosum;

sum=0;

for (k=0;k<=n-1;k++){

if (rigged[k][0][0]!=UNUSED){

for (i=0;i< rigged[k][0][0];i++){

sum=sum+alpha(k,i)*(alpha(k,i)-alpha(k+1,i));

}

}



.2. Code for the program ����� 	(�)��� 	�
����*�+�-,.�'� 189

}

cosum=sum;

for (k=0;k<=n-1;k++){

for (j=0;j<RIGSIZE;j++){

if (rigged[k][2][j]==UNUSED) break;

if ( rigged[k][2][j]!=UNUSED){

cosum=cosum + rigged[k][2][j];

}

}

}

cocharge=cosum;

fprintf (stderr, "Statistic = %d \n", cosum );

}

This is the main program.

int main() {

int i;

read_input();

// this reads the input file.

fprintf (stderr, "n=%d\n", n);

input_path->print_path();

// this prints the input path
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input_path->build_rigged_for_path();

//finds the corresponding rigged

//configuration via the bijection.

fprintf (stderr, "-------------------------\n");

fprintf (stderr, "\n");

fprintf (stderr,

"Corresponding rigged configuration is : \n");

input_path->print_rigged_for_this_path();

// prints the resulting rigged configuration.

}

.3 Code for the program � ������� ��� 
��� ����� ������� �

This program does the inverse bijection from rigged configuration (RC) to path. Given a

rigged configuration, n, path length and the shape of the path it calculates the correspond-

ing path via the bijection.

#include <stdio.h>

#define UNUSED 9999

#define RIGSIZE 20

int n, l, num_shapes;

int lambda[100];
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int path_shape[100][100];

int tableau_list[40000][10][10];

int tableau[100][100][100];

int pick[100];

int r, tab_indx, num_rc_lb_tab;

int rigged[RIGSIZE][5][RIGSIZE];

int bigL [RIGSIZE][RIGSIZE];

int curL [RIGSIZE][RIGSIZE];

int tblu_index , path_len;

int num_paths;

FILE *fp;

void initialize() {

int i, j, k,m;

for (i=0; i<RIGSIZE;i++){

for (j=0; j<5; j++){

for (k=0; k<RIGSIZE; k++){

rigged[i][j][k]=UNUSED;

curL[i][k]=0;

bigL[i][k]=0;

}

}

}

for (i=0; i<100;i++){
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for (j=0; j<100; j++){

for (k=0; k<100; k++){

tableau[i][j][k]=UNUSED;

}

}

}

for (i=0;i<100; i++){

for (j=0; j<100; j++){

path_shape[i][j]=UNUSED;

}

}

}

Reads the input from file called ”inputrigged”.

void read_input(){

int i,j,k,tmp,tmu ;

char c,c1;

fp = fopen ("inputrigged","rw");

fscanf(fp,"%d %d\n", &n, &path_len);

for (i=0;i<=path_len-1;i++){

for (j=0; j<2; j++){

fscanf(fp,"%d",&tmu);

path_shape[i][j]=tmu;

}
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}

i = 0;

j = 0;

k = 0;

while (fscanf (fp, "%d", &tmp)!= EOF){

rigged[i][j][k] = tmp;

k++;

c=fgetc(fp);

if (c==’\n’){

k=0;

if(j<1) j=j+2;

else {j=0; i++;}

}

}

}

Prints the input.

void print_input() {

int i,j;

fprintf (stderr, "n = %d L= %d\n", n, path_len);

fprintf (stderr, "mu \n");

for (i=0; i <=path_len-1; i++) {

j=0;

while (path_shape[i][j] != UNUSED){

fprintf (stderr, "%d ", path_shape[i][j]);
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j++;

}

fprintf(stderr, "\n");

}

fprintf (stderr, "\n");

}

void reset_flags () {

int i, k;

for (i=0; i < RIGSIZE; i++) {

for (k=0; k < RIGSIZE; k++) {

rigged [i][3][k] = 0;

