Fermionic formulas for superconformal characters and
unrestricted Kostka polynomials

By

LiPIkA DEKA
B.A. (University of Cambridge, UK) June 1999
M.S. (University of Wisconsin, Madison, USA) June 2001

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

MATHEMATICS

in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Anne Schilling (Chair)

Jests A. De Loera

Greg Kuperberg

Committee in Charge

To my parents

Contents

1

Introduction 1
1.1 Summaryofthemainresults 1
1.2 Background and motivation oL 3
Fermionic formulas for unrestricted Kostka polynomials 13
2.1 Introduction 13
2.2 Unrestricted paths and Kostka polynomials 15
221 Crystals B~ oftype AV, .. 15
2.2.2 Pathsand unrestricted paths 18
2.3 Unrestricted rigged configurations and fermionic formula 21
2.3.1 Unrestricted rigged configurations 21
2.3.2 Fermionicformula 27
2.4 BIJection. 29
2.4.1 Operationsoncrystals 30
2.4.2 Operations on rigged configurations 31
243 Bijection 33
2.4.4 Crystal operators on unrestricted rigged configurations 35

245 Proofof Theorem2.4.1. 37

2.5 Proof of Propositions2.4.3and2.4.6 37
2.6 Proof of Proposition2.4.8. 52
2.7 Proofof Theorem2.4.14 57

Fermionic formulas for the characters of N = 1 and N = 2 superconformal

algebras 73
3.1 Introduction 73
3.2 Bailey’slemma 75
3.3 Bailey pairs from the minimal models M (p,p") 79
3.4 Fermionic formulas for M(p,p’) 82
3.41 Fermionic formulafor M(p,p')withp<p' <2p, 82
3.4.2 Fermionic formula for M (p,p’) withp’ >2p:, 85
3.5 N =1 Superconformal character from M (p,p') 91
35.1 Themodel SM(p',2p+p') o 92
352 Themodel SM(p',3p"—2p) 96
3.6 N =2Characterformulas 101
3.6.1 N = 2 superconformal algebra and Spectral flow 101
3.6.2 Spectral flowand characters 102
3.6.3 R-sector character from NS-sector character 103

3.6.4 Bailey flow from the minimal model M (p, p’) to N = 2 supercon-

formal 105

3.6.5 Fermionic formulaforp<p'<2p 107
3.6.6 Fermionic formulaforp' >2p 110

3.7 Conclusion 113

4 Implementation 115
4.1 Program: allpaths_bijection.c. 116
4.2 Program: one_path_bij.c e 122
4.3 Program: inverse_bijection.c e 126
.1 Code for allpaths_bijection.c 130
.2 Code for the program one_path _bij.tex.c 166
.3 Code for the program inverse_bijection.c 190

Bibliography 208

Abstract

The problem of finding fermionic formulas for the many generalizations of Kostka
polynomials and for the characters of conformal field theories has been a very exciting re-
search topic for the last few decades. In this thesis we present new fermionic formulas for
the unrestricted Kostka polynomials extending the work of Kirillov and Reshetikhin. We
also present new fermoinic formulas for the characters of N = 1 and N = 2 superconfor-
mal algebras which extend the work of Berkovich, McCoy and Schilling.

Fermionic formulas for the unrestricted Kostka polynomials of type Agll in the case
of symmetric and anti-symmetric crystal paths were given by Hatayama et al. We present
fermionic formulas for the unrestricted Kostka polynomials of type Afﬂl for all crystal
paths based on Kirillov-Reshetihkin modules. Our formulas and method of proof even in
the symmetric and anti-symmetric cases are different from the work of Hatayama et al. We
interpret the fermionic formulas in terms of a new set of unrestricted rigged configurations.
For the proof we give a statistics preserving bijection from this new set of unrestricted
rigged configurations to the set of unrestricted crystal paths which generalizes a bijection
of Kirillov and Reshetikhin.

We present fermionic formulas for the characters of N = 1 superconformal models
SM(p',2p+p')and SM(p, 3p' — 2p), and the N = 2 superconformal model with central
charge ¢ = 3(1 — i—i‘,’). The method used to derive these formulas is known as Bailey flow.
We show Bailey flows from the nonunitary minimal model M (p, p’) with p,p’ coprime
positive integers to N = 1 and N = 2 superconformal algebras. We derive a new Ramond
sector character formula for the N = 2 superconformal algebra with central charge ¢ =

3(1 - i—’,’) and calculate its fermionic formula.

Vi

Acknowledgments

This work was supported in part by the U.S. National Science Foundation under Grants

DMS-0200774.

vii

Chapter 1

| ntroduction

1.1 Summary of the main results

Fermionic formulas have been widely researched in mathematics and physics. In this thesis
we consider two problems regarding fermionic formulas that arise in the context of com-
binatorial representation theory and conformal field theory (CFT). This thesis is based on
two papers that resulted from research performed with Prof. Anne Schilling during my
years of graduate school at the University of California, Davis.

In Chapter 2, we present a new fermionic formula for the unrestricted Kostka polynomi-
als. This work is based upon the paper “New Fermionic formula for the unrestricted Kostka
polynomials” with Anne Schilling. An extended abstract of this paper has appeared in the
proceedings of 17th International conference, Formal Power Series and Algebraic Combi-
natorics 2005, held at the University of Messina, Italy, in June 2005. The full version of the
paper is available as a preprint at http://front.math.ucdavis.edu/math.CO
/0509194. We have submitted this paper for publication to The Journal of Combinatorial

Theory, Series A. Our results extend the work of Kerov, Kirillov and Reshetikhin [44, 47]

1.1. Summary of the main results 2

who used the Bethe Ansatz to find a fermionic formula for the Kostka polynomials. This
was first extended in [48] to generalized Kostka polynomials by establishing a bijection
between the highest weight paths in the tensor products of Kirillov-Reshetikhin crystals of
type A,, and rigged configurations. We prove our new formula for the unrestricted Kostka
polynomial case by giving a statistics preserving algorithmic bijection between all crystal
paths in the tensor products of Kirillov-Reshetikhin crystals of type A, and the corre-
sponding set of rigged configurations. An explicit description of the new set of rigged
configurations is presented, which is called the set of unrestricted rigged configurations.
Our formula when restricted to symmetric and anti-symmetric crystals is different from
the results of Hatayama et al. [31] where fermionic formulas are given for the unrestricted
Kostka polynomials in these special cases.

In Chapter 3, we present new fermionic formulas for the charactersof N =1and N =
2 superconformal algebras using the method of Bailey construction. The work in Chapter 3
is based on the paper “Non Unitary minimal models, Bailey’s lemma and N = 1,2 su-
perconformal algebras” with Anne Schilling. This paper is published in Communications
in Mathematical Physics, Volume 260, number 3 (2005) 711-725. We show that there are
Bailey flows from the nonunitary minimal models M (p, p’) for arbitrary coprime positive
integers p,p' to N = 1 and N = 2 superconformal models. The superconformal models
are also indexed by a pair of coprime positive integers (p, p'). Denote the N = 1 supercon-
formal algebras by SM (p,p') and N = 2 superconformal algebras by A(p, p’). We find
Bailey flows specifically from the model M (p, p’) to SM (2p + p'p'), SM(p', 3p, —2p) and
to A(p, p') with central charge given by 3(1 — f}—{’). Using the known fermionic formulas for
the minimal models M (p, p’) [11], we explicitly calculate the fermionic formulas for the
characters of SM(2p + p'p’), SM(p', 3p, —2p) and A(p, p’). Moreover, we derive a new

Ramond sector character for N = 2 superconformal algebras and calculate its fermionic

1.2. Background and motivation 3

formula.

The new bijection given in Chapter 2 as well as its inverse have been implemented as
C++ programs and are included in Chapter 4. In early stages of the project on unrestricted
Kostka polynomials, these programs were used extensively to produce data and to verify
conjectures regarding the unrestricted rigged configurations. The progams have also been
incorporated into MuPAD-Combinat [58] as a dynamic module by Francois Descouens.
In Chapter 4, we describe three programs which were used to verify different parts of our
conjectures for our results presented in Chapter 2. The programs in Sections 4.1, 4.2 and
4.3 are designed for use by anyone who would like to do calculations using the bijection or
the inverse bijection. Working out the bijection for even a small example is time-consuming
and is very tedious. Therefore, we believe that these programs are very helpful to anyone
studying unrestricted Kostka polynomials. The program in Section 4.1 also calculates the
unrestricted Kostka polynomials.

Having stated the main results, it is worth mentioning that the bridge between the two
papers is fermionic formulas one of which appears in the context of combinatorial repre-
sentation theory and the other appears in conformal field theories (CFTs). The following

section provides a brief background on fermionic formulas, Kostka polynomials and CFTs.

1.2 Background and motivation

A partition A = (A, -+, Ag) is a k-tuple of positive integers satisfying A\ > XAy > -+ >
Ar > 0. Let I()) be the length of the partition A which is the number of nonzero parts. In
symmetric functions theory, the ring of symmetric functions have various bases including
the monomial symmetric functions, Schur functions, and Hall-Littlewood symmetric func-

tions [55]. The Kostka polynomial K, (g), indexed by two partitions A and is defined

1.2. Background and motivation 4

as the matrix elements of the transition matrix between the Schur functions s, (X) and the

Hall Littlewood symmetric functions P,(X;¢). That is:
$x(X) =) Kyu(q) Pu(X50). (1.2.1)
w

In representation theory, the Kostka polynomials K, ,(¢) are a g-analog of the multiplicity
of the irreducible si,, representation V), indexed by the highest weight), in the expansion of
the L-fold tensor product V(,,,y®- - -® V(.). Here pp = (p, - - -, pur) is a partition and V.,
is the symmetric tensor representation of si,, with weight 1;. These polynomials have been
generalized in many ways in algebraic combinatorics. In some generalizations, for example
[48, 51, 53, 76, 77, 78, 79, 80], the components of the tensor product are replaced by tensor
representations which are not always symmetric. In some other generalizations [30, 33, 61,
62, 69, 74], the representations of s/,, are replaced by representations of other Kac-Moody
algebras [34]. There are many combinatorial descriptions of Kostka polynomials. Lascoux

and Schutzenberger [52] gave the description
Kulg) = >, ¢, (12.2)

where T (),) is the set of semi-standard Young tableaux [27, 55] of shape A and content
w and where ¢(t) [55] is the charge statistic of the tableau ¢t € T (\,). This expression
proved the non-negativity of the coefficients of the Kostka polynomials as conjectured by
H.O. Foulkes [26].

In the mid 1980’s, Kirillov and Reshetikhin [47] used the Bethe Ansatz to obtain a
new expression for the Kostka polynomials known as a fermionic formula. A fermionic

formula is a g-polynomial or a ¢-series that is a specific sum of products of the g-binomial

1.2. Background and motivation 5

coefficients
m
= ﬂ, (1.2.3)
n (D)@ m—n
q
where
(@m=[[0=¢* for mezs and (g)o=1. (1.2.4)
k=1
When p = (1%), the fermionic formula for the Kostka polynomial looks like
Ku(@)=q 7 MO uq™) (1.2.5)
where
(a) (a)
Mowsa) =Y e I |]
{(m} 1<a<n,i>1 m;"
q
c({m}) = Z Coap Z min(z, j)m (b)
1<a b<n 3,5>1
pz('a) = Lba1 — Z Cap Z min(i,j)m()
1<b<n j>1

The {m}-indexed sum is over the set {m§“> € Zs|l < a < n,i > 1} such that for

1<a<n,>1,

Z imga) = Z)‘j'

i>1 j>a
Here (Cab)1<ap<n 1S the Cartan matrix for si,,; and the partition A has at most n+1 nonzero
parts. The importance of the fermionic formula lies in the fact that there are no minus signs.
Therefore, it can be used to study the limiting behavior, which is a key ingredient in finding

different formulas for the characters related to affine Lie algebras and Virasoro algebras.

1.2. Background and motivation 6

Some examples of such applications can be found in [31, 45].

To prove that the fermionic formula of the Kostka polynomial is given by equation
(1.2.5), Kirillov and Reshetikhin [47] gave a bijection between the set 7'(\,) and a new
combinatorial object called rigged configurations. Rigged configurations index the solu-
tions of the Bethe Ansatz equations and they are sequences of partitions satisfying certain
size restrictions along with some labellings called riggings for the parts of the partitions.
This connection between fermionic formula and Kostka polynomial is the beginning of a
whole new era of research in combinatorial representation theory.

In 1997 Nakayashiki and Yamada [60] gave a different representation of the Kostka

polynomials in terms of paths:

Kyle)=), "%, (1.2.6)
PEP (A1)

where a path p € P(\, u) is a highest weight element of weight)\ in Kashiwara’s crystal
base [37] corresponding to the tensor product representation Vi) ® V{,,) ® - - - ® V() of
sl,. The statistic E'(p) associated with a path p is called energy. This new representation
was derived by realizing that paths are in bijection with the set of rigged configurations.
This bijection is done by sending a path (which can be viewed as a word in the s/,, case) to
its Robinson-Schensted [27] recording Q-tableau, which is then sent to the rigged config-
uration using Kirillov-Reshetikhin bijection. The path form of the Kostka polynomials is
particularly important because this definition can be generalized to any Kac-Moody Lie al-
gebras using the crystal base theory. Therefore, the Kostka polynomial for any Kac-Moody
Lie algebra is defined as the generating function of paths when graded by the energy statis-
tic and is called the “one dimensional sum” X. The fermionic formula M for the “one

dinemsional sum” was conjectured in full generality by Hatayama et al. in [30, 31]. This

1.2. Background and motivation 7

is known as the famous X = M conjecture. Although this conjecure in full generality is
still open, many special cases have been proved in a series of papers [61, 62, 69, 74].

Similar to the Kostka polynomials, the unrestricted Kostka polynomials X ,,(g), in-
dexed by two partitions A and p, can be defined as the matrix elements of the transition
matrix between the monomial symmetric functions and the modified Hall-Littlewood sym-
metric functions [46, 55]. Let X\ be a partition with I(A) < n, and let P\(X,, : ¢) and
Qx(Xn; q) be the Hall-Littlewood polynomials [55]. A modified Hall-Littlewood polyno-
mial Q) (X,; ¢) is defined to be

Q\(Xn;q) = Qx(X/(1 - q);), (1.2.7)

where the variables X, /(1 — q) are the products z¢’~',j > 1 forz € X, := (z1, - ,%,).
Note that Q) (X;0) = sx(X) and Q4 (X;1) = hr(X) where hy(X) is the complete ho-
mogeneous symmetric function [55]. With this notation the Kostka polynomial can also be

defined as

Q\(X5q) = Zsu

The unrestricted Kostka polynomial, X,,(g) is then defined as
Q\(X5q) ZX)\N q)my(X).
Combinatorially [30, 31, 33, 76, 80],
X)) = Y, ¢ (1.2.8)

where P (), i) is the set of all unrestricted paths of weight A. Unrestricted paths are ele-

1.2. Background and motivation 8

ments in the crystal base of the tensor product representation V{,,y ® - - - ® V() of sl,,. The
unrestricted Kostka polynomials we described above correspond to type A,,_; Lie algebras.
One should note that the set of unrestricted paths of weight A contains the set of highest
weight paths with the same weight vector.

A fermionic formula for the A, ; unrestricted Kostka polynomials, when p is a se-
quence of row partitions or a sequence of column partitions, was proved in [31, 46]. The
existence of crystal bases have been conjectured in [32, 33] for all Kirillov-Reshetikhin
modules. A Kirillov-Reshetikhin module, W™* is a finite dimensional module over an
affine Lie algebra, which corresponds to the weight vector sA,., where A, is the fundamen-
tal weight of the affine Lie algebra. The corresponding crystal is denoted by B™*. For
Agll, the affine Lie algebra of type A, 1 [34], the existence of the Kirillov-Reshetikhin
crystals are known [43, 80]. In the type Afllll case, the weight vector sA, is a rectangular
partition of height » and width s. Having the crystal basis, it is natural to extend the defini-
tion of unrestricted Kostka polynomials to tensor products of Kirillov-Reshetikhin modules
using the path definition (1.2.8). The fermionic formula for the unrestricted Kostka poly-
nomials of type Agll in this general set up has not been studied until now. In Chapter 2 we
study these unrestricted Kostka polynomials for tensor products of all Kirillov-Reshetikhin
modules of type ASZI and present new fermionic formulas.

Recently, fermionic expressions for generating functions of unrestricted paths for type
AW have also surfaced in connection with box-ball systems. Takagi [83] establishes a
bijection between box-ball systems and a new set of rigged configurations to prove a
fermionic formula for the g-binomial coefficient. His set of rigged configurations coin-
cides with our set in the type Agl) case. There is a generalization of Takagi’s bijection to
type Agll case [50]. Hence our bijection composed with the generalized Takagi’s bijec-

tion establishes a new connection between box-ball systems and the unrestricted Kostka

1.2. Background and motivation 9

polynomials.

One of the motivations to seek an explicit expression for unrestricted Kostka polynomi-
als is their appearance in generalizations of Bailey’s lemma [7]. Bailey’s lemma is a power-
ful method to prove Rogers-Ramanujan type identities [64, 65, 68]. The Bailey transform
of [4] starts with a seed identity and produces an infinite family of identities. The orig-
inal Bailey lemma corresponds to type A;. In [76] a type A,, generalization of Bailey’s
lemma was conjectured which was subsequently proven in [86]. A type A, Bailey chain,
which yields an infinite family of identities, was given in [6]. In these generalizations a
key ingredient was an explicit fermionic formula for the unrestricted Kostka polynomial.
If the method we used in this thesis to find the new fermionic formula for the unrestricted
Kostka polynomial can be generalized to other Kac-Moody algebras, it might trigger fur-
ther progress towards generalizations of the Bailey’s lemma to Kac-Moody algebras other
than type A,. Unrestricted rigged configurations for the simply laced type Lie algebras
have already been studied in [70].

In the physics context, finding explicit formulas for the characters of the the solvable lat-
tice models has been a fundamental problem. The minimal models denoted by M (p, p') are
conformal field theories (CFT) invented by Belvin, Polyakov and Zamolodchikov [13, 14].
These are conformally invariant two dimensional field theories, which describe second or-
der phase transitions. The symmetry algebras of these theories are the infinite dimensional
algebras known as the Virasoro algebras. The Virasoro algebra is generated by generators
L,, satisfying

C 3

[Ly, L] = (n — m)Lpyin + E(n —n)0pimp, fOr m,n€Z, (1.2.9)

1.2. Background and motivation 10

where c is the central charge given by

c(p,p) =1—- ——, (1.2.10)

where 1 < p < p’ and p, p' are coprime. Hence the minimal models are indexed by p, p'.

The conformal dimension for this model is given by

apwt — BT =ps)* = (W —p)’

1.2.11
o : (1211)
where
1<r<p-—-1,1<s<p —1.
The characters of these models are calculated in [16, 19, 67] as
XS"; ’)() = > —6/24 Z J(Jpp +rp' —sp) (jp’+5)(jp+1"))’ (1.2.12)

where (¢)s = []52,(1 — ¢*). This expression is derived by the Feigin and Fuchs con-
struction [22] of a Fock space using bosonic generators and hence known as a bosonic
formula. In 1993, Kedem et al. [17, 40, 41, 42] found a new expression for such characters
in their study of the three state Potts models. The new formula had no minus signs like the
bosonic form. They interpreted the new formula as the partition function of quasi-particles
satisfying fermionic exclusion principles and called the new expression fermionic.

The fermionic expression for the minimal models M (p, p') are calculated in [11, 84],

1.2. Background and motivation 11

which have the following form:

B)m + 3),

> m' B Am H , (1.2.13)

m restriction mg
q

where m is an n. component vector of non-negative integers which may be subject to re-
strictions in the sum, B is an n x n matrix, and A and u are n component vectors. Kedem
etal. showed in [17, 40, 41, 42] that any expression of this form can be interpreted physi-
cally. Due to this reason finding fermionic formulas is a very important problem in physics.
The character identities obtained by equating the bosonic and fermionic expression for the
CFT characters are known as Bose-Fermi identities.

As mentioned earlier, the fermionic formulas for minimal models are very well studied
but the fermionic formulas for other CFTs are not yet known in full generality. The N =1
and N = 2 superconformal algebras are two classes of CFTs where the symmetry algebras
are extended Virasoro algebras. Berkovich, McCoy and Schilling demonstrated in [10] that
some of the characters of N = 1 and NV = 2 superconformal algebras can be obtained from
the minimal models M (p — 1, p) by means of a construction known as the Bailey’s lemma.
Bailey’s Lemma first appeared in the paper [7] in 1949. Bailey observed this important
result while trying to clarify Rogers second proof of Rogers-Ramanujan (RR) identities

(1917). The first and second RR identities are

o 2 o0 o
1 n(10n+1) _ g (5n-2)(20+1))
—— " nt2)(2n (1.2.14)
3 e 2 U
® n(n+1) 1 o 0
q _ n(10n+3) _ (5n-+1)(2n+1))
= q q
,;0 @n (@ n;oo(g 1— g 2)(1 — ¢ 3)

(1.2.15)

1.2. Background and motivation 12

There are many different proofs of these identities for example [54, 64, 65, 68, 71] and
there are many generalizations [2, 15, 29, 81, 82] in the theory of partitions. It is worth
mentioning that the equality of the first two expressions of (1.2.14) is the Bose-Fermi iden-
tity for the minimal model M (2, 5). Therefore, Bose-Fermi identities can be interpreted as
a generalization of the RR-identities.

Bailey’s lemma has been a very useful method for proving RR-type g¢-identities. Slater
[81, 82] used this lemma extensively to prove 130 RR-type identities. In connecting the
Bailey construction to physics the most remarkable step was achieved when Foda and
Quano [23, 24] derived identities for the Virasoro characters using Bailey’s lemma. The
method used is a constructive procedure which starts from a polynomial generalization of
a Bose-Fermi identity of one CFT and produces a Bose-Fermi identity for the character
of another CFT. This is known as Bailey flow. Hence new fermionic formulas for CFTs
can be calculated via Bailey flow from known fermionic formulas of another CFT. The
Bailey flow from M (p — 1,p) to M (p,p + 1) is presented in [10, 24] and further flows to
some special N = 1 and N = 2 supersymmetric models are given in [10]. This led us to
investigate about Bailey flows from M (p, p’) with p, p’ arbitrary coprime positive integers
to other CFTs. In [10] it was conjectured that their methods, which was applied to the
unitary case when p = p’ — 1 can be applied to the general case. This is the problem we
study in Chapter 3. We demonstrate new Bailey flows from M (p,p’) to N =1 and N = 2
superconformal algebras and prove the conjectures of [10]. We present new Bose-Fermi
identities for the characters of N = 1 and N = 2 superconformal algebras. These new
identities can be thought of as the generalized RR-type identities for the N = 1and N = 2

superconformal characters.

13

Chapter 2

Fermionic formulasfor unrestricted

Kostka polynomials

2.1 Introduction

The Kostka numbers K, indexed by the two partitions A and 1, play an important role
in symmetric function theory, representation theory, combinatorics, invariant theory and
mathematical physics. The Kostka polynomials K, (q) are g-analogs of the Kostka num-
bers. There are several combinatorial definitions of the Kostka polynomials. For example
Lascoux and Schiitzenberger [52] proved that the Kostka polynomials are generating func-
tions of semi-standard tableaux of shape A and content p with charge statistic. In [60]
the Kostka polynomials are expressed as generating function over highest-weight crys-
tal paths with energy statistics. Crystal paths are elements in tensor products of finite-
dimensional crystals. Dropping the highest-weight condition yields unrestricted Kostka
polynomials [30, 31, 33, 76]. In the A§1) setting, unrestricted Kostka polynomials or g¢-

supernomial coefficients were introduced in [75] as g-analogs of the coefficient of z in the

2.1. Introduction 14

expansion of H;.Vzl(l +z+x%+---+27)Li. Anexplicit formula for the Afﬁl unrestricted
Kostka polynomials for completely symmetric and completely antisymmetric crystals was
proved in [31, 46]. This formula is called fermionic as it is a manifestly positive expression.

In this chapter we give a new explicit fermionic formula for the unrestricted Kostka
polynomials for all Kirillov—Reshetikhin crystals of type Agll. This fermionic formula
can be naturally interpreted in terms of a new set of unrestricted rigged configurations for
type Afllll. Rigged configurations are combinatorial objects originating from the Bethe
Ansatz, that label solutions of the Bethe equations. The simplest version of rigged configu-
rations appeared in Bethe’s original paper [8] and was later generalized by Kerov, Kirillov
and Reshetikhin [44, 47] to models with GL(n) symmetry. Since the solutions of the Bethe
equations label highest weight vectors, one expects a bijection between rigged configura-
tions and semi-standard Young tableaux in the GL(n) case. Such a bijection was given
in [47, 48]. Here we extend this bijection to a bijection ® between the new set of unre-
stricted rigged configurations and unrestricted paths. It should be noted that @ is defined
algorithmically. In [70] the bijection was established in a different manner by construct-
ing a crystal structure on the set of rigged configurations. Here we show that the crystal
structures are compatible under the algorithmically defined ® and use this to prove that ®
preserves the statistics.

The bijection ® has been implemented as a C++ program and has been incorporated
into the combinatorics package of MuPAD-Combinat by Francois Descouens [58]. The
program is given in chapter 4.

This chapter is structured as follows. In Section 2.2 we review crystals of type Agll,
highest weight paths, unrestricted paths and the definition of generalized Kostka polyno-
mials and unrestricted Kostka polynomials as generating functions of highest weight paths

and unrestricted paths respectively with energy statistics. In Section 2.3 we give our new

2.2. Unrestricted paths and Kostka polynomials 15

definition of unrestricted rigged configurations (see Definition 2.3.3) and derive from this
a fermionic expression for the generating function of unrestricted rigged configurations
graded by cocharge (see Section 2.3.2). The statistic preserving bijection between unre-
stricted paths and unrestricted rigged configurations is established in Section 2.4 (see Defi-
nition 2.4.7 and Theorem 2.4.1). As a corolloray this yields the equality of the unrestricted
Kostka polynomials and the fermionic formula of Section 2.3 (see Corolloray 2.4.2). The
result that the crystal structures on paths and rigged configurations are compatible under
® is stated in Theorem 2.4.14. Most of the technical proofs are relegated to the last three

sections. An extended abstract of this chapter can be found in [18].

2.2 Unrestricted paths and Kostka polynomials

2.2.1 Crystals B™* of type AW

n—1

Kashiwara [37] introduced the notion of crystals and crystal graphs as a combinatorial
means to study representations of quantum algebras associated with any symmetrizable
Kac—Moody algebra. In this paper we only consider the Kirillov—Reshetikhin crystal B"™*
of type ASZI and hence restrict to this case here.

As a set, the crystal B™* consists of all column-strict Young tableaux of shape (s") over
the alphabet {1,2,...,n}. As a crystal associated to the underlying algebra of finite type
An_1, B™* is isomorphic to the highest weight crystal with highest weight (s"). We will
define the classical crystal operators explicitly here. The affine crystal operators ey and fy
are given explicitly in [80]. Since we do not use these operators we will omit the details.

Let 7 ={1,2,...,n—1} be the index set for the vertices of the Dynkin diagram of type
A, 1, P the weight lattice, {A; € P | i € I} the fundamental roots, {«;; € P | i € I} the

2.2. Unrestricted paths and Kostka polynomials 16

simple roots, and {h; € Homy(P,Z) | i € I} the simple coroots. As a type A,,_; crystal,
B = B"™* is equipped with maps e;, f; : B— BU{0}andwt : B — Pforalli e I

satisfying

f;(b) =b' < e;(b)) =bifb,b' € B
wi(fi(b)) = wt(b) — o if f;(b) € B

(hs, wt(b)) = @i(b) — &4(b),

where (-, -) is the natural pairing. The maps f;, e; are known as the Kashiwara operators.

Here for b € B,

g;(b) = max{k > 0| e¥(b) # 0}

¢i(b) = max{k > 0 ff(b) # 0}.

Note that for type A,,_;, P = Z" and o;; = ¢; —€;41 Where {¢; | i € I} is the standard basis
in P. Here wt(b) = (wy, ..., w,) is the weight of b where w; counts the number of letters
iinb.

Following [38] let us give the action of e; and f; fori € I. Let b € B™*® be a tableau
of shape (s"). The row word of b is defined by word(b) = w, - - - wyw; Where wy is the
word obtained by reading the k-th row of b from left to right. To find f;(b) and e;(b) we
only consider the subword consisting of the letters 7 and 7 + 1 in the word of b. First view
each 7 + 1 in the subword as an opening bracket and each 7 as a closing bracket. Then we
ignore each adjacent pair of matched brackets successively. At the end of this process we
are left with a subword of the form #(i +1)9. If p > 0 (resp. ¢ > 0) then f;(b) (resp. e;(b))

is obtained from b by replacing the unmatched subword 7(i + 1) by = (7 + 1)4* (resp.

2.2. Unrestricted paths and Kostka polynomials 17

41,42, 3, ... n-l‘

Figure 2.1: Crystal B!,

P+ 1)), If p = 0 (resp. ¢ = 0) then f;(b) (resp. e;(b)) is undefined and we write
fi(b) = 0 (resp. e;(b) = 0).

A crystal B can be viewed as a directed edge-colored graph whose vertices are the
elements of B, with a directed edge from b to &’ labeled i € I, if and only if f;(b) = ¥'.

This directed graph is known as the crystal graph.

Example 2.2.1. The crystal graph for B = B%! is given in Figure 2.1.

Given two crystals B and B’, we can also define a new crystal by taking the tensor
product B ® B'. As aset B® B’ is just the Cartesian product of the sets B and B’. The
weight function wt for b ® b' € B® B'iswt(b® b') = wt(b) + wt(b') and the Kashiwara

operators e;, f; are defined as follows

p
eib X b oif Sz(b) > (Pz(b’),
b®e;b otherwise,

\

(

filb®@b') = <

b® f;b' otherwise.
\

This action of f; and e; on the tensor product is compatible with the previously defined

action on word (b ® b') = word(b)word (V).

2.2. Unrestricted paths and Kostka polynomials 18

Example 2.2.2. Leti = 2 and

973
b=;§®34.
45

Then word (b) = 2312453423, the relevant subword is 23 —2 — —3 — 23, and the unmatched

subwordis2 — — — — — — — — 3. Hence
213 212
f2(b)=:13§®34 and 62(1)):%%@34.
415 415

2.2.2 Paths and unrestricted paths

Let B = B @ Bri-18-1 @ ... ® BT,

A highest weight path or simply path is an element b € B such that e;(b) = 0 for all
1 < i < n—1. Itis known that the weight vector of a highest weight element for type
An_1 is a partition with atmost n nonzero parts. Let A = (A1, Ao, ..., A,) be a partition
with atmost n nonzero parts, then the set of all highest weight paths of weight A and shape

B is defined as

P(B,\)={be B|wt(b) =X ande;(b)=0forall1 <i<n-—1}.

An unrestricted path is an element in the tensor product of crystals B = B+ ®
Bre-vsk-1 @ ... @ B™S1, Let A = (A, Ao, ..., A,) be an n-tuple of nonnegative integers.

The set of unrestricted paths is defined as

P(B,)) = {be B|wt(b) = A}.

2.2. Unrestricted paths and Kostka polynomials 19

Note that the weight of an unrestricted path need not be a partition.

Example 2.2.3. For B = B! @ B%? @ B! of type A3 the path

® 2

b=[1le

o

is a highest weight path of weight A = (2, 2,2,1). The path

b:®%i®
4

is an unrestricted path of weight A = (2,3, 1, 2).

There exists a crystal isomorphism R : B™* ® B"* — B"* @ B, called the com-
binatorial R-matrix. Combinatorially it is given as follows. Let b € B™* and b’ € B"*
The product b - b" of two tableaux is defined as the Schensted insertion of 4’ into . Then
R(b® V') = I ® b is the unique pair of tableaux such that b - o' = ¥’ - b.

The local energy function H : B™* @ B"*' — Z is defined as follows. For b @ b’ €
B @ B™*, H(b® V') is the number of boxes of the shape of b - b’ outside the shape

obtained by concatenating (s") and (s).

Example 2.2.4. For

r_[1]2
b®b:24®
we have
1]1]3 13 o
b-b’:224:-24:b’b
4]
so that

—
w

=
S
&®
<
Il
=
S
I
ol
&®

2.2. Unrestricted paths and Kostka polynomials 20

Since the concatentation of and @ is , the local energy function H(b®b') =

0.

Now let B = B™% ® --- ® B be a k-fold tensor product of crystals. The tail

energy function 5 : B — Z is given by

B(b) = Y Hj_iRj 5+ Ry Ri(b),
1<i<j<k
where H; (resp. R;) is the local energy function (resp. combinatorial R-matrix) acting on

the i-th and (i + 1)-th tensor factors of b € B.

Definition 2.2.5. The generalized Kostka polynomial K ,(q) with 4 = (Ry,---,R)
where R; is a rectangular partition of height r; and width s; is the generating function

of highest weight paths with the tail energy function

AW _unrestricted Kostka polynomials or supernomial coefficients were first introduced

n—1"

in [76] as generating functions of unrestricted paths graded by an energy function.

Definition 2.2.6. The g-supernomial coefficient or the unrestricted Kostka polynomial

is defined as
x(BN= Y PO
)

beP(B,A

2.3. Unrestricted rigged configurations and fermionic formula 21

2.3 Unrestricted rigged confi gurations and fermionic for-
mula

Rigged configurations are combinatorial objects invented to label the solutions of the Bethe
equations, which give the eigenvalues of the Hamiltonian of the underlying physical model [8].
Motivated by the fact that representation theoretically the eigenvectors and eigenvalues can
also be labelled by Young tableaux, Kirillov and Reshetikhin [47] gave a bijection between
tableaux and rigged configurations. This result and generalizations thereof were proven
in [48].

In terms of crystal base theory, the bijection is between highest weight paths and rigged
configurations. The new result of this paper is an extension of this bijection to a bijection
between unrestricted paths and a new set of rigged configurations. The new set of unre-
stricted rigged configurations is defined in this section, whereas the bijection is given in
section 2.4. In [70], a crystal structure on the new set of unrestricted rigged configurations

is given, which provides a different description of the bijection.

2.3.1 Unrestricted rigged configurations

Let B = Bresk@- - -@B ™1 and denote by L = (L) | (a, i) € H) the multiplicity array of
B, where LZ@ is the multiplicity of B in B. Here H = I x Zwgand I = {1,2,...,n—1}
is the index set of the Dynkin diagram A,,_;. The sequence of partitions v = {+{@ | a € I}

isa (L, A)-configuration if

Yo imPag= Y LA, - A, (2.3.1)

2.3. Unrestricted rigged configurations and fermionic formula 22

where m§“> is the number of parts of length 7 in partition (*). Note that we do not require A
to be a dominant weight here. The (quasi-)vacancy number of a configuration is defined

as

p = " min(i, 5) L — 3" (u]as) min(i, j)m.

j>1 (bj)EH
Here (-|-) is the normalized invariant form on the weight lattice P such that (c;|c;) is
the Cartan matrix. Let C(L, \) be the set of all (L, \)-configurations. We call pg“) quasi-
vacancy number to indicate that they can actually be negative in our setting. For the rest of
the paper we will simply call them vacancy numbers.

When the dependence of m® and p{* on the configuration » is crucial, we also write
m{® (v) and p{* (v), respectively.

In the usual setting a rigged configuration (v, .J) consists of a configurationv € C(L, \)
together with a double sequence of partitions J = {J®% | (a,i) € H} such that the
partition J(*% is contained in am§“> sz(“) rectangle. In particular this requires that p§“> > 0.
For unrestricted paths we need a bigger set, where the lower bound on the parts in .J(@?)
can be less than zero.

To define the lower bounds we need the following notation. Let \' = (¢1, ¢, .-, ¢, 1)"
where ¢y = Agy1+ Agyo+- - -+ A, Wealso set ¢y = ¢;. Let A()\') be the set of tableaux of
shape A’ such that the entries in column & are from the set {1,2, ..., ¢x_1} and are strictly

decreasing along each column.

Example 2.3.1. Forn = 4 and A = (0,1, 1,1), the set A(\") consists of the following

tableaux

2] 312] 2]2] 1] 3[1]

DN | Qo
DN |

3]2]1]
201 .
1]

‘»—nwoa

3
2
1

—
‘»—nww
—

3
2
1

‘r—nwoo
—_

Note that each ¢t € A(\) is weakly decreasing along each row. This is due to the fact

2.3. Unrestricted rigged configurations and fermionic formula 23

that¢;, > c,—j+1 since column k of height ¢, is strictly decreasing and ¢, —j+1 > t; 541
since the entries in column & + 1 are from the set {1,2, ..., ¢k}

Givent € A(X'), we define the lower bound as

Ca+1

ME(8) = =Y X0 > tia) + Y x(i > tian),
j=1

i=1

where ¢, , denotes the entry in row j and column a of ¢, and x(S) = 1 if the the statement

S is true and x(S) = 0 otherwise.

2]
from example 2.3.1 some of the lower bounds

DN |0

Example 2.3.2. For the tableau ¢t =

|»—Amoo

are given by
MO () = -1, M () = -1, MP (t) = 0, M{P (t) = —1, M (t) = —1.

Let M,p,m € Z such that m > 0. A (M, p, m)-quasipartition p is a tuple of integers
p= (p1, poy - - -5 pm) SUCh that M < gy, < i1 < --- <y < p. Each y; is called a
part of p. Note that for M = 0 this would be a partition with at most m parts each not

exceeding p.

Definition 2.3.3. An unrestricted rigged configuration (v, J) associated to a multiplicity
array L and weight) is a configuration v € C(L, \) together with a sequence .J = {.J(@9 |
(a,i) € H} where J@ is a (M (1), p*, m{*)-quasipartition for some ¢ € A(X'). De-

2

note the set of all unrestricted rigged configurations corresponding to (L,) by RC(L,)).
Remark 2.3.4.

1. Note that this definition is similar to the definition of level-restricted rigged config-

urations [73, Definition 5.5]. Whereas for level-restricted rigged configurations the

2.3. Unrestricted rigged configurations and fermionic formula 24

vacancy number had to be modified according to tableaux in a certain set, here the

lower bounds are modified.

2. Fortype A; we have A = (A1, \2) so that A = {¢} contains just the single tableau

A

A —1

In this case M;(t) = — Z;il x(i > t;1) = —i. This agrees with the findings of [83].

The quasipartition J(*% is called singular if it has a part of size pi“). It is often useful
to view an (unrestricted) rigged configuration (v, J) as a sequence of partitions where the
parts of size 4 in () are labeled by the parts of J(%%). The pair (i, z) where i is a part of
(@ and z is a part of J(®" is called a string of the a-th rigged partition (v, .J)(@. The label

x is called a rigging.

Example 2.3.5. Letn =4, A = (2,2,1,1), Lgl) = 6 and all other LZ(-“) = 0. Then

(v, J) = — -2 LT lo [Ll=1

L 10

is an unrestricted rigged configuration in RC(Z, \), where we have written the parts of .J (%)
next to the parts of length 4 in partition »(®). To see that the riggings form quasipartitions,

let us write the vacancy numbers pz(“) next to the parts of length in partition »(®):

o 1y Oon

L 13

2.3. Unrestricted rigged configurations and fermionic formula 25

This shows that the labels are indeed all weakly below the vacancy numbers. For

=~

1]
e A(N)

|+—x‘wwq>
30

we get the lower bounds

— |1_2 T1o [1-1

which are less or equal to the riggings in (v, J).

Let B= B™% @ ---® B> and L the corresponding multiplicity array. Let (v, J) €
RC(L,)\). Note that rewritting (2.3.1) we get
k

@] = Z Aj— Z s;max(r; — a,0). (2.3.2)

j>a j=1

Hence for large 4, by definition of vacancy numbers we have

p,(a) = =] — 2@ 4 pletD)] 4 Zmin(’i,j)[/g-a)

F (2.3.3)
=)\a -)‘a—l—l
and
Ca Ca+1
M () = = x(i 2 t50) + 3 x(0 2 tas)
o =1 (2.3.4)

= —Cq + Cqt1 = _/\a—|—1-

2.3. Unrestricted rigged configurations and fermionic formula 26

For a givent € A(\') define

ApP(t) = pi” = M (@).

i

We write Ap{® for Ap{® (¢) when there is no cause of confusion. For large i, Ap{® (t) = A,.

From the definition of p§“> one may easily verify that
—pih + 29 = p > m Y —2m(® 4 . (235)
Let ¢. , denote the a-th column of ¢. Then it follows from the definition of M (¢) that
M () = M™ (1) = x(i € t.q) + X(i € t.as1)-

Hence (2.3.5) can be rewritten as

— AP 4+ 2Ap8 — AP — x(i € ty) + X(i € tgrn)

Fx(i+1€ty) —x(E+1Etg)>m ™ —2ml® +ml*V . (2.3.6)

1

Lemma 2.3.6. Suppose that for some ¢ € A()'), Ap{”)(¢) > 0 forall @ € I and i such that

i

mz(-“) > 0. Then there exists a ¢’ € A()\’) such that Ap,E“) (t") > 0 for all 7 and a.

Proof. By definition Ap{® (t) = 0 and Ap{”(t) = A, > 0 for large i. By (2.3.6)

T . | ~
Ap (1) = S{ AP (1) + Ap{Pi (1) + X (i € t.0) = X(i € tai)

—x(i+1€ty)+x(E+1€ta)+m® D +m*M} (2.3.7)

2.3. Unrestricted rigged configurations and fermionic formula 27

when m” = 0. Hence Ap{”(¢) < 0 is only possible if m"™" = m{*™ = 0, column
a of ¢ contains ¢ 4+ 1 but no 4, and column a + 1 of ¢ contains ¢ but no 7 4+ 1. Let k£ be
minimal such that Apz(k) (t) < 0. Note that £ > 1 since the first column of ¢ contains all
letters 1,2,...,¢;. Let k' < k be minimal such that Apz(“)(t) =0foral ¥ <a < k.
Then inductively fora = k — 1,k — 2,..., k' it follows from (2.3.7) that mz(.“_l) = 0 and
column a of ¢ contains 7 + 1 but no 7. Construct a new ¢’ from ¢ by replacing all letters
i+ 1incolumns &', k' + 1,..., k by . This accomplishes that Apj“) (t") > 0 for all j and
1<a<k Api”(#) > 0,and Ap\” (') > 0 for all a > & such that m{® > 0. Repeating
the above construction, if necessary, eventually yields a new tableau ¢” such that finally
Ap® (") > 0 for all j and a. O

J

2.3.2 Fermionic formula

The following statistics can be defined on the set of unrestricted rigged configurations. For
(v, J) € RC(L, \) let
ce(v,J) = ce(v Z | J@d],

(ag)eH

where | J(@9| is the sum of all parts of the quasipartition J(»%) and

v) = % Z Z (0| ap) min(y, k)m()mg’).

a,bel §,k>1

Definition 2.3.7. The RC polynomial is defined as

M(L,)\) — Z qcc(U,J)‘
(v,J)ERC(L,A)

The RC polynomial is in fact S,,-symmetric in the weight A. This is not obvious from

2.3. Unrestricted rigged configurations and fermionic formula 28

its definition as both (2.3.1) and the lower bounds are not symmetric with respect to .