}

}

}

Prints the RC.

void print_rigged() {

int i, j, k, l,a,b;

fprintf(stderr, "Given rigged configuration is:\n");

for (i = 0; i < n; i++) {

if (rigged[i][0][0]==UNUSED) {

fprintf (stderr,"------------------------\n");
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fprintf(stderr,"(%d) Empty\n", i+1);

}

else {

if (rigged[i][0][0] != UNUSED) {

fprintf (stderr,"---------------------\n");

fprintf(stderr, "(%d)\n", i+1);

j=0;

if (rigged[i][0][j] != UNUSED)

for (k=0; k <rigged[i][0][j]; k++)

fprintf (stderr, " ___");

fprintf (stderr,"\n");

while (rigged[i][0][j] !=UNUSED){

k=rigged[i][0][j];

for (l=0; l<k-1;l++){

fprintf (stderr, "| ");

}

if (l==k-1)

fprintf (stderr, "| %2d",rigged[i][2][j]);

fprintf (stderr,

"| %d\n",rigged[i][1][j]);

for (l=0; l<k; l++){

fprintf (stderr, " ---");

}
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fprintf (stderr,"\n");

j++;

}

}

}

}

fprintf (stderr,"------------------------------\n");

}

Finds the smallest singular string in a middle RC.

int find_smallest_inside_outside_others

(int index, int old_index) {

int i = 0;

int smallest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED)

&& i < RIGSIZE) {

if ((rigged[index][0][i] >= old_index) &&

(rigged[index][1][i] == rigged[index][2][i])

&& (rigged[index][1][i] != UNUSED)) {

smallest_index = i;

}

i++;

}

return smallest_index;

}
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Finds the smallest singular string in the starting RC.

int find_smallest_inside_outside_first (int index) {

int i = 0;

int smallest_index = UNUSED;

while ((rigged[index][0][i] != UNUSED) &&

i < RIGSIZE) {

if ((rigged[index][1][i] == rigged[index][2][i])

&& (rigged[index][1][i] != UNUSED)) {

smallest_index = i;

}

i++;

}

return smallest_index;

}

Calculates the new shape of the RC after removing a box.

void remove_box_from_this_rigged

(int index, int column_index) {

if (rigged [index][0][column_index]==1) {

rigged [index][0][column_index]=UNUSED;

rigged [index][3][column_index]=1;

}

else {

rigged [index][0][column_index] -= 1;
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rigged [index][3][column_index] = 1;

}

}

int num_box_1k_col (unsigned int i, int k){

int j, l;

int num_boxes = 0;

for (l=1; l <= k; l++) {

for (j = 0; j < RIGSIZE; j++){

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][0][j] >= l){

num_boxes += 1;

}

}

}

return num_boxes;

}

Finds the selected singular string and remove boxes from those parts.

int remove_box_from_rigged

(int index, int begin, int old_smallest_index) {

int smallest_index;

if (index == begin) {

smallest_index =

find_smallest_inside_outside_first(index);
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} else {

smallest_index =

find_smallest_inside_outside_others (index,

old_smallest_index);

}

if (smallest_index == UNUSED) return (-1);

else {

remove_box_from_this_rigged (index,

smallest_index);

//this removes a box from selected part

if (rigged[index][0][smallest_index]

==UNUSED) return 1;

else return (rigged [index][0][smallest_index]+1);

// returns the length of the selected part

}

}

This calculates the extra term in the calculation of the vacancy num, which is the contri-

bution from the shape of the path.

int second_func(int part_size, int rig_num) {

int sum = 0;

for (int i=1; i<RIGSIZE; i++) {

if (curL[rig_num+1][i] != 0) {

int minimum = part_size;

if (i < part_size) minimum = i;
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sum =sum + minimum * curL[rig_num+1][i];

}

}

return sum;

}

Calculates the vacancy numbers for each part of a rigged partition.