Let SA()\) be the set of all nonempty subsets of .A()\’) and set
M(S) = max{M™(t) |t € S} for S e SAWN).
By inclusion-exclusion the set of all allowed riggings for a given v € C(L, \) is

U ()R gedisa (M (S), pi*, m®)-quasipartition}.
SESA(N)

The g-binomial coefficient [™*7], defined as

"=

where (¢), = (1 — q)(1 — ¢*)--- (1 — ¢"), is the generating function of partitions with at

most m parts each not exceeding p. Hence the polynomial M (L,) may be rewritten as

ML) = > (-8 3y~ O @ien ™ MS)
SESA(N) veC(L,A)
[mgn ol —M(S)

i
m§“)

< 11

(ag)eH

called fermionic formula. This formula is different from the fermionic formulas of [31, 46]
which exist in the special case when L is the multiplicity array of B = B @ - - - @ Bl

orB=B"®-..-@ B!,

2.4. Bijection 29

2.4 Bijection

In this section we define the bijection ® : P(B, \) — RC(L, \) from paths to unrestricted
rigged configurations algorithmically. The algorithm generalizes the bijection of [48] to

the unrestricted case. The main result is summarized in the following theorem.

Theorem 2.4.1. Let B = B"™% @ --- ® B™*1, L the corresponding multiplicity array
and A = (Aq,...,A,) a sequence of nonnegative integers. There exists a bijection & :
P(B,\) — RC(L,\) which preserves the statistics, that is, 5(b) = cc(®(b)) for all
be P(B,A).

A different proof of Theorem 2.4.1 is given in [70] by proving directly that the crystal
structure on rigged configurations and paths coincide. The results in [70] hold for all for
all simply-laced types, not just type Affll. Hence Theorem 2.4.1 holds whenever there
is a corresponding bijection for the highest weight elements (for example for type DY
for symmetric powers [74] and antisymmetric powers [70]). Using virtual crystals and
the method of folding Dynkin diagrams, these results can be extended to other affine root
systems.

Here we use the crystal structure to prove that the statistics is preserved. It follows from
Theorem 2.4.14 that the algorithmic definition for ® of this thesis and the definition of [70]
agree.

An immediate corollary of Theorem 2.4.1 is the relation between the fermionic for-
mula for the RC polynomial of section 2.3 and the unrestricted Kostka polynomials of

section 2.2.

Corollary 2.4.2. With the same assumptions as in Theorem 2.4.1, X (B, \) = M (L, \).

2.4. Bijection 30

2.4.1 Operations on crystals

To define ® we first need to introduce certain maps on paths and rigged configurations.

These maps correspond to the following operations on crystals:
1. If B= B @ B', let1h(B) = B'. This operation is called left-hat.

2. If B=B"*®B'withs > 2, letls(B) = B"'® B"*~'® B'. This operation is called
left-split.
3. If B=B"'® B'withr > 2, letIb(B) = B @ B"1! @ B’. This operation is

called box-split.

In analogy we define 1h(L) (resp. 1s(L), Ib(L)) to be the multiplicity array of 1h(B) (resp.
Is(B), Ib(B)), if L is the multiplicity array of B. The corresponding maps on crystal

elements are given by:
1. Letb=c®V € B"' ® B'. Then1h(b) =¥

2. Letb=c®b € B ® B', where ¢ = cycy - - - ¢, and ¢; denotes the i-th column of c.

Thenls(b) =ci ®co---cs V.

by
by
b
3. Letb=|—®V € B"'®B',where b, < --- < b,. Thenlb(b) =| b |®| : |®0.
brfl
by

In the next subsection we define the corresponding maps on rigged configurations, and

give the bijection in subsection 2.4.3.

2.4. Bijection 31

2.4.2 Operations on rigged configurations

Suppose Lgl) > 0. The main algorithm on rigged configurations as defined in [47, 48] for
admissible rigged configurations can be extended to our setting. For a tuple of nonnegative
integers A = (A1,...,\,), let A~ be the set of all nonnegative tuples . = (1, - - -, pn) Such
that A — . = ¢, for some 1 < r < n where ¢, is the canonical r-th unit vector in Z". Define
6 : RC(L, A) = U,ea- RC(IR(L), p) by the following algorithm. Let (v, J) € RC(L, A).
Set (9 = 1 and repeat the following process for a = 1,2, ..., n — 1 or until stopped. Find
the smallest index i > ¢(@=1) such that J(*% is singular. If no such 5 exists, set rk(v, J) = a
and stop. Otherwise set £(*) = 5 and continue with a + 1. Set all undefined £(*) to co.

The new rigged configuration (7, J) = (v, J) is obtained by removing a box from the

selected strings and making the new strings singular again. Explicitly

/

1 if; =¢@ —1
m? (@) =mP W)+ 1 ifi = (@

0 otherwise.

\

The partition .J(@9 is obtained from .J(@ by removing a part of size p\® (v) for i = ¢,

%

adding a part of size p(“)(ﬂ) for i = ¢(@ — 1, and leaving it unchanged otherwise. Then

i

6(v,J) € RC(Ih(L),) where pp = A — €y,).
Proposition 2.4.3. § is well-defined.
The proof is given in section 2.5.

Example 2.4.4. Let L be the multiplicity array of B = B! @ B?! @ B?3 and \ =

2.4. Bijection 32

(2,2,2,1,1,1). Then

[o

e =— "t -1 [[1le [I0-1 [J-1€RoEy.
— L -1

Writing the vacancy numbers next to each part instead of the riggings we get

o
- o7 170 [T Mo

Hence /(1) = ¢(2) = 1 and all other #(%) = o, so that

s) =[T1-1 L0 [T1]o -1 [Nz

L -1

Also rk(v, J) = 3 and cc(v, J) = 2.

The inverse algorithm of § denoted by 6! is defined as follows. Let Lgl) = fgl) +
1,L¥) = T forall 4,k # 1. Let X be aweight and A = X + ¢, for some 1 < r < n.
Define 5= : RC(L,\) — RC(L, \) by the following algorithm. Let (7, J) € RC(L, \).
Let s = oco. For k = r — 1 down to 1, select the longest singular string in (7, J)®) of
length s (possibly of zero length) such that s®) < s+ With the convention s(® = 0
we have s < s aswell. §7(7, J) = (v, J) is obtained from (7, J) by adding a box to
each of the selected strings, and resetting their labels to make them singular with respect to

the new vacancy number for RC(L,)), and leaving all other strings unchanged.

Example 2.4.5. Letn =6, L\ = L) =1and X = (1,1,1,2,2,1).

) =TT a0 -1 -1

-1 [

2.4. Bijection 33

is a rigged configuration in RC(L,). Forr =4

) <D~ T o [-2 P17,

Proposition 2.4.6. 6! is well defined.

This proposition will also be proved in section 2.5.

Let s > 2. Suppose B = B™* @ B’ and L the corresponding multiplicity array. Note
that C(L,\) C C(Is(L),A). Under this inclusion map, the vacancy number p§“> for v
increases by d,,x(¢ < s). Hence there is a well-defined injective map Is,. : RC(L, \) —
RC(Is(L), A\) given by the identity map ls,.(v, J) = (v, J).

Suppose r > 2 and B = B™! ® B’ with multiplicity array L. Then there is an injection
Ib,. : RC(L, \) — RC(Ib(L), \) defined by adding singular strings of length 1 to (v, J)(@

for 1 < a < r. Note that the vacancy numbers remain unchanged under Ib,...

2.4.3 Bijection

The map @ : P(B,A) — RC(L, \) is defined recursively by various commutative dia-
grams. Note that it is possible to go from B = B"+% @ B"-15%-1 @ ... ® B! to the

empty crystal via successive application of 1h, Is and 1b.

Definition 2.4.7. Define that map @ : P(B, \) — RC(L, \) such that the empty path maps

to the empty rigged configuration and such that the following conditions hold:

2.4. Bijection 34

1. Suppose B = B! @ B'. Then the following diagram commutes:

P(B,)) —*% RC(L,\)

] |

U Pn(B),) —— |J RC(h(L), p)

HEA™ HEA™
2. Suppose B = B™* @ B’ with s > 2. Then the following diagram commutes:

P(B,\) —— RO(L,\)

ISJ(j/lsrc

P(1s(B),) —— RC(Is(L), \

3. Suppose B = B™! ® B’ with r > 2. Then the following diagram commutes:

P(B,)\) —— RC(L,\)

lbl llbrc

P(Ib(B),A) —— RC(Ib(L), \)

Proposition 2.4.8. The map ® of Definition 2.4.7 is a well-defined bijection.
The proof is given in section 2.6.

Example 2.4.9. Let B= B% @ B® @ B3 and A = (2,2,2,1,1,1). Then

—

_ 2|3
b—®® 1506 € P(B,)\)

and ®(b) is the rigged configuration (v, J) of Example 2.4.4. We have ﬁ(b) =cc(v,J) =
2.

2.4. Bijection 35

Example 2.4.10. Letn = 4, B = B>? @ B>! and A = (2,2,1,1). Then the multiplicity
array is L§2) =1, Lf) =land LE“) = 0 for all other (a, 7). There are 7 possible unrestricted
paths in P(B,\). For each path b € P(B,\) the corresponding rigged configuration

(v, J) = ®(b) together with the tail energy and cocharge is summarized below.

p= 1 ;@E w)=lo =2 Do D(b) =0 = ee(w, J)
b= atied wn=0-14° o D) =1 = ee(w, J)
b= %@i @H=Tlo —0 [O-1 D) =1 = celw, J)
b = ;Z@E w,J) = [:91 o D®)=1=cclw,J)
b=yl @ = HO Do D) =2 = ee(w, J)
b=y @)= o1 (1o -1 DB =0=cew))
b= alied] e = Do T (-1 Do) =1=)

The unrestricted Kostka polynomial in this case is M (L, \) = 2 + 4q + ¢*> = X (B, \).

2.4.4 Crystal operators on unrestricted rigged configurations

Let B = B"**®---®B"-* and L be the multiplicity array of B. Let P(B) = |J, P(B, \)
and RC(L) = [J, RC(L, \). Note that the bijection ® of Definition 2.4.7 extends to a
bijection from P(B) to RC(L). Let f, and e, for 1 < a < n be the crystal operators acting
on the paths in P(B). In [70] analogous operators f, and &, for 1 < a < n acting on rigged

configurations in RC(L) were defined.

2.4. Bijection 36
Definition 2.4.11. [70, Definition 3.3]

1. Define &,(v, J) by removing a box from a string of length & in (v, J)(@ leaving all
colabels fixed and increasing the new label by one. Here £ is the length of the string
with the smallest negative rigging of smallest length. If no such string exists, é, (v, J)

is undefined.

2. Define f, (v, .J) by adding a box to a string of length & in (v, J)(® leaving all colabels
fixed and decreasing the new label by one. Here & is the length of the string with
the smallest nonpositive rigging of largest length. If no such string exists, add a
new string of length one and label -1. If the result is not a valid unrestricted rigged

configuration £,(v, J) is undefined.

Example 2.4.12. Let L be the multiplicity array of B = B'? ® B>? @ B>! and let

[[]-3 [To |1
v,J) =— — € RC(L).
(v, J) -1 HE -, (L)
Then
fw)= L 113 [11 [[]-2
v J) -1 1 -1
and és(v,J)zj_;D_3 0' EEARNEE

Define @o(v,J) = max{k > 0 | fo(r,J) # 0} and &,(v,J) = max{k > 0 |

é.(v,J) # 0}. The following Lemma is proven in [70].

Lemma 2.4.13. [70, Lemma 3.6] Let (v, J) € RC(L). For fixeda € {1,2,...,n — 1}, let
p= pz(“) be the vacancy number for large 7 and let s < 0 be the smallest nonpositive label

in (v, J)@; if no such label exists set s = 0. Then @,(v, J) = p — s.

2.5. Proof of Propositions 2.4.3 and 2.4.6 37

Theorem 2.4.14. Let B = B™* @ ---® B"*1 and L the multiplicity array of B. Then

the following diagrams commute:

P(B) —2— RC(L) P(B) —2— RC(L)

; i

P(B) — RC(L) P(B) — RC(L).

R
I
e
—
™
e

(2.4.1)

The proof of Theorem 2.4.14 is given in section 2.7. Note that Proposition 2.4.8 and
Theorem 2.4.14 imply that the operators f,, é, give a crystal structure on RC(L). In[70] it

is shown directly that f, and &, define a crystal structure on RC(L).

2.45 Proof of Theorem 2.4.1

By Proposition 2.4.8 @ is a bijection which proves the first part of Theorem 2.4.1. By
Theorem 2.4.14 the operators f, and &, give a crystal structure on RC(L) induced by
the crystal structure on P(B) under ®. The highest weight elements are given by the
usual rigged configurations and highest weight paths, respectively, for which Theorem 2.4.1
is known to hold by [48]. The energy function ﬁ is constant on classical components.
By [70, Theorem 3.9] the statistics cc on rigged configurations is also constant on classical

components. Hence ® preserves the statistic.

2.5 Proof of Propositions2.4.3and 2.4.6

In this section we prove Propositions 2.4.3 and 2.4.6, namely that ¢ is a well-defined bijec-

tion. The following remark will be useful.

Remark 2.5.1. Let (v, J) be admissible with respectto ¢t € .A(\"). Suppose that Apf.'f)l (t)+

2.5. Proof of Propositions 2.4.3 and 2.4.6 38

Apgi)l (t) > 1and Apgk) (t) = mgk)(z/) = 0. Then by (2.3.6) there are five choices for the

letters ¢ and 4 + 1 in columns £ and k£ + 1 of ¢
1. 74+ 1 incolumn k;
2. 1+ 1lincolumnkand k£ + 1, ¢ incolumn k + 1;
3. ¢incolumn k + 1;
4. ¢incolumnkand k + 1,7+ 1 in column £;
5. ¢4+ 1incolumnk, ¢ in column k + 1.

In cases 1 and 2 we have m* " (v/) = 0. Changing letter ; + 1 to 7 in column % to form a
new tableau ¢’ has the effect Mi(k)) = Mi(k) (t) — 1, Mi(k_l) () = Mi(k_l)(t) + 1 andall
other lower bounds remain unchanged. In cases 3 and 4 we have m§’“+1) (v) = 0. Changing
letter 7 to 7+1 in column £+1 to form a new tableau ¢’ has the effect Mi(k) (') = Mi(k) (t)—1,
Mf'“*l)(t’) = Mi(k“)(t) + 1 and all other lower bounds remain unchanged. Finally in case

(k—1)
i

5 either m{* () = 0 or m{* ™ () = 0. Changing i + 1 to i in column & (resp. i to i + 1
in column £ + 1) has the same effect as in case 1 (resp. case 3).
This shows that under the replacement ¢ — ¢’ we have Apz(-k) (t') > 0and by Lemma 2.3.6

(v, J) is admissible with respect to some tableau ¢".

Let A be a weight such that A, > 0 foragiven 1 < r < n. Set A = X — ¢,. Recall that
Ck = Aky1 + Aego + -+ - + Ay IS the height of the k-th column of ¢ € A()'). Let us define
the map D, : A(X) — A(X) with T = D, (t) as follows. If t1, < cr—1 then

3 ti—l—l,kz fOflSkST—land1§i<0k,
lik = (2.5.1)

tik forr <k <nandl <i<g.

2.5. Proof of Propositions 2.4.3 and 2.4.6 39

If t,, = c,—1 then there exists 1 < j < ¢, suchthat¢;, = t,_;, —1for2 <7 < jand

tiy1,r < tjr —1if j <c.. Inthis case

)
Lit1k for1<k<r—1landl<i< ¢,

tir—1 fork=rand1<i<j,
= (2.5.2)

Lir fork=randj <i <gc,,

!

ik forr<k<nandl <i<g.

\

Note that by definition the entries of D,.(¢) are strictly decreasing along columns. Let
Tk = Agy1+- -+, Thenwe havec, = ¢, —1for1 <k <r—1landg, =c,forr <k <
n. Again by definition ¢, € {1,2,--- ,¢;} forall1 < j <& and?;, € {1,2,---,¢_1}

forall2 < j <@ and 1 < k < n. Therefore, D, (t) € A(X’).

3/3|2]
Example 2.5.2. Lett =[2 1| andr =3. ThenD,(t) =
1

2/1[1]
: :

We will use the following lemma and remark in the proofs.

Lemma2.5.3. Let B= B ®---® Bt withr; = 1 = 5. Let (¥, J) = §(v, J) and let

tk(v, J) =r. For 1 < k < r leti = t; ;. Then one of the following conditions hold:
1. mgk)(y) =0or

2. m{®(v) = 1, in which case § selects the part of length i in /).

i

Proof. Note thati = ¢, > ¢;. By (2.3.2) we have [v®)| < ¢, so that either m\"” (v) = 0
or i = ¢, and v(¥) consists of just one part of size 7. In this case mg’“)(u) = 1and ¢ hasto

select this single part. O

2.5. Proof of Propositions 2.4.3 and 2.4.6 40

Remark 2.5.4. By (2.3.2) we have

) = D = A\ 4+ six(ri >)

i>1
\1/(”1)\ = \1/(’_1)| — A=Ay +2 Zsix(ri >r)— Z Si0p, -

i>1 i>1

Note that fora > 0

Zmin(a, i)LET) = Z siX(si < a)dp;r + Z ax(si > a)or, .

i>1 i>1 i>1

Then if || = ¢,_; — k for some & > 0 it follows that

=2/ 4 || 4 Zmin(a, z')LZ(r) =—2\j1—Cp1+ k— Zmax(si —a,0)6,, ,.

i>1 i>1
Proof of Proposition 2.4.3. To prove that ¢ is well-defined it needs to be shown that (v, J)

5(v,J) € RC(L,). Here Tis given by T\ = LV — 1, T\ = L@ for all other 7, a, and

A=\ — ¢ wherer = rk(v, J).

Let us first show that X indeed has nonnegative entries. Assume the contrary that), <
0. This can happen only if A, = 0 . Suppose ¢ € A(X) is such that M, " (t) < p{* (v) for
all j, k. By (2.3.3), p{" (v) = — 1 for large i. Let ¢ be the size of the largest part in v,
so that mg.”(u) = 0 for j > ¢. By definition of vacancy numbers, p{” (v) > pg.”(u) for
i > j > ¢. Also we have M]m (t) > — .41 forall 5. Hence, —), < M;T)(t) < p(.’")(z/) <

J
PET)(V) = —Ar41 implies

MP(t) = M) =7 (v) =97 (v) forall £ <j <. (253)

2.5. Proof of Propositions 2.4.3 and 2.4.6 41

This means that the string of length £ in (v, J)™ is singular and Apg.’") (t) =0forall j > 2.
We claim that mg-’"_l)(u) = 0 for 7 > ¢. By (2.3.6) we get

S==x(j€ty)+xU€typ) +xU+1€t,)—x(U+1€Etr4)

(r—1) (r+1)
>m; (v) + m; (v)

for j > £. Clearly, mg-r_l)(l/) =0unless1 < S <2 IfS=2wehavej+1c¢€t.,

and j € t.,41 which implies M]@ t) = M7

+71(t) + 1, a contradiction to (2.5.3). Hence

S = 2 is not possible. Similarly, we can show that S = 1 is not possible. This proves
that mg.’"_l)(u) = 0 for j > £ Hence £~V < ¢ which contradicts the assumption that
r = 1k(v, J) since (v, J)™) has a singular string of length £. Therefore), > 0.

Next we need to show that (7, J) is admissible, which means that the parts of .J lie
between the corresponding lower bound for some ¢ € A(X') and the vacancy number. Let
t € A()\) be such that (v, J) is admissible with respect to ¢. By the same arguments as in

the proof of Proposition 3.12 of [48] the only problematic case is when
m®) =0, ApP (1) =0, D < andfinite (2.5.4)

where £ = (),

Assume that Apﬁ’i)z (t)+Ap§k) (t) > 1and (2.5.4) holds. By Remark 2.5.1 with i = ¢/—1,
there exists a new tableau ¢’ such that Ap{, (') > 0 so that the problematic case is avoided.

Hence assume that Apéli)z(t) + Apﬁk) (t) = 0 and (2.5.4) holds. Let ¢’ < ¢ be maximal
such that mff)(u) > 0. If no such ¢’ exists, set ¢/ = 0.

Suppose that there exists ¢’ < j < £ such that Ap;-k_)l (t) > 0. Let i be the maximal such

j. Then by Remark 2.5.1 we can find a new tableau ¢’ such that Apgk) (#) > 0and (v, J)

2.5. Proof of Propositions 2.4.3 and 2.4.6 42

is admissible with respect to #'. Repeating the argument we can achieve Apgi)l (t") > 0 for
some new tableau ¢”, so that the problematic case does not occur.

Hence we are left to consider the case Ap(™) (¢) = 0 forall ¢ < i < ¢. Ifm{¥ V(v) =0
forall ¢/ < i < ¢, then by the same arguments as in the proof of Proposition 3.12 of [48] we
arrive at a contradition since ¢*=1 < ¢/, but the string of length ¢ in (v, J)®) is singular
which implies that £%) < ¢ < ¢. Hence there must exist ¢ < i < £such that m{* " (1) > 0
and £#=1 = 4. By (2.3.6) the same five cases as in Remark 2.5.1 occur as possibilities for
the letters i and i + 1 in columns k and & +1 of ¢. In cases 3, 4 and case 5 if m{* " (v) = 2,
we have mgk“)(y) = 0. Replace i incolumn k& + 1 by i + 1 int to get a new tableau

t'. In all other cases mz(-k_l)(l/) = 1; replace the letter 7 + 1 in column & by ¢ to obtain
t'. The replacement ¢t — ¢’ yields Apgk) (t") > 0in all cases. The change of lower bound

ME D@y = M¥ V(1) + 1 in cases 1, 2 and 5 when m{* (1) # 2 will not cause any

) 1

(k—1)
?

problems since m. (v) = 1 so that after the application of ¢ there is no part of length 7 in
the (k — 1)-th rigged partition. Then again repeated application of Remark 2.5.1 achieves
Apﬁk,)1 (t") > 0 for some tableau ¢", so that the problematic case does not occur.

Let ¢” be the tableau we constructed so far. Note that in all constructions above, either
a letter 7+ + 1 in column % is changed to ¢, or a letter 4 in column k£ + 1 is changed to
i+ 1. Inthe latter case i + 1 < £ < [v™®)]| < ¢;. Hence " satisfies the constraint that
i €{1,2,...,c,1} forall i, k.

Now let 7 = D,(t"). We know T € A(X). We will show that the parts of .J lie between
the corresponding lower bound with respect to 7 € .A(X') and the vacancy number.

If #7, < c,—1 then by Lemma 2.5.3 Mi(k)(f) < Mi(k) (¢") for all £ and 7 such that
m{® (¥) > 0. Hence by Lemma 2.3.6 we have that (7, .J) is admissible with respect to 7.

(3

Let t’l’ﬂ, = ¢,_1. Then there exists j as in the definition of D,.. We claim that

2.5. Proof of Propositions 2.4.3 and 2.4.6 43

i) m" Y w)=o0fori>c,_; —jand mgj)_J(u) <1

(i) FmI™) (v) =1, then ¢¢=D =¢,_, —j.

cr—1—J

Note that MV (@) = MV (") +1forc,_1 —j <i < ¢r_q and M @) < MP (¢) for
all other k£ and ¢ such that mgk) (7) > 0. Hence if the claim is true using Lemma 2.5.3 we
have M*) () < M® (¢ for all k and i such that m'*) () > 0. Therefore by Lemma 2.3.6
we have that (7, J) is admissible with respect to 7.

It remains to prove the claim. Note that if [v"~")| < ¢,_; — j then our claim is trivially
true. Let v~ Y| = ¢,_; — k for some 0 < k < j. If all parts of »"—1) are strictly less than
¢—1—j, again our claim is trivially true. Let the largest partin v~V bec, 1—p > ¢, 1—j
for some k£ < p < j. Let a be the largest part in (7).

First supposea > ¢,_;—panda = ¢,—g forsome0 < ¢ < ¢,. Thena = ¢,—1— (A +q)

which implies that
Mér)(t”) 2 _(CT - /\r - Q) + (Cr+1 - Q) = /\r -)‘T+1-

This means p{” (v) < M7 (t") since p” (v) > p{ (v) forall b > aand p{” = A\, — A4 for
large b. If p (v) < ML" (¢), it contradicts that p” (v) > M (¢"). 1 p{7 (v) = M7 (¢),
it contradicts the fact that » = rk(v, J) since we get a singular part of length @ in v which

is larger than the largest part in »"~1. Therefore a > ¢,_; — p is not possible.

2.5. Proof of Propositions 2.4.3 and 2.4.6 44

Hence a < ¢,_1 — p. Using Remark 2.5.4 we get,

PO (V) = Qu(wV) — 2p™ | + Q. (v) + Y “min(a, i) L

i>1

<a+p—k—2/" |+ v+ 3 min(a,i) L (2.5.5)

i>1
=a+p—2\j1—Cy1— Z max(s; — a,0)d,, ;.

i>1

Since p” (v) > M (") > —\,.1 we get

Hencea = ¢, —gfor0 < ¢ < p-— Zi21max(si — a,0)d,, .. Then from (2.5.5) with

a = c, —qwe get

pgr)(V) S pP—q—)‘T—H - Z max(si —a, 0)5r¢,r S)"r -)\'r—i—la (256)

i>1
where we used that 0 < p — ¢ < A, which follows froma =¢, — ¢ < ¢, 1 — p.
Ifa>c,_y—j,asinthe case a > c,_; — p we have

M(T) (t”) Z _(C'r - Ar - Q) + (CT+1 - CI) = A'l‘ - A’f"f'l Z pgr) (V)

a

Hence we get a contradiction unless pﬁf)(u) = M (¢"). By (2.5.6) and the fact that
0 < p-—g < A\ we know p((f)(u) = A\ — A\-;1 happens only when p — ¢ = A, and
> ;s max(s; — a,0)d,,, = 0. This means the largest part in v~ is of length ¢, , —p =
¢» — ¢ = a. Since we have a singular string of length a in »(") this contradicts the fact that

r =rk(v, J).

2.5. Proof of Propositions 2.4.3 and 2.4.6 45

Ifa < c,1—jthen M (¢") > —(c;—)+ (cre1—q) = j—a—Ars1 > P (v) because
of (2.5.6) and the fact that ; > p. Again we get a contradiction unless p&’)(u) = M ().
But this happens only when p{ (v) = j—g— A, which gives p = j because p{” (v) attains
the right hand side of (2.5.6). This means the largest part in »"~Y is ¢,_; — j. Furthermore,
for large ¢ we have pg” =X —My1>J—q— M1+ (i1 — J —a) = A — Ay Which
shows that besides ¢,_; — j all parts in ("~ have to be less than or equal to a. But the
part of length a in (™ is singular, so we have to have ¢, 1 —j > aand £~ =¢, | — j
else it will contradict the fact that » = rk(v, J). This proves our claim.

Hence (7, J) is admissible with respect to 7 € A(X') and therefore ¢ is well-defined.

O

Example 2.5.5. Let L be the multiplicity array of B = (B%!)® and A = (0,1,0,1,2). Let

(v, J) = — -1 o -1 [[] _1€RC(L,N).
12 L 10 L -1
41413|3
Lett = ;’ ? % 2 be the corresponding lower bound tableau. Then
A
o, N)=_111-1 [[1o LLJ-1 -1

Note that in this example £ = ¢ = 2 and it satisfies (2.5.4) with k = 4. Also Ap{", (¢) +
ApSY(t) = 0 with Ap (1) = 0 forall 0 < i < £ Since m{’(v) = 1 and 2 € ¢4 this

is an example where we get the new tableau ¢ by replacing the 2 € ¢ , by 1 and then the
2|2]1]
11 .

corresponding lower bound tableau for 6(v, J) is Ds(t') =

|>—ch,o

Proof of Proposition 2.4.6. Similar to Proposition 2.4.3 we need to show that for (7, .J) €

2.5. Proof of Propositions 2.4.3 and 2.4.6 46

RC(L, \) we have §~'(v,J) = (v,J) € RC(L,\) where A = X + ¢,. Clearly A has
nonnegative parts, so it suffices to show that (v, J) is admissible which means that the parts
of J lie between the corresponding lower bound with respect to some ¢ € A()\’) and the
vacancy number. LetZ € A(X) be a tableau such that (7, J) is admissible with respect to
t. By similar argument as in the proof of Propostion 2.4.3 the only problematic case occurs
when

m® (@) =0, Ap* (F) =0, s<s**V and s finite (2.5.7)

where s = s,

Assume that Ap{® (Z)—i-Apg'i)Q(f) > 1and (2.5.7) holds. By Remark 2.5.1 with i = s+1
there exists a new tableau 7' such that Apgi)l(i') > () so that the problematic case is avoided.

Hence assume that Ap{" (7) + Ap™,(7) = 0 and (2.5.7) holds. Let s’ > s be minimal
such that mgf) (7) > 0. If no such s’ exists, set s’ = co.

Suppose that there exists s’ > j > s such that Apg-lj_)l (t) > 0. Let ¢ be the minimal such
4. Then by Remark 2.5.1 we can find a new tableau ' such that Ap{¥ (') > 0 and (7, J)
is admissible with respect to 7 . Repeating the argument we can achieve Apgfgl(f") > 0 for
some new tableau 7', so that the problematic case does not occur.

Hence we are left to consider the case Ap('“)(i) = (0 forall s > ¢ > s. First let us

i

(k+1)

suppose k < r — 1. If m;" /() = 0 for all s > i > s, then by the similar arguments
as in the proof of Proposition 2.4.3 we arrive at a contradiction since s*+% > s’ but the
string of length s” in (7, J)®) is singular which implies that s*+1) > s(*) > s > 5, Hence
there must exist s' > i > s such that m{*™" () > 0 and s*+1) = 4. By (2.3.6) the same
five cases as in Remark 2.5.1 occur as possibilities for the letters and ¢ + 1 in columns
kand k 4+ 1 of Z. In cases 1, 2 and case 5 if m{"™)(¥) = 2, we have m{* V(w) = 0.

Replace i+ 1 in column & by 4 in 7 to get a new tableau 7'. In all other cases mgk_l)(v) =1;

2.5. Proof of Propositions 2.4.3 and 2.4.6 47

replace the letter 4 in column k& + 1 by i + 1 to obtain 7. The replacement 7 — ' yields

)(¥') > 0inall cases. The change of lower bound M FD (@Y = MFD (F) 41 in cases

7

Apl
3, 4 and 5 when m; (k+1) = 2 will not cause any problems since m(k+) = 1 so that after the
application of 6! there is no part of length 7 in the (k + 1)-th rigged partition. Then again
repeated application of Remark 2.5.1 achieves Apgi)l (") > 0 for some tableau 7', so that
the problematic case does not occur.

Now let us consider the case & = r — 1. Note that s’ = oo here. Else s"~Y > s, a
contradiction. So, Apz’" Y () = 0 for ¢ > s which implies m(1)(v) = 0 fori > s, else
51 > 5. Then by (2.3.6) with i > s + 1 and k = r — 1 we have

—x(iet _1)+x(iet,)+x(E+1e€t,1)—x(i+1et,)
(2.5.8)

>m{ 2 @) +m" (@) >0.

If s+1 €t ,by(2.5.8)withi = s+ 1 there are seven choices for the letters s + 1 and

s+ 2incolumnsr — 1 and r of £.
1. s+ 1inboth columns — 1 and r;
2. Both s +1,s+ 2 incolumn r;
3. Boths+1,s+2incolumnsr —1,r;
4, s+ 1incolumnsr —1,rand s+ 2 incolumnr — 1;
5. s+ 1incolumnr;
6. s+ 1lincolumnrand s+ 2incolumnsr —1,r;

7. s+ 1incolumnrand s+ 2incolumnr — 1.

2.5. Proof of Propositions 2.4.3 and 2.4.6 48

First note that by (2.5.8) g’;f)()= mg’;zl(—) = 0 for cases 1, 2 and 3. For case 4 we have
m{") (7) = 0 again, else p) (7) > p{ " (F) = MV (F) = MUV (), contradiction to
ApYP(#) = 0. In cases 5 and 6 either m"), (¥) = 0 or m{".,” (¥) = 0 by (2.5.8). When
m, 2 (@) = 0 and m{"), () > 0in case 5 we have m" ?(7) = 0 forall i > s+ 1, else
0@ > V@) +2=METV@ +2> MOTV(E) —1+2 > MUY (B), a contra-
diction. In case 7 by the same string of inequalities either ms+)1(y=0o0r mg’;f)() =0.
When mﬁ’_ﬁl(v) = 0 we construct a new tableau 7 from 7 by replacing s + 1 in column
r by the smallest number i > s + 1 that does not appear in column r of ¢. The effect of this
change is M), () = M7, (5) + 1 and MU V(@) = MUV (F) — 1. Since m"), () = 0
the first change does not create any problem. When m{"), (7) > 0 in cases 6 and 7 we
change the s + 2 in column » — 1 to s + 1. The effect of this replacement is Mﬂ(’:f)) =
ME D@ +1and MU V(@) = MUV (@) — 1. Since m",,? () = 0 there is no problem.
When ms’:ﬁl(v) > 0 in case 5 we replace the smallest #,,_; > s + 1 by s + 1. This has the
effect that M2 (') = M (f) + 1 for s+ 1 < i < I;,_,. Since we have m{" ™ =
forall i > s+ 1 we do not have any problem. In all cases, replacing Z by ¢ the problematic
case (2.5.7) is avoided and we have Ap () > 0 for all other i, k such that m;)() > 0.
Let us consider the case s + 1 ¢ .. Note that M V() > M" V(7). We have
m"@) =0 = M2 @) forall i > s, else pU' V@) > pI V@) = M@ >
r—1)

Ms(i_ll) (t), contradiction to Aps+1 (t) = 0. Using (2.5.8) fori = s+ 1,k = r — 1 we have

four possible cases for the choice of the letters s + 1 and s + 2 in columns » — 1 and r of .
1. s+ 2incolumnr —1;
2. s+ 2incolumnsr — 1 and r;

3. s+1lands+2incolumnr — 1;

2.5. Proof of Propositions 2.4.3 and 2.4.6 49
4. nos+1,s+2inboth columns r — 1 and 7.

We first argue that case 3 cannot occur. Suppose case 3 holds. Then Mer1)() = MY (t)—
1and MU57 (@) = MU V(@) — 1. But we also have Ap{" " (f) = 0 fori > s and
m{ V@) = mP @) = mP @) fori > s. Note that Ap" " (Z) = 0 implies that
PP @) = P (@) — 1 = p{ V(@) — 2. On the other hand m" ™V () = m{"? () =
m{") (7) implies that p{," (%) > p{ " (@) and p" " () > p{" " () which yields a con-
tradiction.

In cases 1 and 2 we replace the letter s+2 in column 7 —1 to s+1 to get a new tableau .
The change from 7 to ¢ yields Aperl)(') > 0 without any other change. In case 4 if there
exists ¢,,_; > s+2 for some j then we replace the smallest such ;,_; by s+1 to construct
7. Then again we get Ap" ;" (') > 0 without any other change since m." > () = 0 for all
i > s. On the other hand if #,,,_; < sthene,_; < s < [PV Y| <&, implies?,,_; = s.
Note that ¢, ,_» > s. Here we will avoid the problematic case (2.5.7) by constructing a new

tableau t € A(X). Let

e

¢ +1 fork=1=1

Cre1+1 for2<k<r-—2andi=1,

tig = s+ 1 fork=r—1landi=1, (2.5.9)
fi_l,k fOflSkST—land1<i§5k,
tik forr <k<nandl<i<g.

\

Note thatc, = ¢, +1forl < k <r—1landc¢, = ¢ forr < k < n. Clearly ¢, €
{1,2,...,cx—1} forall 4, k. Column-strictness of ¢ follows since #;; < ¢ + 1 and ¢, <

G +1<¢g_+1for2<k<r-—1lands+1>t,.Hencet e A(\). Note that we

2.5. Proof of Propositions 2.4.3 and 2.4.6 50

have Msill)(t) = M(Qll)(i) -1< pg’;f)(), so the problematic case (2.5.7) is avoided.

The fact that (v, J) is admissible with respect to ¢ is shown later.

Let us now define ¢ € LA()\) in all other cases. Let 7’ € A(X) be the tableau we
constructed from # so far except in the last case. Note that in all constructions above, either
a letter ¢4+ 1 in column & is changed to ¢, or a letter 7 in column £+ 1 is changed to ¢ 4 1. In

B = omeansi+ 1 < s*+D) < |[p+D| < g,y < . Hence 7 satisfies

the latter case mZ(
the constraint that 7, , € {1,2,...,¢_1} for all i, k.

Let us define a new tableau ¢ from ¢ in the following way:

61-{-1 fork=1=1

Cr1+1 for2<k<r—1landi=1,
tig = 1 (2.5.10)

nd

ik fori1<k<r—landl < <g,

nl

tik forr <k <nandl <i<g.

Similarly as in (2.5.9) we have t € A(\).

Next we show that (v, .J) is admissible with respect to ¢, that is, the parts of J lie
between the corresponding lower bound with respect to ¢ € A(\") and the vacancy number.
Note that s®) + 1 < [v®)| < ¢, < ¢;_1. We distinguish the three cases s*) + 1 < ¢,

s 41 =¢c, =cprand s®) +1=cp <.

If s® +1 < ¢ forall 1 < k < r— 1, then MF(t) = M® (") for all 4, k such that

2

m (W) > 0. 1Fs® +1 = ¢,y forsome 1 < k < r—2,then M) () = M) ()

since Ch—1 = Ck. Also if S(T 1) + 1=c¢_9, then M s(r— 1))+1(t) = Ms(:,,ll))+1(f) — 1. In both

cases (v, J) is admissible since M.('“)(t) < M.(k (t") for all i, k such that m(-k)(v) > 0.

Now suppose s*) + 1 = ¢, < ¢, forsome 1 < k < r — 1. Then M(<k)>+1() =

2.5. Proof of Propositions 2.4.3 and 2.4.6 51

M(k)

s(k)+1(¥") + 1. Suppose & is minimal satisfying this condition. Note that in this situation,

s®) = ¢, — 1 = . This means [7*¥)| = &, which implies by definition of [7(*)| that

79| =g, for a > k. Using this we get

G =P <kt < <5l << gD < ‘p(r—1)| =21 < .

This implies ¢, = s(® = s(et1) =¢,., forall k£ < a < r — 2. When s(® = s(¢+1) we have

P, (v) = p),, (). Hence we only need to worry when Apf) (") = 0. Let £ be

the largest part in 7*=1. If £ > s*) then by definition pi’f,z)ﬂ() > p(’f,z)(). But we have

MB " > M%) L, ("), hence Ap <k>+1(_”) > 0. Suppose ¢ < s, then p(’f,zm(—) >

P (@) since m{¥ (@) = 0 fori > s®. 1f s®) +1 € 7', then M) (") = Ms(fk)m(t)+1

and we get Apﬁ(,z)ﬂ() > 0. Ifs®)+1 ¢ 7", then there exists £, > s*) +1 for some j and

we replace the smallest such Z'-'k by s%) + 1 to get a new tableau ¢’ from ¢ € A(X') . This

has the effect that M) (#') = M)

® 0 —1=M%Y @) sothat Ap), | (#') > 0.

k)_|_1
This proves that (v, J) is admissible with respect to ¢ or ¢ € A(XN). Hence §! is

well-defined. O

Example 2.5.6. Let L be the multiplicity array of B = (B%!)®* and A = (0,1, 1,1,1). Let

57y =1-1 [111 -1 & RO(L, %).
) =77 o Ty Mo (L)
414]3]2]
Leti = ‘;’ ? L] pethe corresponding lower bound tableau. Then with r» = 3,
A
| -1
(5—1 v,j — [L ‘ |—1 D—l .
(7, J) _i BE 11 o

2.6. Proof of Proposition 2.4.8 52

Note that in this example we have k = »r — 1 = 2 and s = s® = 2 which satisfies
(25.7). Also s + 1 = 3 € 1_,, hence this is the situation when £ = r — 1 in (2.5.7) with

Ap(’"’l(f) = 0 forall ; > sandsince s + 1 € ¢, this is case 7 discussed in the proof. So

2

we get the corresponding lower bound tableau for (v, J) by replacing 3 € ¢, by 4 and then
5/5/4]2]
4 1

doing the construction defined in (2.5.10). The lower bound tableau we get is

=D || Ot

3
2
1

2.6 Proof of Proposition 2.4.8

In this section a proof of Proposition 2.4.8 is given stating that the map ® of Definition 2.4.7
is a well-defined bijection.

The proof proceeds by induction on B using the fact that it is possible to go from
B = B"»% @ BT-1%-1 @ - .- @ B to the empty crystal via successive application of
1h, Is and 1b. Suppose that B is the empty crystal. Then both sets P(B, \) and RC(L, \)
are empty unless)\ is the empty partition, in which case P(B, \) consists of the empty
partition and RC(L, \) consists of the empty rigged configuration. In this case & is the
unique bijection mapping the empty partition to the empty rigged configuration.