void calc_outer_label(int rig_num){

int part_num=0;

int part_size, p;

if (rig_num == 0) {

for (int part_num=0; part_num < RIGSIZE;

part_num++) {

part_size = rigged[0][0][part_num];

if(part_size == UNUSED) break;

p = (-2*num_box_1k_col (0, part_size)) +

(num_box_1k_col (1, part_size)) +

second_func(part_size, rig_num);

rigged [0][1][part_num] = p;

}

} else {

for (part_num=0; part_num < RIGSIZE; part_num++) {

part_size = rigged[rig_num][0][part_num];

if(part_size == UNUSED) break;

p = -2*num_box_1k_col (rig_num, part_size) +
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num_box_1k_col (rig_num-1, part_size) +

num_box_1k_col (rig_num+1, part_size) +

second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

}

}

}

Calculates the riggings for each part of a rigged partition.

void calc_inner_label (int i) {

int j,k;

int tmp;

for (j = 0; j < RIGSIZE; j++) {

if (rigged[i][0][j] == UNUSED) break;

if (rigged[i][3][j] == 1) {

rigged [i][2][j] = rigged [i][1][j];

}

}

for (j = 0; j < RIGSIZE; j++) {

for (k = 1; k < RIGSIZE; k++) {

if (rigged[i][0][k] == UNUSED) break;

if (rigged[i][0][k] == rigged[i][0][k-1]

&& rigged[i][1][k] == rigged[i][1][k-1]

&& rigged[i][2][k-1] > rigged[i][2][k]) {

tmp = rigged[i][2][k-1];
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rigged[i][2][k-1] = rigged[i][2][k];

rigged[i][2][k] = tmp;

}

}

}

}

Calculates each element of a tableau in a path.

void get_element_from_rc( int row_indx,

int col_indx, int pathi) {

int old_smallest_index;

reset_flags();

// only if we are starting a new column

// we’ll update curL by spliting and

// recompute outer labels first

if ((row_indx == path_shape[pathi][0]-1)

&& (col_indx < path_shape[pathi][1]-1)) {

curL[row_indx+1][1] +=1;

curL [row_indx+1][path_shape[pathi][1]-col_indx]

-= 1;

curL[row_indx+1][path_shape[pathi][1]-col_indx-1]

+=1;

for (int i = 0; i < n; i++) {

calc_outer_label (i);
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}

}

// get a new element r from rigged and remove

// box if necessary

int end=0;

for (int i = row_indx ; i < n; i++) {

old_smallest_index =

remove_box_from_rigged(i, row_indx,

old_smallest_index);

if (old_smallest_index == -1) {

end=1;

tableau[pathi][row_indx][col_indx]=i+1;

break;

}

}

if (end==0) {

tableau[pathi][row_indx][col_indx]=n+1;

}

// update curL to exclude the part of the

// tableau seen so far

// we just finished a column

if (row_indx == 0) curL [1][1] -= 1;
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// we are in the middle of a column

else {

curL [ row_indx+1 ][ 1 ] -= 1;

curL [ row_indx ][ 1 ] += 1;

}

// calculate outer and inner labels based

// on updated curL

for (int i = 0; i < n; i++) {

calc_outer_label (i);

}

if (tableau[pathi][row_indx][col_indx]

!=(row_indx+1)) {

for (int i = 0; i < n; i++) {

calc_inner_label (i);

}

}

}

Calculates the rigged configuration for one tableau in the path.

void get_tableau_from_rc(int pathi) {

int nrow = path_shape[pathi][0];

int ncol = path_shape[pathi][1];

for (int j = 0; j <= ncol-1; j++) {

for (int i = nrow-1; i >=0; i--) {
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get_element_from_rc(i,j,pathi);

}

}

bigL [nrow][ncol] = bigL [nrow][ncol] - 1;

for (int i = 0; i < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)

curL[i][j] = bigL[i][j];

fprintf(stderr, "-------------------------\n");

for (int i=0; i <= nrow-1; i++) {

for (int j=0; j<= ncol-1; j++) {

fprintf(stderr, "%2d", tableau[pathi][i][j]);