Consider the commutative diagram (1) of Definition 2.4.7. By induction

®: | J P(h(B),n) — | J RC(h(L), p)

HEA™ BEA™

is a bijection. By Propositions 2.4.3 and 2.4.6 ¢ is a bijection, and by definition it is clear
that 1h is a bijection as well. Hence ® = §=! o ® o 1h is a well-defined bijection.
Suppose that B = B™' @ B’ with » > 2. By induction & is a bijection for 1b(B) =

BY' @ B ' ® B'. Hence to prove that (3) uniquely determines ® for B it suffices to show

2.6. Proof of Proposition 2.4.8 53

that @ restricts to a bijection between the image of 1b : P(B,\) — P(Ib(B), A) and the
by
image of Ib,, : RC(L,\) — RC(Ib(L),\). Letb =|p |®| : |®@¥ € P(Ib(B),\)

b'rfl
with b,_; < b,. Let (v,J) = ®(b) which is in RC(Ib(L), A). We will show that (v, J)@

has a singular string of length one for 1 < a <7r — 1.

by
By induction we know for (v, J) = ®(b) whereb=|p. , |®| : |®b €lb(B" "' ®
br—?
B') with b,_ < b,_1, (7, J)@ has a singular string of length one for 1 < a < r — 2. Let
by
b=| : | and (ﬁ’,j') = <I>(E'). This “unsplitting” on the rigged configuration side
br—l

removes the singular string of length one from (77, .J)(@ for 1 < a < r — 2 yielding (7, 7’).

Let 5(® be the length of the selected strings by 6! associated with b,_;. Note that
5@ =0 forl <a<r—2 Now let s be the selected strings by 6~ associated with b,..
Since b,_; < b, we have by construction that s+t < 5 In particular s < 52 =
0 and therefore, s"~") = 0. This implies that s(*) = 0 for 1 < a < r — 1. Hence (v, J)@
has a singular string of length one for 1 < a <7r — 1.

Conversely, let (v, J) € 1b,.(RC(L,)\)), that is, (v, J)(® has singular string of length
by
oneforl <a<r—1 Letb=3*(v,J)=|p, [® : | € P(b(B),\). Wewant

brfl
to show that b,_; < b,. Let (7,J) = 6(v, J) and £(®) be the length of the selected string in

(v, J)@ by §. Then ¢(®) = 1for 1 < a < r — 1 and the change of vacancy numbers from

2.6. Proof of Proposition 2.4.8 54

(v, J) to (7, J) is given by
(@) = p (v) = X(€7) < i < 69) £ x (69 < i < 40, (26.1)

This implies that (7, J)—Y has no singular string of length less than £ since ¢! = 1.
Let (7/,J) = Ib,.(7, J). Denote by 7 the length of the singular string selected by & in
(@, 7)®. Then by induction #“) = 1 for 1 < a < r —2and by (2.6.1) we get 2 > ¢(e+1)
for a > r — 1. Therefore 7 > ¢leth) forall 1 < a < n. Hence b,_; < b,. This proves
that @ in (3) is uniquely determined.

Let us now consider the case B = B™* ® B’ where s > 2. Any map & satisfying (2)
is injective by definition and unique by induction. To prove the existence and surjectivity
it suffices to prove that bijection ® maps the image of Is : P(B, A) — P(Is(B), A) to the
image of Is,. : RC(L,\) — RC(Is(L),). Letb = ¢; @ c® V' € Is(P(B,\)) where

a1
¢ = cyc3 - - - and ¢; denotes the (¢ — 1)-th column of c € B™*~1. Let¢; =| : | € B™!
Qy
by
and co =| | sothat we have a; < b; for 1 < ¢ < r. Let (v,J) = ®(b). We want to
br

show that (v, J) € 1s,.(RC(L, A)). To do that by definition of Is,. it is enough to show that
(v, J)™) has no singular string of length less than s.

Let us introduce some further notation. Let b = ¢ ® b' and (¥, Jo) = ®(c3---c; @ b').
Define (v;, J;) = (b} 0 672)i= 0 62 (w, Jo) for 1 < i < r and let 5 be the length of
the singular strings associated to b;. Similarly define (v;, J;) = (Ib.,! 061) "' 0 5~ (v, Jo)

for1 < i < r and let s§“> be the length of the singular strings associated to a; where

2.6. Proof of Proposition 2.4.8 55

(v0, Jo) = ®(b). The change of vacancy number from (v, Jo) to (7;, J;) is given by
p @) =p” @) + Y G <k <50) = Y xGW <k <3EY), (262)
= m=1
and the change of vacancy number from (7, Jo) to (v;, J;) is given by

(a)(]/0 +ZX <k<8 ZX a)<k<s(a+1))

m=1

— 5(1,7"X(k < s— 1) + ZX(&%—D <k< 5@ a) Z X < k< S(a—f—l))

m=1

(2.6.3)

Using this we will show that s{* > 5* forall @ > i and 1 < i < r by induction on

. Note that by (2.6.2) in (v, Jo)® the strings of length ; 5% 1 1 remain singular for all
i,a. Since a; < b; we have s; (@) §§“ for all a, this starts the induction. Let s§“> > 35“)
for all ¢ and for 1 < i < k. Then by induction hypothesis and (2.6.3) in (v, J;)(®@ the
strings of length EE“) + 1 remain singular for all ¢ and £ + 1 < i < r, which implies that
s,(ﬁ&l > ‘fﬁﬂl + 1. Hence 5§c+)1 > Eéjl which proves our claim by induction. In particular
s > 5. By induction (7, J,)™ has no singular string of length strictly less than s — 1,
s0 5 > s — 1 which implies s’ > s. But note that by construction of the algorithm
sﬁ“) = 0for1l < a < r —1 and the change of vacancy numbers from (v,_y, J,_;) t0

(v, Jy) = (v, J) is given by,
p](ca) (]/) = pgca)(yT'*l) + X(S,S'afl) < k S 87(,(1)) _ X(S,,(na) < k S 87("0,-‘,-1)).

This implies that (v, J)™) has no singular string less than s{” which means (v, J) has no

singular string less than s and we are done.

2.6. Proof of Proposition 2.4.8 56

Conversely let (v, J) € 1s,.(RC(L,\)) and b = @' (v, J) = ¢; ® c® V', same notation
as before. We will show that a; < b; for 1 <4 <. Set (v;, J;) = (6 o 1b)" (v, J) for 1 <
i < randset (vy, Jy) = do (dolb)""!(v, J). Let us denote the length of the string selected
by & in (v, J;)@ by 4. Similarly set (7, J) = lIs,(v, Jo) and (7, J;) = (6 o 1b)"~i(w, J)
for1 <i <rand (7, Jy) = do (6 olb)"~!(7,.J). Denote the length of the string selected
by ¢ in (74, J;)(@ by E(2 We claim thatﬁ > ZZ@ foralll <i<randalli <a<n. We
will show this by reverse induction on 4.

First note that the change in vacancy number from (v, J) to (v, J;) is given by

T r

pw) =p W) = Y XD <k <f@)+ > x(UD <k <datD). (26.4)

m=1+1 m=1+1

The change in vacancy number from (v, J) to (7;, J;) is given by

) = PO 0) = Yo < k< 40)+ Y X6 < k< ds)
m=1

m=1
thax(k<s—1) = Y xlo <k <@+ Y 1@ <k<tat.
m=1+1 m=i+1

(2.6.5)

(2.6.4) implies that EZ(E(“ , and the string of length E —1 remains singular in (v;, J;)(®
fori+1 < j < r. Recall that (v, J)™) has no singular string of length less than s. So,
¢ > 5. By construction of the algorithm Zf,a) =1for1 < a < r—1. By induction (7, J)(")
has no singular string of length less than s — 1 and hence by (2.6.5) s — 1 < E,(,T) < "
since the string of length M 1>s5—1is singular. Now by using (2.6.4) the algorithm
of § acting on (7, J) gives that Zﬁ“) < 0% for a > r. This starts the induction. Suppose

EZ(.“) > zf.“) forall K < i < randalli < a < n. Induction hypothesis along with (2.6.5)

2.7. Proof of Theorem 2.4.14 57

implies that in (7_1, 7x_1)@ we have 2.” < 2., for i > k + 1 and the string of length
Zg.“ 1 remains singular for 1 < j < k£ — 1. Therefore Kk ,=1for1 <a<k-—2and
in (Tg_1, Jp_1)*~Y, the smallest singular string we know is of length E(k Y _ 1. Hence
< K(k_l) — 1 < £, Then by using (2.6.5) the algorithm of & acting on (7, J)
gives thatE 1 < Ek , for a > k — 1. This proves our claim.

But Eg 9 5 EZ(- 2 forall 1 <i<randalli <a <nimpliesa; < b;. SO we are done.

2.7 Proof of Theorem 2.4.14

In this section we prove that the crystal operators on paths and rigged configurations com-
mute with the bijection ®.
The following Lemma is a result of [48, Lemma 3.11] about the convexity of the va-

cancy numbers.
Lemma 2.7.1. (Convexity) Let (v, J) € RC(L).

1. Forall i,k > 1 we have —p{ () + 2p{’ (v) — p{), (v) > m{ ™D (w) — 2m (v) +
i+1
m§C+)(1/).

2. Let m{” (v) = 0 fora < k < b. Then p{ (1) > min(p{” (1), B ().

3. Letm{(v) = 0fora < k < b 1f pi’(v) = pt), (v) and p%), (v) < p” (v) then

p,(fll() = 10,C (Yforalla < k <b.

4. LetmP(v) = 0fora < k < b. I pl(v) = pi”,(v) and i, (v) < p& (v) then

p,(,i_)l()= p,C ()foralla < k <b.

Proof. The proof of (1) is given in [49, Appendix] (see also (2.3.5)), (2) follows from
repeated use of (1), and the proof of (3) and (4) follow from (1) and (2). O

2.7. Proof of Theorem 2.4.14 58

Lemma 2.7.2. Let B = BY! @ B" and let L and L’ be the multiplicity arrays of B and B'.

For 1 < i < n the following diagrams commute if f; is always defined:

RC(L) —— RC(L) RC(L) —— RC(L)
le lfz éiJ{ léi (2.7.1)
RC(L) —— RC(L) RC(L) —— RO(L)

Proof. We prove (2.7.1) for f; here; the proof for ¢; is similar. Let us introduce some
notation. Let (v, .J) € RC(L) and let £ be the length of the singular string selected by
§in (v,)@ for1 < a < n. Let (7,J) = 6(v,J) and (¥, J) = fi(v, J). Let £ be the
length of the singular string selected by 6 in (7, J)@ for 1 < a < n and ¢ (respectively)
be the length of the string selected by f; in (v, J)® (respectively in (7, J)®). A string of
length & and label z;, in (v, J)(® is denoted by (&,).

Using the definition of f; it is easy to see that the diagram (2.7.1) commutes trivially

except when ¢£6—1) — 1 < ¢ < ¢®, We list the nontrivial cases as follows:

() 20 < 00,0 =00, £ +1 > £6-D),
(b) £ < 00,001 <41 <40,

() /%) < ooand £0) = ¢,

Note that since ; fixes all the colabels, the singular strings (except the new string of length
¢ + 1) remain singular under the action of f;. Let (¢, z) be the string selected by f; in
(v, J)®. The new string of length £+ 1 can be singular in (7, J)® only if pi | (v) = 24+ 1.

Also note that by the definition of f; if "’ () > 0 and (k, z;) is a string in (v, J)® then

Ty < xp < pg)(l/), ifk>¢,
(2.7.2)

x <z < p,(j)(u), ifk < ¥.

2.7. Proof of Theorem 2.4.14 59

Let us now consider all the nontrivial cases.

Case (a): If the new string of length £+ 1 in (7, J)® is nonsingular, then (2.7.1) commutes
trivially. Let us consider the case when the new string of length £+1 in (7, J)@ is singular.
We have py), (v) = z, + 1 and since £01 < oo, £) = oo we have p (7) = p{’ (v) — 1
for j > £~V In particular pi (7) = p{),(v) — 1 = z,. The labels in (7, 7)® are the
same as in (v,J)®. Hence ¢ = ¢, but the result is not a valid rigged configuration since
p)(#) =2 < x — 1. So, fi(w,J) is undefined, which contradicts the assumptions of
Lemma 2.7.2.

Case (b): If the new string of length £++1 in (#, J)® is singular, we show that the following

conditions hold:
N 2 () <
(I) pe(i)_l(y) S Ty,
(i) m{"* () = 0for e < j < ¢,

The above conditions imply that diagram (2.7.1) with f; commutes for the following reason.
Condition (i) implies that f; acts on the new string of length £®) — 1 in (7, 7)®. Condition
(i) implies that if £(+) < oo then £(tD) = ¢+ Hence /(@ = ¢ for ¢ # i and
0% = ¢+ 1. This gives f; 0 6(v, J) = 6 o fi(v, J).

If the new string of length £ + 1 in (7, J)® is nonsingular then the diagram (2.7.1)
with f; commutes if f; acts on the same string of length ¢ in (7, J)® as it did on (v, J)®.
In this case if (£0—1) — l,p%)_l(ﬁ)) is the new string created by 6 we need to show that
ze < pyy_, ().

Let us now consider the proof of conditions (i) and (ii) in the case when the new string
of length £ + 1 in (7, J)® is singular. Note that p{”,(v) = 2, +1 < z; for j > ¢ and
mgi)(y) > 0 by (2.7.2). In particular if m{), () > 0 and (£+1, z4,) isastring in (v, J)@

then pf,ﬁ (v) < zp41 < pﬁl(u). This implies pﬁl(u) = 441, hence (¢ + 1,z444) IS a

2.7. Proof of Theorem 2.4.14 60

singular string which is a contradiction if £0=1) < £+ 1 < £ 1f £ 4+ 1 = ¢, it is easy to
see that (2.7.1) commutes. Hence we may assume that £ + 1 < ¢, so that mZ)_l(V) =0.

Let £ > ¢ be smallest so that m,(f)(y) > 0. Then by Lemma 2.7.1 (2) we have
D () > min(n® (1) 0 273
Pei1(v) = min(p,’ (v),p,” (v)). (2.7.3)

If pi” (v) > p{” (v) then by (2.7.3) we get pfﬁl(u) > p{(v). But

P) <ap <p(v) ifL<k <00,

(2.7.4)

P v) < a=pP(v) itk =00,

Hence k = ¢ which implies p{), (v) = p\) (v) < p’ (v) and m{ (v) = 0 for £ < j <

2@, But now using Lemma 2.7.1 (1) we get the following contradiction:

0> —pi () + 2080 (v) — p{)y(v) > M D () + mlE P w) > 0.

Hence p{” (v) < p{’ (v) and by (2.7.3) we "), (v) > p” (v). Recall that we have

pSh(v) =z +1 < pP (), if /4D < ¢ < 9 or (¢, z,) is nonsingular,

P W) =z +1=pP (W) +1, if£=¢0"Y —1and (¢,a,) is singular.

This gives us two possible situations:
1. 8 (v) = pi (v) iF 46D < £ < €9 or (¢, z,) is nonsingular,
2. o) (v) = i (v) + 1if £ = £6=1) — 1 and (¢,) is singular.

In situation (1) using Lemma 2.7.1 (3) we get pﬁl(u) = p§i)(u) for+1 < j <k

2.7. Proof of Theorem 2.4.14 61

Using (2.7.4) this implies &£ = ¢ and by convexity we get condition (ii). Also this gives
p% () = pﬁl() = x¢ + 1 and hence p%)il(ﬁ) = x4, Which proves condition (i).

In situation (2) we have

P (@) =pily(v) — 1 since £071) = £ 41 < ¢
=}’ (v) since p}), (v) = p{’ (v) + 1
=p(v) since ¢ < (01,

Also note that p” (7) = p{ (1) — 1 if k < £@ and pi (¥) = pi? (v) + 1 if k = £5). Now
using (2.7.4) and (2.7.2) we get pm(v) < p,(j)(). Since m(“)) = m(i)(l/) > 0 using
Lemma 2.7.1 (3) we get péﬂrl(v) = pé)(_) = p] () for £+ 2 < j < k. This contradicts
that pﬁl(v) < p;“ (7), hence situation (2) cannot occur.

Now let us consider the case when the new string of length £+1 in (7, J)® is nonsingu-
lar. If £41 = ¢ the commutation of (2.7.1) is again fairly easy to see. Hence assume that
0+1 < €9, Thenwe have pf)) | (7) = p) () —1. Ifmls) (v) > 0and (£9—1,z,0_,)
isastring in (v, J)® then z,iy_; < pg(z) () since (=D < 041 <4 —1 < £®), Hence
by (2.7.2) we have z, < z,0)_; < pﬁ(g)fl(y) which implies z, < p%)il(ﬁ) and we are
done.

Ifm), (v) = 0let£ < j < £@ — 1 be smallest such that m'” (v) > 0. By Lemma

e(%) 1
2.7.1 (2) we get

Py, (v) > min(pl” (v), plY) (). (2.7.5)

Note that if £ < j < ¢ then the string (4,z;) in (v, J)® is nonsingular and therefore
pg-z)(l/) > x; > x4 by (2.7.2). Also if (£%), x,0)) is the singular string p;(i)(l/) = Tyi) > Ty

by (2.7.2). So min(p{” (v),p{2) () > z¢ + 1. Hence by (2.7.5) pl) (v) > z¢ + L.

2.7. Proof of Theorem 2.4.14 62

Suppose ply),_, (v) = z¢+1. Since p (v) > z¢+1we getby (2.7.5) zg+1 = p) _ (v) >
Py (v) > x¢ + 1 which implies p{Y), | (v) = p{{) (v). Since p)y | () = z¢+1 < p(v)

forall j < a < ¢ by Lemma 2.7.1 (4) we get pj)(v) = z, + 1 which is a contradiction.

Hence p%)il(y) >z, + 1 and we get z, < p%)il(ﬁ) as desired.

Let us consider the case j = £. If the string (¢, x,) is nonsingular by similar argument

as in the previous case we have that p% ,(v) >z, + 1. Suppose p%_l(u) =x¢+ 1. By

(2.7.5) if pm () > p%() > z,+ 1 we get as before that pM () = p%(u). Using
Lemma 2.7.1 (4) we can show as before thatpefH(u) = x¢,+1 which is a contradiction since
the string of length ¢ + 1 is not singular in (7, J)®. By (2.7.5) if p% () > () >
e +1we getply) (v) = p{’(v) = ¢ + 1. This implies that p{y), (v) < pi(v) for all
a > £. If we use this in Lemma 2.7.1 (1) for k = ¢ — 1 we get pﬁi)fl() = pﬁ(z)() and
then using Lemma 2.7.1 (4) we get péH(v) = x, + 1 which is a contradiction as before.

Hence the only case left to be considered is when j = ¢ = ¢0—1) — 1 and the string
(¢,¢) is singular in (v, J)®. Here min(p{" (v), {0, (v)) = p{” (v) and therefore by (2.7.5)
P (v) > ¢ Suppose p (v) = @ Since pli)(v) > z¢ + 1 we have plf) | (v) <
Pl (v). Also, pf)) (v) > min(p{? (v), P\t (v)) = P (v) = z¢ =), (v). Using this
in Lemma 2.7.1 (1) for & = ¢® — 1 we get the following contradiction:

g g 1 i—1 1+1
0> —pg(zu(u) + 2p§(3)71(y) — pgg)(y) > mg(i)Jl(y) + mg(;jl(y) > 0. (2.7.6)

Hence p%)il(u) > x,. Suppose p%)il(u) = x4+ 1. Here p%)il(u) < p%)(l/). If
p%_l(u) = p%(u) as before we can show that pﬁl(u) = z, + 1, which is a contradic-
tion. Suppose piy) ,(v) < pi,(v) then ple) ,(¥) > min(p{’ (v), i) (v)) = p{’(v) =
Ty = p% () =1 If pN)_Q(V) > p% ,(v) we again get the contradiction (2.7.6).

If pw) ,v) = p% ,(v) using Lemma 2.7.1 (1) for & = ¢® — 1 we get p%(y) =

2.7. Proof of Theorem 2.4.14 63

p%)_l(u) which is a contradiction to our assumption. Hence p%_l(u) > x4 + 1 giving
Ty < p%),l(v)-

Case (c): Note that since f; acts on the string (¢, z,) in (v, J)® we have
pé?_l(y) >ax+1= pﬁi)(l/) + 1. (2.7.7)

If f; and & select the same string of length £ in (v, .J)® then m{” (1) = 1. Butif f; and &
select different strings of length £ in (v, J)® then m;)(l/) > 1. We will consider each of
these two cases separately.

If mj) (v) > 1let (¢, z,) be the string selected by £; and (¢, pff)(z/)) be the string selected
by §in (v, J)®. Note that z, < pﬁf)(u). To prove that the diagram (2.7.1) with f; commutes
it is enough to show that f; acts on the same string (¢, z,) in (7, J)® as it did in (v, .J)®.

Hence it suffices to show that the new label in (7, J)® satisfies pf_)l(v) > xy. Note that

P, (@) = p) (v) — 1 if £ > (1)
(@) =, (v) if ¢ = (1),
1fm) () > 0 let (£ — 1, z,_) be astring in (, J)®. Then

Ty < xp_g < pﬁ?l(y) if ¢ > (071,

Tp <y < péi,)l(l/) if ¢ = (1),

which implies p{”, () > .
If m{"’, (v) = 0 let j < £— 1 be largest such that mg.i) (v) > 0and (j,z;) be astring in
(v, J)®. Then by Lemma 2.7.1 (2) we have p”, (v) > min(p" (), p{” (v)).

2.7. Proof of Theorem 2.4.14 64

If " (v) < p{” (v) then using (2.7.2) we have

pf;_)l(y) > pg-i)(u) > x> 1y if) <j<r—1,

py—)l(y) > pg'i)(l/) > T > Ty if j < 1)

Hence p,gi_) (7) > z, unless

) =) =zj =z <pP(v) withj < 0D <1, (2.7.8)
But if this happens by Lemma 2.7.1 we get ply)_,, (v) = p{{_,,_, () < pll,,,,(v). Note

that here m{_,, (v) = 0 and m{;;"), () > 0. Using all these we get the following contra-
diction:

(i)
(

0 2 _pg i—1)_1

i i iz1 i—1
(v) + 21‘"(«(2—1)(’/) - pfq 2—1)+1(V) > qu(i—l))(V) + m§(¢—1)>(V) > 1.

This shows that (2.7.8) can not happen.
It p7(v) > p’(v) then p’, (v) > min(py” (), p"(v)) = p}’(v) > @ Again

pﬁi_)l(v) > xp unless
)=o) =2 with D <71, (2.7.9)

But this implies by Lemma 2.7.1 that pji)(l/) = pfj)(u) = 1z, which is a contradiction to our
assumption. Hence (2.7.9) does not occur. This completes the proof when mEi)(V) > 1.

If m{” (v) = 1 we claim that

(i) pﬁl(l/) =z +1= pgi)(l/) + 1,

2.7. Proof of Theorem 2.4.14 65
(ii) p{", (7) = x4,
(iii) If 20D < 0o then ¢ + 1 < ¢G+,

It is easy to see that diagram (2.7.1) with f; commutes if our claim is true. Condition (i)
implies that the new string (¢ + 1, z, — 1) in (7, J)@ is singular and £) = ¢+ 1. Condition
(iii) implies that £+ = ¢(i+1)_ On the other hand condition (ii) implies ¢ = ¢ — 1, the new
string created by ¢ in (7, J)®.

Let us prove our claims now. Using Lemma 2.7.1 (1) we have
@ () = P2 @) + @0) = 2y @) 2 V) = 2+ mi D ().
which can be rewritten as
0 @)+ 1§20 0) + 0 () +1 = ps () = m ™" @) + P (v) 2 0. (27.20)

Suppose /(1) < ¢ = ¢@_ 1f m{? (v) > 0 then the string (¢ — 1, z,_,) is nonsingular and
hence by (2.7.2) i (v) = 24 < ze—y < P2, (v). ¥ m{? (v) = 0 let j < £ — 1 be largest
such that mg-i) (v) > 0. Note that pg-i)(l/) > xp = pf;)(y), so by Lemma 2.7.1 (2) we have

p (v) > min(pl? (), i (v)) = pi” (v). Hence p{, (v) > p{” (v) unless
p () = py (v) = p{ (v) = zewith j < €0V < ¢ (2.7.11)

But if this happens by Lemma 2.7.1 we get pi)_, (v) = plo_,, ,(v) = p(_,, ,, (v) which

gives us the following contradiction since m%:)) (v) > 0:

i) % i—1 i—1
0> _pé(z—n_l(l/) + 2;0%_1)(1/) - pfq 2—1)_1_1(7/) > mé(i—l))(y) + mi(i—g)(l/) > L

2.7. Proof of Theorem 2.4.14 66

Hence (2.7.11) cannot happen and we have pf_)l(u) > pﬁi)(u). Now using this and (2.7.7)
in (2.7.10) we get

0> (1) +1-p,) + P (W) + 18, () > Ml () + mD) > 0,

which implies p{” (v) = pi, (v) = 1, p, () = p (W) + 1, m{ P (v) = 0and m{ ™ (v) =
0. This proves (i) and (iii). Also p{”(v) = p{”, () — 1 implies p{", (7) = p{’, (v) — 1 =
P (v) = z,. This proves (ii).

Suppose £(=1) = ¢ = ¢®_ This means m{'~"(v) > 1 and as before if m{’ (v) > 0
we have pi (v) = 2, < 24—y < pi,(v). mi?, (v) = 0 again as in the previous case we
have pfq_)l(u) > min(p (-)(1/) pﬁ)(u)) = pﬁz)(). Using this and (2.7.7) in (2.7.10) we get
() = 0, w), o) = P’) + 1, m{ T (v) = 1and m{"(v) = 0. Note that
since 21 = ¢, pi () = i (v) = p{’(v) = x,. So we proved (i), (ii) and (iii). O

Lemma 2.7.3. Let B = B™' @ B', r > 2 and let L be the multiplicity array of B. For

1 <4 < n the following diagrams commute:

RC(L) —2=5 RC(Ib(L)) RC(L) —2=5 RC(Ib(L))
i | |7 ‘| B (2.7.12)
RC(L) — RO(Ib(L)) RC(L) — RC(Ib(L))

Proof. Note that if i > r — 1 then the proof of (2.7.12) is trivial. Suppose 1 < i < r — 1.
The proof for ¢; is very similar to the proof for f;, so here we only prove (2.7.12) for f;. Let
(v,J) € RC(L). Let (¢, z,) be the string selected by £; in (v, J)®. Let (7, J) = Ib,.(v, J).
By definition of 1b,. we get (7, J)*) by adding a singular string of length one to (v, J)®)
for 1 < k < r — 1. Hence to show that the diagram (2.7.12) commutes it suffices to show

that the label for the new singular string of length one in (7, J)® satisfies p()(1/) > x.

2.7. Proof of Theorem 2.4.14 67

Note that p” (7) = p{? (v) forall 1 <i <r —1.

If mgi)(u) > 0 then xgi) > x, by (2.7.2). So, pgi)(ﬂ) = pgi)(u) > xgi) >z If
m{’ (v) = 0 let j be smallest such that m'" (v) > 0 and (j, z;) be a string in (v, J)®. By
Lemma 2.7.1 (2) we get pgi)(y) > min(p(()i)(l/),p(-i)(l/)). Recall that p(()i)(l/) =0andz, <0
by the definition of £;. So, if p{” (v) > 0 then p\" (@) = p{" (v) > 0 > @ 1 (v) < 0
then p” (1) > p{” (v). But p{” (v) > z; > . Hence p{ () = p{ (v) > i (v) > a, and

we are done. O

Lemma 2.7.4. Let B= B ® B',r > 1,s > 2 and let L be the multiplicity array of B.

For 1 <7 < n the following diagrams commute:

RC(L) —Z=+ RC(Is(L)) RC(L) —==5 RC(Is(L))
i | |4 ‘| E (2.7.13)
RCO(L) —— RC(Is(L)) RC(L) —— RC(1s(L))

Ispre Ispe

Proof. Let (v,J) € RC(L). By definition Is,. only changes the vacancy numbers in

(v, J)™. Hence the proof of this lemma is trivial. O
Now we will prove Theorem 2.4.14.

Proof of Theorem 2.4.14. To prove this theorem we will use a diagram of the form

N
G l_)l i
7N

2.7. Proof of Theorem 2.4.14 68

We view this diagram as a cube with front face given by the large square. By [48, Lemma
5.3] if the squares given by all the faces of the cube except the front commute and the map
g is injective then the front face also commutes.

We will prove Theorem 2.4.14 by using induction on B as we did in the proof of the
bijection of Proposition 2.4.8. First let B = B! @ B'. We prove Theorem 2.4.14 for f; by

using Lemma 2.7.2 and the following diagram when f; and ; are defined:

P(B) e RC(L)

fi fil

RC(L)

Note the top and the bottom faces commute by Definition 2.4.7 (1). The right face com-
mutes by Lemma 2.7.2. The left face commutes by definition of f; on the paths and we
know 1h is injective. By induction hypothesis the back face commutes. Hence the front
face must commute.

Let us now prove Theorem 2.4.14 when not all f; (resp. f;) in the above diagram are
defined. Let (v,J) € RC(L), (7,J) = §(v,J), b= @ L(v,J)and b = & 1(v,J). We

need to show the following cases:

1. f;(b) is defined and f;(') is undefined if and only if f;(v, J) is defined and f;(7, J)
is undefined. In addition ®(f;(b)) = f;(v, J).

2. f;(b) is undefined and f;(#") is defined if and only if f;(v, J) is undefined and f;(7, J)

2.7. Proof of Theorem 2.4.14 69
is defined.

3. fi(b) and f;(¥) are both undefined if and only if f;(v, J) and f;(%, J) are both unde-
fined.

For Case (1) suppose that f;(v, J) = (#,.J) is defined, but f;(7, J) is undefined. Then
we are in the situation described in Case (a) of Lemma 2.7.2. That is £0—1 < oo, £ = o0,
¢ +1 > £6-1 and the new string of length £ + 1 is singular in (7, J)®. In this situation
note that m&) (7) =0, else pfﬁl(v) > xp41 > 1z by (2.7.2), which is a contradiction to
pﬁl(v) = x, as discussed in Case (a) of Lemma 2.7.2. Suppose 7 > ¢ be smallest such
that mg-i) (7) > 0. Then

pg-i) D) > x> = pﬁl(ﬁ). (2.7.14)
By Lemma 2.7.1 (2), pﬁl(v) > min(pff) (?), 5“(7)). By (2.7.14) this implies pfﬁl(v) >
p(@). Butz, = p),(®) > pi’ () > w4, hence we get pi’), (7) = pi’ (7). Again by
Lemma 2.7.1 (3) since m{’(7) = 0 for £ < k < j we get py),(7) = p|’(¥) which
contradicts (2.7.14). Hence mgi) (v) = 0 for j > ¢. Also by Lemma 2.7.1 (1) pg)_l(ﬁ) =
py) () with m{? (%) = 0 for j > ¢ implies that m{"*"(7) = 0 for j > ¢. Since 7+
and 7(+1) have the same shape we get mg.i“)(ﬁ) — 0 for j > £. Hence £(9 = ¢ for
1<a<i—1,09 =¢+1and i+) = oo, Therefore we proved that if ® (7, J) =
Y e B then®d (v,J) = i@V and @~ '(,J) = i + 1 @ V. But f;(7,J) = 0 implies
fi(®1(,J)) = 0 since by induction we have that ' o f; = f; o ! for B’. Hence
fi(@ Y, J) = &1 (5,J) = & '(fi(v,])), so that indeed f;(b) is defined, f;(¥') and
O(f,(b) = fulv,).
Now suppose that f;(b) is defined and f;(b') is undefined. This impliesthatb =i ® ¥'.
By induction f;(7, J) is undefined so that by Lemma 2.4.13 we have p = 5 where p =

pgi) () for large j and 5 is the smallest label occurring in (7, J)®. Since b is obtained from

2.7. Proof of Theorem 2.4.14 70

b' by adding i it follows that the vacancy numbers change as p := p;i) (v) =p+ 1 for large
4 under 6~* and the new smallest label occurring in (v, J)® is s = 5. Hence &;(v, J) =
p—s =1, s0that f;(v, J) is defined. It remains to prove that ®(f;(b)) = fi(v, J). Note
that f;(b) = i+ 1®1¥'. Let £ be the length of the largest part in (7, J)®. Suppose that 7(~1)
or 7(+1) has a part strictly bigger than £. In this case pf) (7) < p = 3 contradicting the fact
that 5 < p{” () is the smallest label occurring in (7, J)®. Hence both 71 and p(i+1)
have only parts of length less or equal to ¢. Also by Lemma 2.3.6 we have p?) (7)=5=s
which shows that both 6—' adding i + 1 and f; pick the string of length £ in (7, J7)®. Hence
o(fi(b) = filv, J).

Let us now consider Case (2). Suppose that fi(y, J) is undefined and ﬁ(v, J) is defined.
Again by Lemma 2.4.13 we have that p = s where p = pg-i)(l/) for large j and s is the
smallest label in (v, J)®. If tk(v, J) < i + 1, then s is still the smallest label in (7, J) and
by the change in vacancy numbers p < p. Hence by Lemma 2.4.13 ;(7,.J) =p— s < 0
contradicting that f;(7, J) is defined. Hence we must have rk(v, J) > i+1. In fact we want
to show that rk(v, J) = i + 1. Suppose rk(», J) > ¢ + 1. Then by the change in vacancy
numbers by 6 we have p = p = s, so that ;(7, J) = s — 5. So to achieve @;(7,J) > 0

we need 5 < s. This can only happen if p%)il(y) = sand £G-1 < ¢@_1f ;)

Z(i)fl(y) > 0,

then the string of length £ — 1 is singular. Since £¢~ < ¢ this contradicts the fact that
§ picks the string of length ¢ in (v, J)®). If m%)il(l/) = 0, by convexity Lemma 2.7.1,
we get a similar contradiction. Hence we have that b = 7 + 1 ® b. Note that the above
arguments also shows that ¢;(7, J) = 1since s > sandp = p — 1 if rk(v, J) = i + 1.
Hence f;(b) is undefined since o;(v') = @;(7, J) = 1.

Consider Case (2) where f;(b) is undefined and f;(b') is defined. This implies that
b =i+ 1® . By induction ;(7,J) = ¢;(b') = 1 so that by Lemma 2.4.13 we have

p=35+1.Hence p;(v,J) = p—s =p—1—s =3— s by the change of vacancy numbers.

2.7. Proof of Theorem 2.4.14 71

Therefore (v, J) = 0 if 3 = s. It remains to show that p”, (v) > 3 where £ := s®
is the length of the string in (7, J)® selected by §—'. Hence the only problem occurs if
pY) (7) = 5and st~V < £, If m{) (¥) > 0, this means that there is a singular string of
length £+ 1 > 5@ in (7, 7)@ contradicting the maximality of s®). If m{"), (7) = 0 one can
again use convexity to arrive at similar contradiction.

By exclusion Case (3) follows from all the previous cases where at least one f; or f; is
defined.

Now let B = B™! ® B’ where r > 2. Consider the following diagram:

P(B) . RC(L)
P(Ib(B)) —2= RC(Ib(L))

fi fil lfz fi

P(Ib(B)) —2> RC(Ib(L))

% w

RC(L)

P(B)

Again the top and the bottom faces commute because of Definition 2.4.7 (3). The right face
commutes by Lemma 2.7.3. The left face commutes by definition of f; on the paths and we
know 1b is injective. By induction hypothesis the back face commutes too. Hence the front

face commutes.

2.7. Proof of Theorem 2.4.14 72

Finally let B = B™* @ B’ where s > 2. Consider the following diagram:

P(B) 2 RC(L)

fi fil lfz fi

As in the previous cases by Definition 2.4.7 (2), Lemma 2.7.4 and induction hypothesis all
the faces commute except the front. Since the map Is is injective the front face of the above

diagram commutes. This completes the proof of Theorem 2.4.14. O

73

Chapter 3

Fermionic formulasfor the characters of
N =1and N = 2 superconformal

algebras

3.1 Introduction

Bailey’s lemma is a powerful method to prove g-series identities of the Rogers—Ramanujan-
type [7]. One of the key features of Bailey’s lemma is its iterative structure which was first
observed by Andrews [4] (see also [63]). This iterative structure called the Bailey chain
makes it possible to start with one seed identity and derive an infinite family of identities
from it. The Bailey chain has been generalized to the Bailey lattice [1] which yields a
whole tree of identities from a single seed.

The relevance of the Andrews—Bailey construction to physics was first revealed in the
papers by Foda and Quano [23, 24] in which they derived identities for the Virasoro char-

acters using Bailey’s lemma. By the application of Bailey’s lemma to polynomial versions

3.1. Introduction 74

of the character identity of one conformal field theory, one obtains character identities of
another conformal field theory. This relation between the two conformal field theories
is called Bailey flow. In [10] it was demonstrated that there is a Bailey flow from the
minimal models M(p — 1,p) to N = 1 and N = 2 superconformal models. More pre-
cisely, it was shown that there is a Bailey flow from M (p — 1, p) to M (p,p + 1), and from
M(p — 1,p) to the N = 1 superconformal model SM (p,p + 2) and the unitary N = 2
superconformal model with central charge ¢ = 3(1 — %). In the conclusions of [10] it
was conjecture that this construction can also be carried out for the nonunitary minimal
models M (p, p’) where p and p’ are relatively prime. In this chapter of the thesis we con-
sider the nonunitary case. We show that starting with character identities for the nonunitary
minimal model M (p,p') of [11, 84], characters of the N = 1 superconformal models
SM(p',2p+p), SM(p',3p" — 2p) and of the N = 2 superconformal model with central
element ¢ = 3(1 — i—’,’) can be obtained via the Bailey flow. We also give a new Ramond
sector character formula for a representation of the N = 2 superconformal model with
central element ¢ = 3(1 — f)—?) and calculate the corresponding fermionic formula.

The chapter is organized as follows. In section 3.2 we provide the necessary background
about Bailey pairs and discuss how Bailey lemma can be used to prove RR type identities.
In section 3.3 we derive new Bailey pairs using the Bose-Fermi identity for the minimal
model M(p,p’). In section 3.4 we state the fermionic formulas of the M (p,p') models
following [10, 11, 12]. In section 3.5 necessary background for N = 1 superconformal
algebras is stated and the characters of the N = 1 supersymmetric models SM (2p + p’, p')
and SM(3p' — 2p, p') are derived using the Bailey flow. Explicit fermionic expressions
for these characters are given. In section 3.6 the background regarding N = 2 supercon-
formal models is stated and a new character for the Ramond sector is derived. Then it is

demonstrated how to obtain the characters of the N = 2 superconformal model with central

3.2. Bailey’s lemma 75

elementc = 3(1 — i—%’) via the Bailey flow along with the explicit fermionic expressions for

these characters. In section 3.7 we conclude with some remarks.

Acknowledgment

Special thanks to Professor Gaberdiel and Hanno Klemm for their help through the jungle
of literature regarding N = 2 character formulas and their help regarding the spectral
flow of N = 2 superconformal algebras. We are grateful to both of them for their e-mail

correspondences.

3.2 Bailey’slemma

A pair (o, B,) of sequences {a, }n>0 and {8, }n>o is called a Bailey pair with respect to
a if

S D o o R

where

n—1

(@)n = (a;q)n = [[(1 — ag®),

k=0

Theorem 3.2.1. (Bailey lemma) If («,, 3,,) is a Bailey pair with respect to a then for two

parameters p1, po,

oo

Z(Pl)n(m)n(aq/mpz)"ﬁn

n=0 ~ (3.2.2)
(ag/p1)so(aq/p2) oo Z)n(aq/prp2)"n

_(7)oo(aq/p1p2) oo CL(]/Pl n(aq/p2)n

n=0

3.2. Bailey’s lemma 76

Putting different Bailey pairs in this lemma many RR type identities were proved by
Rogers [64, 65], Bailey [7] and Slater [81, 82] by considering the following two special-
izations of the parameters:

p1 —> 00, pPg — OO (3.2.3)

pr — 00, po = finite. (3.2.4)

Let us discuss here briefly how RR identities (1.2.14) and (1.2.15) were proved using

Bailey pairs and specialization (3.2.3). Let p; — oo, py; — oo in the Bailey lemma.

We obtain
S @ h = (325)
e (ag)
The Bailey pair used to prove (1.2.14) is given by
Gy = 1
a, = (_l)nqn(3nfl)/2(1 +qn)’ n > 1
1
= n >0
o (@)n
Inputing this Bailey pair in (3.2.5) with ¢ = 1 and simplifying we find,
= qn 1 = n n (5n—1)/2
(3.2.6)
2 @n (@)oo ;

n=0 —

Note the left-hand side is exactly the left-hand side of (1.2.14). To prove that the right hand

side of (3.2.6) equals the right hand side of (1.2.14) we use Jacobi’s triple product identity,

> " = (% —a2, -0/ 1), (3.2.7)

n=—oo

3.2. Bailey’s lemma 77

where (a1, az, a3;¢*) oo = (015 ¢%) oo (023 ¢%) 0 (035 ¢%) o

Using (3.2.7) we can rewite right-hand side of (3.2.6) as

(L i n n5n 1)/ % i n 1/2 (5/2)n2
el Qoo
1

- X (¢%6°)oo X (4% 0°)o0 X (6% 0°)o

—
)

1
(1 _ q5n 1)(1 _ q5n—4)

58

3
Il

which is the right hand side of (1.2.14). Similarly, the second RR identity (1.2.15) can be

proved using the Bailey pair

n(3n+1)/2(1 _ 42n+1

1

(@)n

>0
1_q ’ n_ 7

Upon the discovery of CFTs [13, 14] from Slater’s famous list of 130 identities [81] it
was observed that the specialization (3.2.3) leads to characters of minimal model M (p, p')
and the second specialization (3.2.4) leads to the characters of N = 1 superconformal
model. Hence by putting suitable Bailey pairs and then using some appropiate special-
ization of the parameters one can derive Bose-Fermi type character identities for CFTs.
Therefore, the main question is: how do we find suitable Bailey pairs? The sources for
the list of bailey pairs used by Rogers, Bailey and Slater were some well known hypergeo-
metric series identities. In physics Foda and Quano [24] observed the remarkable fact that
the finitized Bose-Fermi identities of the configuration sum of the ABF model are of the
form (3.2.1). Hence one can read off Bailey pairs from this. This fact has been used in

[5, 10, 12, 24, 85] to derive Bose Fermi identities for some subset of the minimal models,

3.2. Bailey’s lemma 78

superconformal models and higher level coset models. Berkovich, McCoy and Schilling
explored this in [10] for the Minimal model M (p — 1, p). They calculated the Bailey pairs
using the Bose Fermi identity for the unitary minimal model M(p — 1,p) and used the

specialization (3.2.4) and the additional specialization:
p1 = finite, p, = finite. (3.2.8)

to obtain the characters of N = 1, 2 superconformal models, hence demonstrated a Bailey
flow between these CFTs.