}

fprintf(stderr, "\n");

}

}

Calculates the rigged configuration for a given path.

void build_path_for_rc() {

int i,j,k,tmp;

for (i=0; i < RIGSIZE; i++) {

for (j =0; j < RIGSIZE; j++) {

if ((j==0) && (path_shape[i][j] != UNUSED)) {

bigL[path_shape[i][j]][path_shape[i][j+1]] += 1;

curL[path_shape[i][j]][path_shape[i][j+1]] += 1;

}
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}

}

for (int i = 0; i < n; i++) {

calc_outer_label (i);

}

for (i=0;i<n; i++) {

for (j = 0; j < RIGSIZE; j++) {

for (k = 1; k < RIGSIZE; k++) {

if (rigged[i][0][k] == UNUSED) break;

if (rigged[i][0][k] == rigged[i][0][k-1]

&& rigged[i][1][k] == rigged[i][1][k-1]

&& rigged[i][2][k-1] > rigged[i][2][k]) {

tmp = rigged[i][2][k-1];

rigged[i][2][k-1] = rigged[i][2][k];

rigged[i][2][k] = tmp;

}

}

}

}

print_rigged();

fprintf(stderr,"The corresponding path is:\n");

for (i = 0; i < path_len; i++) {
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get_tableau_from_rc (i);

}

fprintf(stderr, "-------------------------\n");

}

Main program.

int main(){

initialize();

read_input();

print_input();

build_path_for_rc();

}
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S.-B. Preuss. Akad. Wiss. Phys.-Math. KI. 302-321 (1917), 117-136.

[72] A. Schwimmer, N. Seiberg, Comments on the � � � � � �*$ �%� � �
superconformal

algebras in two dimensions, Phys. Lett. B 184 (1987), 191–196.

[73] A. Schilling, M. Shimozono, Fermionic formulas for level-restricted generalized

Kostka polynomials and coset branching functions, Commun. Math. Phys. 220 (2001)

105–164.

[74] A. Schilling, M. Shimozono,
� ��� for symmetric powers, J. Algebra, to appear

(math.QA/0412376).



BIBLIOGRAPHY 216

[75] A. Schilling, S.O. Warnaar, Supernomial coefficients, polynomial identities and � -

series, The Ramanujan Journal 2 (1998) 459–494.

[76] A. Schilling, S.O. Warnaar, Inhomogeneous lattice paths, generalized Kostka poly-

nomials and A �� � supernomials, Commun. Math. Phys. 202 (1999) 359–401.

[77] M. Shimozono, A cyclage poset structure for Littlewood-Richardson tableaux, Euro-

pean J. Combin. 22 (2001), no. 3, 365–393.

[78] M. Shimozono, Multi-atoms and monotonicity of generalized Kostka polynomials,

European J. Combin. 22 (2001), no. 3, 395–414.

[79] M. Shimozono, J. Weyman, Graded characters of modules supported in the closure

of a nilpotent conjugacy class, European J. Combin. 21 (2000), no. 2, 257–288.

[80] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, De-

mazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2,

151–187.

[81] L.J. Slater, A new proof of Rogers’s transformation of infinite series, Proc. London

Math. Soc. (2) 53 (1951), 460–475.

[82] L.J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math.

Soc.(2) 54 (1952), 147-167.

[83] T. Takagi, Inverse scattering method for a soliton cellular automaton, Nuclear Phys.

B 707 (2005) 577–601.

[84] T.A. Welsh, Fermionic expressions for the minimal model Virasoro characters, Mem.

Amer. Math. Soc. 175 (2005), no.827, viii+160pp.



BIBLIOGRAPHY 217

[85] S.O. Warnaar, A note on the trinomial analogue of the Bailey’s lemma, J. Combin.

Theory Ser. A 81 (1998), no. 1, 114–118.

[86] S.O. Warnaar, The Bailey lemma and Kostka polynomials, J. Algebraic Combin. 20

(2004) 131–171.