Following [10], we are going to use an extended definition of Bailey pair called the
bilateral Bailey pair. A pair (o, 8,) of sequences {ay, }nez and {8, }nez is said to be a

bilateral Bailey pair with respect to a if

n

aj
Bu= Y Ol (3.2.9)

=00 n—j(aQ)n+j

Theorem 3.2.2 (Bilateral Bailey lemma [4, 7, 10]). If (a,,, 5,) is a bilateral Bailey pair

then
Z (p1)n(p2)n(ag/p1p2)" Bn
e (3.2.10)
_(ag/p1)oe(aq/p2)o Z)u(ag/pip2)"am
(aq) oo (aq/p1p2) oo a(J/m n(ag/pa)n

n=—0oo

This lemma has been used with various Bailey pairs and different specializations of the
parameters p; and p, to prove many g-series identities (see for example [1, 10, 24, 81]).
In this paper the bilateral Bailey lemma is used to derive character identities for N = 1,2

superconformal algebras from nonunitary minimal models M (p, p').

3.3. Bailey pairs from the minimal models M (p, p') 79

A useful way to obtain new Bailey pairs from old ones is the construction of dual Bailey
pairs. If («,, 5,) is a bilateral Bailey pair with respect to a, the dual Bailey pair (A,, B,)

is defined as

2

Anla,q) = a"q" an(a™t ¢,

Bu(a,q) = a ¢ "B, (a", q7).

(3.2.11)

Then (4, B,) satisfies (3.2.9) with respect to a.

3.3 Bailey pairsfrom the minimal models M (p, p’)

In this section we derive new Bailey pairs using the Bose Fermi identity for the minimal
model M (p, p').

As shown by Foda and Quano [24], the Bose-Fermi character identities [9, 11, 25, 84]
for the minimal models M (p, p') are of the form

BYY)(L, b q) = g~ Mo F0) (L, by q), (3.3.0)

where the bosonic side is given by

o0

BY(Lbig) = Y (qj Gpper O =sp)

j=—o0

L

S(L+s—0b)—jp .
(3.3.2)

(jp—7)(ip'—s) L) .
%(L—s—b)-l—jp'

q

—q

The function fermionic formula FT({,;I")(L, b; ¢) will be discussed in the next section. The

)s8

3.3. Bailey pairs from the minimal models M (p, p')

80

normalization constant ;) is explicitly calculated in [11]. Since the explicit expression

is not used any where in our calculations we will exclude the details.

We will now construct new Bailey pairs using (3.3.1). For simplicity we are going to

write r for r(b). Let us set L = 2n + b — s + 2z to rewrite the g-binomial coefficients in

(3.3.2),
on + b—s + 2 _ (qbfs+2:c+1)2n
n+z—7pj (@n—jmo) (€T)it jm)
- dq
_ b—s+2z+1
2n+b— s+ 2x _ (gb—st2et), .
n+x—s+py (q)n*(p’j*b*w) (qb_s+2w+1)n+(ﬂj*b*w)

- Jq
Following [10, 24] we rewite (3.3.1) as

o8] (qbfs+2:c+1)

2n

q ’(”)’SFfpf;pls)(L,b; q) = (qj(jpp’+rp’—sp) -
" j—z:oo (D nprj-z) (@)y 12

(qb—s—|—2w—|—1))
T

_ q(jp—r)(jp’—S)

(Dn-prj-b-2) (qbs“””“)m(p'jbw)) '

where L = 2n 4+ b — s + 2z. This is in the form of (3.2.9), hence we can read off the

bilateral Bailey pair relative to a = ¢® **2®

/
qj(jpp’+rp’_sp) |f n = Jpl —

Qo = < _q(jp_T)(jp’_s) |fn = jpl — b —

0 otherwise
\

q_Nr,s ,
Bn = Wng’p)(Qn +b—s542z,b;q).
2n

(3.3.3)

3.3. Bailey pairs from the minimal models M (p, p') 81

where g = L=20=bts,
Using the definition (3.2.11) we calculate the Bailey pair dual to (3.3.3) relative to

a = ¢"~*t2% and denote it by (&, 5,) where

.
@iV W) =ip (r=b)—js(0'—p)—a(bta—s) ifp = jpf — g

d” = < _q(jp’—8)(j(p’—p)+7‘—b)—a:(b+$—5) |f n =]p’ —b—2x
(3.3.4)
0 otherwise
\
B, = g a”q”QF,,(’;’pl)(Zn +b—5+2x,b¢7").
(aq)Zn ’
Inserting (3.3.3) and (3.3.4) into the bilateral Bailey lemma yields
° anNr(b),s (,)
> (p1)n(p2)alag/pips)"~——F%7) (20 + b — s + 2z, b;)
n=0 (aq)Qn
(aq/pl GQ//)Q 00 - (pQ)jp'*iE i’ —zx
= a
() GQ/pIPQ _Z_: GCI/Pl (GQ/Pz)jpuz(q/,01,02)
J=—oo (3.3.5)
% qj(jpp’+rp’—8p) _ (pl)Jp’fbfw(/)?)jp’fbfw

(aq/p1)ip—o-=(aq/p2)jp b=

X (GQ/Pl PQ)jp’_b_“’q(jp—T)(jp’—s))

3.4. Fermionic formulas for M (p, p’) 82

and
= nqu(b)’s n,n? r(p,p) -1
Z(m)n(m)n(aq/pm) WG q" FEP (2n+b— s+ 22,b;07)
n=0 2n

_ (89/p1)o(0d/p2)os —a(p2)jp—a a jp'—
 (ag)o(ag/p1p2)ss Z (aq/p1 (GQ/,O2)jpf_z(q/p1p2)

700

(3.3.6)

x gi’P' @' —p)=ip (r=b)—js(p'—p)—w(bta—s) _ (P1) =02 (P2) i~
(ag/p1) jpr-b-2(aq/p2)jp—b—a

X (GQ/Plpz)jp,bwq(jp’s)(j(p"’)”b)—w(bﬂ—@) .

As in [10], we are going to consider different specializations of the parameters p; and p- in

(3.3.5) and (3.3.6) to get character identities for N = 1, 2 superconformal algebras.

3.4 Fermionic formulasfor M(p,p')

So far we have only considered the bosonic side of (3.3.1) explicitly. For the fermionic side
we will consider two cases p < p’ < 2p and p' > 2p separately with p and p’ relatively

prime and r, s being pure Takahashi length.

3.4.1 Fermionic formula for M (p,p’) withp < p’ < 2p

We need to introduce a lot of notations to give the explicit fermionic formula and we fol-

low [12, Section 4] here. The fermionic formula depends on the continued fraction decom-

3.4. Fermionic formulas for M (p, p’) 83

position

1

y « ..
2 Vpo + 2

Define t; = Z;;B vj for 1 < i < ng + 1 and the fractional level incidence matrix Zp and

corresponding Cartan matrix B as

(

Ojk+1 + Oj—1 forl <j <tpy41,J #ti

(Zo)ik =\ Gjp1 + Ojp — G fOrj =1t;,1 <i<mp— Ovng 0

\5j’k+1 + 5”“0 ,05',14: forj = tno-f-l

B = QItno-H - ZB,
where I,, is the identity matrix of dimension n. Recursively define
Ym+1 = Ym-1 + (Vm + 5m,0 + 25m,n0)ym7 Y1 = 07 Yo = 17
Ym+1l = Ym—1 T (Vm + 5m,0 + 25m,n0)ym7 g, =—1, Yo = 1.

Then the Takahashi length and truncated Takahashi length are given by

Uivi = Ym-1+ (J — tm)Um

£j+1 = ymfl + (-7 - tm)gm

fort,, < j <tmi1 + Ompn, With 0 < m < .

Let us define the ¢,,,-dimensional vectors Q) (j = 1,2, ,t,,41 + 1) which we
will need to specify the parity of the summation variables in the fermionic formula. For

1 <4 <tyr1and 0 < m < mgsuch thatt,, < j < i1 + 6mn, the components of QU)

3.4. Fermionic formulas for M (p, p’) 84

are defined recursively as

0 forj S { S tn0+1a

QY = j—i fort,, <i<j, (3.4.1)

QUL+ QP . fOrtp 1 <i<tw,1<m <m.
\ m

When v,,, = 0, so that ¢,,,.1 = ,,, we need to set the initial condition Qgi’;‘ff) = 0. Also

define
tn0+1+1

Qu: Z ujQ(j)a
j=1

and for ¢; < j < t;44,

U, for 7 odd,
(Auv)j = (3.4.2)

v for i even.

For b = £g4q, 7(b) = gy With tg < B < teq1 + Ogpo and s = o4 With ¢ < 0 <

te41 + O¢ o the fermionic formula is given by

tng+1
n; + m;

P (Lbg) =g Y gl] (343
m=Qu4v (mod 2) j=1 m;
q
where k;, ; is a normalization constant and n, m € Z™o+! such that
1
n+m= §(IBm+u+v+Le1> (3.4.49)

with e; the standard 4-th basis element of Z'o+1, u = e — >)%, e, and v = e, —

> keci1 €. Thenotation m = Quyv (mod 2) stands for m; even when (Qu.v); is even

3.4. Fermionic formulas for M (p, p’) 85

and m; is odd when (Qu.v); is odd.

The g-binomial is also defined for negative entries

n+m (q"+1)m
m (@)m
q
Note that) ,
n-—+m n-+m
=q " ; (3.4.5)

m m

gt q

In fact using (3.4.5) we get the following dual form of the fermionic formula that will be
useful later on

FoP)(Lbig) =

T

tn0+1
n; +m;j
_ 1t _1 1 _1lmt J J
q kb, s E q4m Bm—3Lmi+5 Au,ym—gzm?(u+tv) H] (346)
Jj=1

m=Qu4v m;

3.4.2 Fermionic formula for M (p, p’) with p’ > 2p:

We use the fermionic formula F,ff’,;f's)(L,b; q) derived in [11, section 10] with notations
defined in [11, section 2, section 3] . In this case the fermionic formula depends on the

continued fraction decomposition of

~
—

£:V0+1+
p

I/1+

VY +...
? Upo + 2

3.4. Fermionic formulas for M (p, p’) 86

Lett; for 1 < i < ng + 1 be the same as in the previous case along with ¢, = —1.

Recursively define

Ym+1 = Ym—1 + (Vm + 6m,0 + 26m,no)ym: Y1 = 07 Yo =]-7 0 S m S no

Zm+1 = Zm—1 + (Um+1 + 20m11n0)2m, 2-1=0, 2z=1, 0<m<mng—1.

Then the Takahashi length and truncated Takahashi length are given by

(m) J+1 for m=0and0<j <t
£j+1 =
Ym—1 + (.7 - tm)ym for 1 S M S no and 1 + tm S .7 S tl—f—p, + 5n,u-
g(m) Zm—o + (j - tm)Zm_l for1+ tm < j < tmt1 + 5m,n0 with 1 <m < nyg
AR

0 form = 0.

Let us define the corresponding Cartan matrix B in this situation. The nonzero elements of

the matrix B are given by the vy x vy matrix

(11 1\

1
122 - 2
X 123 - 3
Crl = (3.4.7)

3.4. Fermionic formulas for M (p, p’) 87

as

Bij =2 (C;l)ij for1<i,j <y

3

Buys15 = Bjwr forl <j<wp

tn
1% 1 > ,
Bj; = 505j,uo+1 +(1- 5 Zéj;ti) forvg+1<j <tpy1—1
=2 (3.4.8)
Btn0+17tn0+1 =1
1 &
Bjjn=—-5+ D Gia forj >
1=2
1 .
Bji1,; =) forj > 1y
Define the ¢,,,,,-dimensional vector €, and 1 + ¢,,,..;-dimensional vector e, by
5jk for 1 <k< tn0+1
(€r); = (3.4.9)

0 for k=0,14+1tn4+1

5jk for 1Sk§tn0+1+1
(ex); = (3.4.10)

0 for £=0.

3.4. Fermionic formulas for M (p, p’)

The ¢,,,+1-dimensional vectors u,u,,u_, V and Fa,,, are defined by

=
+
I
&
o

88

(3.4.11)

We will write A = A®) + A®) where the ¢,,,-dimensional vectors A®) and A®) are

defined as

® —2uy, for kinan even, nonzero zone,
AY) =
k

0 otherwise.

where u is a t,,,+1 + 1-dimensional vector.

u(s) — V' 0(s)0kupp1 for kinan odd zone,

N[

AP =
—3€'Bu(s), for k in an even zone.

where ¢, 1-dimensinal vector u(s) is given by: for 1 < k£ < .41

Okje — D0 for1+t,, <js<tyiti1andp, <n-—1,

(u(s))s =

Ok ji fort, < js,ps =n

(3.4.12)

(3.4.13)

(3.4.14)

3.4. Fermionic formulas for M (p, p’) 89

For n, m € Zt=o+* define

m = (n17 M2y 5 Mgy Myg415 Myg42, " " - ’mtn0+1)
n= (m17 Mo, -y Myy, Nyg+15 Nyg+2, " ° - 7ntn0+1)
such that
. . L B 1. ., 1
A+m=(l;, 11— B)m+LE, + 5 Gt + P + §e,,0+1(u+.V) + 7U- (3.4.15)

For b= £, 7(b) = G0 + £y With 1+ ¢, < iy < tyss + 0,0 aNd s = £,) with

1+ tg < jp < tgp1 + dp,n, the fermoinic formula can be written as:

tng+1 ~ ~
F(pap’) (L b.) J— Cb,s Z %ﬁltBﬁl—’—Atrh OH nJ + m] (3 4 16)
r(b),s y0:9) =4 q - o
Hh=Q, (mod 2) j=1 m;
q

where the normalization constant Cy, ; = C(j,,) is defined in [11, (8.33)] as

C(]O):O f0r1§j0§t1

1 V0+1

C(ju) = 5(_1)N + (Ju - tu){_ 4

f(n odd) + c(t,) + c(tu-1)} (3.4.17)

for ¢, +1<j,<ty1+20,, fFfor 1<p<ng

where 8(S) = 1 if S is true and #(S) = 0 if S is false.

no

12,11 €. To explain the sum 1 = Q, (mod 2) let us

Alsoinourcase u = e;, — >

introduce the following notation. For 1 < k <, 11,t4, + 0u00 +1 < J < Lugt1 + Opgnos

3.4. Fermionic formulas for M (p, p’) 90

for some 0 < g < ng,

0 fork > 7,

j—k fort,, <k <j,

\w,(cjll +w§ill+1 fort, <k <t,11,1 <p< p.

then define

-

ng+1 a tng+1
— _ +tn -
W(U1+tn0+1, U.) = (S72 <u1+tn0+lwk ot + Z w,(f)uj> .
k=1 j=1
With the notations above m = @Q,, (mod 2) meansin_ € 2Z'o+1 =0 +w_ (144, ,,,d),and
m, € Z"°. This restriction makes sure that the entries of all ¢g-binomials in (3.4.16) are
integers as long as u € Z!*ino+1,

Again using (3.4.5) we get the following useful fermionic formula:

R L) =0 5 gt
’ Q.
)
ot [(3.4.18)
> q—Atr’h—%fﬁtBu_;,_—%ﬁ'nte,,o_,_l(ufi_.V)—%ﬁ'ltu_ > H J J
j=1 m;

We will use this in the later sections.

3.5. N =1 Superconformal character from M (p, p') 91
3.5 N =1 Superconformal character from M (p, p’)

The N = 1 superconformal algebra is the infinite dimensional Lie super algebra [59, 66,

39] with basis L,,, G,, C and (anti)-commutation relation given by

C
[Lin, Lp] = (m — n) Ly + g(m3 — M) 6mtn,0

m
[Lma Gr] = (5 - T)Gm—f—r
C 1

a (7'2 - _)5r+s,0

=2L
{Gr7 Gs} T+S + 2 4

where m,n are integers C is the central charge and its eigen value is parametrized by

c= % — % If r, s are integers the algebra is called Neveu-Schwarz (NS) algebra and

if r, s are half integers then the algrebra is called Ramond (R) algebra. Let us denote these
algebras by SM(p,p').

The character formula of these algebras are calculated in [28] and are given by,

€ o g . .
- ’ ~(p,p’ —q ¢ i(ipp +rp’ —sp) (Gp=r)(jp =s)
X2 (g) = P2, (q) = (") > (q 2 g) (3.5.1)

j==c0

wherel <r<p-1,1<s<p' —1,pand (p' — p)/2 are relatively prime and

if 7 is even (NS-sector),
€ = (3.5.2)

if 7 is odd (R-sector).

N =

—_

In this section we are going to consider the specialization of the form of (3.2.4) in (3.3.5)
and (3.3.6). We will see that these give Bailey flows from the minimal model M (p, p’) to

the superconformal models SM (p', 2p + p') and SM(p', 3p' — 2p).

3.5. N =1 Superconformal character from M (p, p') 92

3.5.1 The model SM(p,2p+ p')

Specializing p; — oo and p, = —qb_sT“ with z = 0in (3.3.5) and comparing with (3.5.1)

we find for b — s even (NS sector)

q%(n2+nbfns)(

- /’2 +/
X§?2bep)(C]) = Z (q)

n>0

q2)n+(b 5)/2 fNrsF(pp (2n+b—s,b;q) (3.5.3)
2n+b—s

and for b — s odd (R-sector)

Ln24nb—ns) _
~ (0 2p+p q (—9)
XSI,)ZT—fI—Jl_p)(Q) = Z (Q)

n>0

— nt(b—s—1)/2 q—N,«,sE"(’ps,P’)(zn +b—s,b;q). (3.54)
n+b—s

Hence there is a Bailey flow from M (p, p') to the superconformal model SM (p', 2p +

p'). Let us calculate the fermionic formula using section 3.4.

Fermionic formula for SM (2p+p', p') with p < p’ < 2p: To obtain an explicit fermionic

formula set mq = L = 2n + b — s and insert (3.4.3) into (3.5.3). Then using
(—q2)mg = Y q2(FR7 | 2 (3.5.5)

we find

mo=0 k=0 m= Qu+v

mo even
' (3.5.6)
tn +1
1 e 0 n; + m;
mth——A m 2 J J
X g1 w v o | |
(@)mo k j=1 m;

q q

3.5. N =1 Superconformal character from M (p, p') 93
Setting p = (k, mg, m) € Z!o+1 2 we can write

, 1 my 1 1

1 2 t _ L5
g/ + 2(5 k)* + Tm Bm = 2P Bp (3.5.7)
where
2 =110
B=| 1 1|1 (3.5.8)
0 —-1|B

Using this the NS-sector character (3.5.6) can be rewritten as

R (q) = q 3O Nthos N gaptBepduep
5,21

peztnot1t?
piE(Qu,v)i 5122

' (3.5.9)
sZgp+u+v);

(9)p, j=1,j#2 Dj

where Iy =21, ,,12 — B,

Au,v = (07 O: Au,v)7
@' = (0,0,u"),
(3.5.10)
vl = (0,0, v"),

~fl—l—v = (0’ 05 Qfl—i—v)'

Similarly setting mo = 2n + b — s in (3.5.4) and using

(—q)mm:% (" R R |2 (3.5.11)
2

3.5. N =1 Superconformal character from M (p, p') 94

we get the fermionic formula in the R-sector,

/ / 1 1
(' 2p+ (b8 1) sty
g];r-fbp)(Q) = §q g((b=8)*+1)—Nrsthy, 2 :

peZtn0+1+‘2
piE(Qu,v)iaiZQ

1P Bp—$Auvp

tng+1+2 1 ~ ~
1 sZgpt+u+v);
ar 11 2T) (3.5.12)
P2 j=1,5#2 Dj

where B, A, v are as in (3.5.10) and @' = (1,0,u’), @, = (0,1, Q%..).

Fermionic formula for SM (2p + p', p’) with p’ > 2p: In this section we will just state the
formulas without showing the calculations. The calculation is very similar to the previous

case.

Using (3.4.16) in NS sector we get,

~(2p+p P’ L(h—s)2—N, . 1ot 1At 1 2
Xérzﬁip)(q) =q §(6=8)> =Ny s+Cp,s Z qiP' TP AP ¢~
~ (Q)P2 p1
P=Q,
1 (3.5.13)

tn0+1+2

NZrp + By + 8,041 (04.V) + 1),
< |1
Jj=3

Dj

3.5. N =1 Superconformal character from M (p, p')

where

IT:

£ =

T

11l
Q)
c

|

/2—10
-1 112 . .2 1
0 -2
-2 2B
-1
0
\00

2Ly, ;42— T

(0,0, X*) for X € Z'nott

(

(00

0 0

0
0

\ 0 0

0<

mo

B

m
k< mo

> 0, mg IS even

95

Note T is a (t,,+1 + 2 X tn,+1 + 2) matrix, number of 2 in second row is v, and number of

3.5. N =1 Superconformal character from M (p, p') 96

-2 in second column is v.

In R sector we get,

. R 1 p2+1
~§2T1_7:;1”5’P)(q) — q—é((b*8)2+1)—Nr,s+Cb,s Z qiptTpféAtp v 2
o (q)p2 pl
P=Qy
., 7 (35.14)

tn0+1+2

%(ITP + §ﬁ+ + %éuo-i-l (ﬁz_‘?) + %ﬁ_)]‘
< 11
Jj=3 pj

where T, A, @i, B are as in (3.5.14) and

0<k<m02+1

T
11l
Q)
c
|

mg > 0, myg is odd

3.5.2 The model SM(p',3p" — 2p)

Similarly using the same specialization with the dual Bailey pair in (3.3.6) and comparing
the bosonic side with (3.5.1) with we find for b — s even in the NS-sector
q%‘(n—f—b—s)(1

~(p',3p" — _qi)n b—s)/2 / _
Xt @) = 5 HO=0)/2 (Nos F02) (20, 4+ b — 5,b47") (3.5.15)
n>0 q)2n+b—s

and for b — s odd in the R-sector

qe‘.T"(nerfs) (_q)

~(p",3p' - n+(b—s—1)/2 s P Lo
Xg],]sb3f2r2p) (¢) = Z @ e) e F},’;p)2n+b—s,b;¢7Y). (3.5.16)

3.5. N =1 Superconformal character from M (p, p') 97

Fermionic formula for SM (p’, 3p’ — 2p) with p < p’ < 2p: To obtain the fermionic
formula, as before we are going to set mq = 2n + b — s. Inserting (3.5.11) and (3.4.6) into

(3.5.16) we get in the R-sector

m02+1
/ /]_ 1 2
~ ,3 2 —3 + ‘I‘ 7,8 8
X‘(GZ,)?)bprr p)(Q) = 2(] s (O)N e ks, E : § : z :

mo=0 k=0 m=Qu4v

mo
1 1 1 1
x g2 (mot+k*—mok—mom1) ; gm‘Bm—3m(utv)+3 Auvm (3.5.17)
mo+1 tng+1 .)
i BN I VOl
(Q)mo k j=1 m;
q q

Define p = (k, mg, m) € Z!o+1+2 so that (3.5.17) in the R-sector can be rewritten as

1
54

~(p',3p'—2p) (_
q) =
2

— 3 (3(b=8)+1)+ Ny, s —kp,s ip B'p+iAuvp
$,3b—2r q

peZro+1t?

piE(Qlu-{—v)iﬂiZZ

e H(Tpp + U+)

11 (3.5.18)

(9)p, j=1,j#2 Pj

N =

3.5. N =1 Superconformal character from M (p, p') 98

where I, =213, ., 42— B',vasin (3.5.10), i = (1,0, u?), (Q...)" = (0,1,Q%.), and

u+v u-+v

2 —-1(0
B=| -1 2 |-
(3.5.19)
0 -1| B
AU,V = (Oa 07 Au,v - ut — Vt).
Similarly, for the NS-sector it follows from (3.5.15)
(' ’_ —_3(p—g)2 s—kp. 1 ~, l~uv
Xg{]3})3f2r2p) (Q) =q 8(b) Nk, Z q4ptB P+5Auvp
peztn0+1+2
p’iE(Q’u+v)i7i22
tng+1+2 1 - -
1 E sZgp+u+v);
XD 11 2T il (3520
Dpz 21 jpo pj

with B’ and A, asin (3.5.19), (Q%,,)" = (0,0,Q%,.,), @ = (0,0, u’) and ¥ = (0,0, v%).

u+tv

Fermionic formula for SM (3p’ — 2p, p') with p’ > 2p: Again we state the formulas

without showing the calculations.

3.5. N =1 Superconformal character from M (p, p') 99

Using (3.4.18) in NS sector we get,

~(3p'—2p,p") —3(b—8)24+ N, —C, LptTip
X3b72'r,s (Q) =4q s (b=) e b E g4
P=Q,
D2
_Atp_lptBa,—lpts, yi(df.V)—lpta 1 o
X q 2 +72 vo+1lty - 2 - X ()
. 3.5.21
q p2 pl ()
q
7
tng+1+2 >

%(IT'p + gﬁ+ + %él/o-}—l(ﬁz_'v) + %ﬁ,)J

< 1
j=3

pj
q
where
p = (k,mo,m)e Zmot? (3.5.22)
(2—10...o\
1 1 [=2 2 10 0
0 -2
T = . =2 2B
—1
0
\ 0 0)

ITI == 21tn0+1+2 - T,

3.5. N =1 Superconformal character from M (p, p') 100

In R sector we get,

~(3p'—2P,P’)(q) — q—g(b—S)Q‘FNr,s_Cb,s Z qiptT'p

X3b72'r,s
P=Qy
A R R 1 p2+1
v q—Atp—%ptBﬁ+—%ptéV0+1(ﬁz_.V)—%ptﬁ_ % 2
@D | p, (3.5.23)

tng+1+2

< 11
=3

%(IT’p + gﬁ+ + %éy0+1(ﬁi-V) + %ﬁ,)J

pj
where T" is as in (3.5.22) and

0<k<me

Qu:=19 my>0,myiseven

T
If

m=Q,

\

3.6. N = 2 Character formulas 101

3.6 N =2 Character formulas

3.6.1 N = 2 superconformal algebra and Spectral flow
The N = 2 superconformal algebra A is the infinite dimensional Lie super algebra [21]
with basis L, T,,, G, C and (anti)-commutation relation given by

C
[Lma Ln] = (m - n)Lm+n + E(mg - m)5m+n,0

1
[Lma Git} = (ém - T)Grjr:t—i—r

[Lin, T = —nThin,

[T, T, = gcm5m+n,0

m+r

[T, Gy] = £G:;

C 1

o (TQ - Z)5r+s,0

{G;", G} =2Lp s+ (1 — 8)Trys + 3

[Lin, O] = [T5,,C] = [Gf,C} =0

{GF, G} =1{G;,G} =0

where n, m € Z, but r, s are integers in R-sector and half-integer in NS-sector. The element
C'is the central element and its eigenvalue c is parametrized as ¢ = 3(1 — i—%’), where p, p’
are relatively prime positive integers. Let us denote this algebra by A(p, p).

It was observed in [35, 72] that there exits a family of outer automorphisms e, : A — A

3.6. N = 2 Character formulas 102

which maps the N = 2 superconformal algebras to itself. These are explicitly given by

~

aW(G+) = G:— = G:—fn

A

Go =G

r+n

Qo
3

)
R

|

(3.6.1)

A

Ln = Ln - 77Tn + %772571,0

Q
3

~
E

Il

. c
aW(Tn) = Tn = Tn - §U5n,0

This family of automorphisms is called spectral flow and n € R is called the flow param-
eter. When n € Z each sector of the algebra is mapped to itself. Whenn € Z + % the
Neveu-Schwarz sector is mapped to the Ramond sector and vice-versa. We are going to

use the spectral flow n = i% to map the NS-sector to the R-sector.

3.6.2 Spectral flow and characters

We denote the Verma module generated from a highest weight state |k, @, ¢) with L eigen-
value h, Ty eigenvalue @ and central charge c by V}, o. The character xy, , of a highest
weight representation V}, ¢ is defined as

XVh,Q (q’ Z) — Tth,Q (qLO_C/MZTO)-

Following [35] the character transforms under the spectral flow in the following way
i0_0/24ZT0)

Tth,Q (q = Tthn‘Qn (qLO_C/24ZTO)7 (362)

where A7 and Q" are the eigenvalues of L, and Tj, respectively, as defined in (3.6.1).

This means the new character xv,, ,, (¢, 2) Which is the trace of the transformed operators

3.6. N = 2 Character formulas 103

over the original representation equals the character of the representation defined by the
eigenvalues »" and Q" of L, and T}, respectively. So the new character is the character of
the representation Vjn gn.

For n = 1 the spectral flow 1 takes a NS-sector character to an R-sector character.
Let X{)’fQ (g, 2) be a NS-sector character corresponding to the representation V}, o. Then

by (3.6.2) and (3.6.1) the new R-sector character X{ihn o (g, 2) is derived using

R _ Lo—c/24 Toy _ Lo—LiTp+e—_2 To—¢
Xth,Qn (Qa Z) - Tth,Q (q z) = Tth,Q (q 2 24" 24y 6

(3.6.3)

c _e, _1.Ti o _c -1
= g2 8 Try, o (¢" % (272)) = ¥ 2 5D (g, 2077).

3.6.3 R-sector character from NS-sector character

To simplify notation we are going to use a slightly different notation for characters. Since
we are only dealing with the vacuum character in the NS-sector for which h = 0,Q = 0,
we write X,'> (g, z). The R-sector character is denoted by Xt (¢, z) with the corresponding
(h, Q) specified separately.

Following [20, 21, 35, 36] the vacuum character for the N = 2 superconformal algebra

with central element ¢ = 3(1 — f)—{’) in the NS-sector is given by

o] n—1 —1.n-1%
~NS _ o —c/24 (I+2¢"2)(1+2""¢"2)
Xpp (0:2) = q 2
" g (1-4qm)
iad PP)+’ nts 1 opn(p'ntl)+p'ntg
x (1= 3 g ot | 2 A
— 14 z¢g"t2 1+ 2z 1gPnts
o0 ! ! 1 ! ! 1
, 2P (@' n+1)—p'n—3 51 gpn(p'n+1)—p'n—3
+ qu npn+1) | #4 —— + g ——) (3.6.4)
n—1 1+ zgP" 2 1+ z71¢gP" 2

This formula can be verified using the embedding diagram for the vacuum character as

3.6. N = 2 Character formulas 104

described in [21, 35] and can be rewritten as (as will be useful later)

1
_q—c/24H 1+2¢"2)(14271¢"2)

Xp (45 2
x 1—q)

1 — it

(3.6.5)

X pi(p'j+1))
Z q 1+qu’j+§)(1 +z—1qp’j+§)

j=—o00

In particular if we put z = 1 in (3.6.5) we obtain the following formula derived in [21]

NS (/24 +qv)? & i1 1 — g¥ita

9 — o€ PI\D"J

AHOEY: H T 2 ¢ g (36.6)
j=—o0

Let us apply (3.6.3) to the NS-sector vacuum character (3.6.5) to get a Ramond sector

character. From (3.6.1) it follows that

o 1 c
Lo=Ly— =Ty + —
0 0 20+24
. c
TOZTO—E.

For the vacuum character in the NS-sector (h, Q) = (0, 0), so the new eigenvalues are

(", Q") = (53, —¢) in the R-sector. Hence the new character in the R-sector corresponds

to (h", Q") and by (3.6.3)

-

1\2|0

X (q,2) = g2z 530 5(q,2q 2)

=2z %()(—Z qoozqmpﬁl

]_—OO

1 — g%itl
(14 zgP7)(1 + 2~ 1grit1)

(3.6.7)

3.6. N = 2 Character formulas 105
3.6.4 Bailey flow from the minimal model M (p,p’) to N = 2 super-
conformal

We will consider two set of special values for r and b to find Bailey flows from the minimal
model M (p,p') to N = 2 superconformal models.

First we use » = 0 and b = 1 in (3.3.5) and we obtain

o 7-/\/’05

nd " P
E (p1)n(p2)n(ag/pip2) (aq) Fo(i,p)(Qn +1—s+2z,1;q)
n=0 2n

N ((a Q/)p1 GQ/pz N Z (aq/m)i (ag/p1p2)™

(aq/p1p2)so —2(aq/p2)jpr—2

j=—00

(p1)jpr-1-2(P2) jpr~1-2 ' 1 | qip(ip'—s)
—_ aq z S . 3'6.8
(aq/pl)jp'—l—a:(CLQ/,OQ)jp/_l_m(/prp2)’ (3.6.8)

Then we are going to assume r(b) = b = 1 in (3.3.6). This gives us

(pnn(pz)n(aq/m)"ﬂq"ZFff;” '@n+1—5+2z,1;¢7")
(aq)
n=0 2n

_ ((aq/m 00 (a4/p2) oo Z (aq/p1 —a(p2)jp—a (ag/ prpa)® -

)oo(@q/ p1P2) (GQ/P2)jp'—z

700

(p1)jp—1-a(P2)ip—1-a ' =1=z | i’ (' —p)—js(v' —p)—ax(1+a—s)
- ag/pip q

(G’Q/pl)jp’flf:c(aCI/p2)jp’flfw (/ ' 2)
(3.6.9)

In (3.6.8) and (3.6.9) we consider the specialization

p1 = finite, py = finite.

3.6. N = 2 Character formulas 106

so that p‘ng — 1. Taking the limit

pfzz — 1in (3.6.8), we find

i _NO,s ;
D (pn(pn s F&P(2n+1— s+ 22, 1;q)
n=0 2n
— (pl)oo(p2)oo i qu(jp'fs) pIPQQQ(jp’_w_l) -1 (3 6 10)
(P1P2)00(@) 0 Pt (1= p1g?? 2 1)(1 — pogi? @ 1)

Similarly taking the limit p‘:32 — 1in(3.6.9), we find

0 le

q > 7 _
Z(pl)n(p2)n (aq) CI"QFl(f’sp)(277, +1—s+2z,1;4 1)
n=0 2n

o

s(s—a-1)_(P1)oo(P2) oo S D prpag?? 2D — 1
(P192)00(2) 00 (1= p1g??=*71)(1 = pag??~*71)

=49

j=—o0

(3.6.11)

Now we will consider appropiate finite values for p; and ps.

Remark 3.6.1. We like to mention that the fermionic formula in section 3.4 forp < p’ < 2p
is not valid for » = b = 1 and the fermionic formula for p’ > 2pisnotvalidforr =0, = 1.
Hence we can calculate the fermionic side of (3.6.10) only for p < p’ < 2p and the

fermionic side of (3.6.11) only for p' > 2p.

Here we set

pi=—2¢""2 and p, = —zlg"te. (3.6.12)

3.6. N = 2 Character formulas 107

3.6.5 Fermionic formulaforp < p’ < 2p

Let us use the specialization (3.6.12) in (3.6.10), which implies a = ¢?* and s = 1. Making

the variable change ; — —7 in (3.6.10) and setting z = 0 we obtain

o0) . q—./\fo
D (—2q7)n(—27"¢?)n Fh" (2n,15q)
n—0 (q)2n
1 2jp'+1
_ (Car)w(—27'¢2) Z ,,,+1 10T (36.13)
(@)% P L4 2¢/PT2)(1 4 27177 2)

Comparing with (3.6.5), we obtain

[ee] 1 1.1

)) =202)n(=27'¢2)n oy

Xpo(g,2) =g 5 e Z()(q()) F7)(2n,15). (3.6.14)
n=0 2n

This gives us a Bailey flow from M (p, p’) model to N = 2 superconformal model in the
NS sector. Now we calculate the fermionic side for p < p' < 2p.

Setting z = 1 and inserting the fermionic formula (3.4.3), we find

[e9) 1,2
A < _ —q?2 ImtBm—1A,.m
X;ZI?(Q)_Q 2 N“”““Z(((q)) Z gam BmTad
n=0 n Mm=Qu+v

!

) . (3.6.15)

q

tng+1

<1

n; +m;

3.6. N = 2 Character formulas 108

Let us set mg = 2n and use (3.5.5) to get

mo
2

mg
oo 2

mo=0 k1=0k2=0 m=Qu+v
even

mo
tn, +1
1 Mo Wt 2 n; + m;
o q%mth_%Au,vm(; 2 2 I1 777 (3.6.16)
Dmo |k, ko | =1 m;
q q q

Define p = (k1, ko, mg, m) € Ztro+1+3 50 that (3.6.16) can be rewritten as

~NS

_ . —x—No,1t+k1,1 1ptDp—1A4vp
Xpp' (q) =q E K 2

peZ'no+1t?
Pi=(Qu,v)i,i>3

tng+1+3 1 N ~
1 ™ S(Ipp+u+v);
37 I1 3 (To) . (36.17)
Drs ;21 s Dj
q

where Zp = 2L, 43— D and

-1 -1 1 |1

\ 0 0 -1|B)
. (3.6.18)
Au,v = (Oa Oa Oa Au,v)a

a’ = (0,0,0,u’),

v =(0,0,0,v"),

2, =(0,0,0,Q%,,).

3.6. N = 2 Character formulas 109

This gives a new fermionic expression for the NS-sector character.

Ramond sector characters: Let us set p; = —2z¢%, po = —z ¢**! in (3.6.11), which

implies @ = ¢%* and s = 1. Setting = 0 and changing 5 — —7 we obtain

Z -z q)n f./\/'o 1F(P,P)(2n 1: (])
(=) —2"'q) p(ip'+1) 1 — gt
= %0 : . . (3.6.19
J_Zoo e+ g S0
Comparing with (3.6.7) we get

~ _c _ > —Z —2_1(] ’

Xpp(0:2) = 278¢ N‘“Z()"(;)2)n o7 (2m, 15 q). (3.6.20)
n=0 n

This shows a Bailey flow from M (p,p') to N = 2 superconformal algebra in the R-sector.

Again using (3.4.3) in a similar way to the NS-sector and setting z = 1 we find

o
M e

n=0 (@)2n M=Quiv
tn0+1
nj +m;
<["7) (3.6.21)
j=1 m]

q

Using

3.6. N = 2 Character formulas 110

and setting mq = 2n, equation (3.6.21) can be rewritten as

oo

201
Gyl =20t 52 5

mo=0 k1=0 k2=0 m=Qu+v

§ q%(mg+2k%+2k572mok172m0k2)

L

mo even
tn 1
1 o _] o ot +my
% qimth—%Au,vm-F%(kl—kz)() 2 2 H J J (3.6.22)
9)mo k‘l kQ j=1 m;
q q q
Setting p = (k1, k2, mg, m) € Zino+1+3 this becomes
~ — 1.t _14
Xy (g) =2q Northur N gap e Auvp
pez mot1 ™
piE(QU,V)iaiZ'g
tng+1+3 1 N ~
15 ;Zpp +u+V);
0 11 3) . (3.6.23)
Drs j1 23 Dj

with the same notations as in (3.6.18) except

Ayy = (1,-1,0,Ayy), 0= (-1,0,0,u’), ¥'=(-1,0,0,v").

This gives a new fermionic expression of the new R-sector character.

3.6.6 Fermionic formula for p’ > 2p

Now we use the same specialization (3.6.12) in (3.6.11). All the calculations are done in a
similar way as in the previous section but using the fermionic formula for p’ > 2p. Hence

we just state the result here.

3.6. N = 2 Character formulas

The explicit fermionic formula in this case looks like

~NS o ! . ! N —_C 1 tDI 714/
Xy p (q) =g 0PI Y <q4p PP
p=Q

p3
1 tpry 1 ta st Yy Lot~ 1 9
X g 2P By —3pfeyy+1(05.V)—3piu o

(q)ps P1
q

tn0+1+3

<]1
j=4

N N At A ~
NI + Bty + &y (0, V7) 400,

Dj

)

111

(3.6.24)

3.6. N = 2 Character formulas

where

DI

112
(2 0 —1(0 0
0 2 -1[0 0
1 -1 2 |-2 —2 -1 0
0 0 -2
—2 2B
~1
0
\0 0 0)
21, iva— D'
(0,0,0, A) (3.6.25)
(0,0,0, X"
(0<k <%
0<ky <50

m=Q,

mg > 0, mg IS even

Note that D’ is a (tp+1 + 3) X (tn,+1 + 3) matrix and number of -2 in the third row and

column is vy.

3.7. Conclusion 113

Ramond sector: In this case we state the formula only. We get

~R Ni1-C lptp'p—Ar'
X —py (@) =2¢" Y <q4p PP

p=Q
~ N 1 pP3 __]_ p3
T RN | sez
(q)P3 pl p2 (e)
q q

. ~ ~ts o
tng+1+3 %(ID/p + B'u—|— + eluo-l-l (u,+'VI) + u,_)j)

< |1
=4

pj

with the same notations as in (3.6.25) except

=
IN
™
IN
NE
|
—_

- 0

IN

ko

IN

mo
2

mg > 0, mg IS even

m=Q,,

(3.6.23)and (3.6.26) gives us new fermionic expressions of the new R sector character.

3.7 Conclusion

In this thesis we only considered the vacuum character for the N = 2 superconformal
algebra with central charge ¢ = 3(1 — i—%’) with p < p' in the NS-sector and the Ramond
sector character derived from the vacuum character. We believe that similar Bailey flows
exist for the general N = 2 superconformal characters, but explicit formulas are not yet

available in the literature.

3.7. Conclusion 114

We would also like to mention that unlike in section 3.5 we did not carry out the Bailey
flow for both the Bailey pairs (3.3.3) and (3.3.4) in section 3.6. As we mentioned in section
3.6 the fermionic formulas Fr(f;’pl)(L, b;q) whenp < p’ < 2pand r = b = 1 and when
p' > 2pandr = 0,b = 1 are not given in [11, 12]. We believe that a formula for these
cases does appear in [84]. One can easily calculate the fermionic side in these cases using

the formula given in [84] by similar calculations.

115

Chapter 4

| mplementation

In this chapter we describe the programs that were used to verify the conjectures for our
results on unrestricted Kostka polynomials presented in Chapter 2. The bijection @ in
Chapter 2 has been implemented as a program written in C++. Several different versions
of this program have been used to carry out calculations regarding the unrestricted rigged
configurations. We used six different programs to verify conjectures regarding the lower
bound conditions, the convexity property of the unrestricted rigged configurations, and the
fact that the bijection ® preserves the statistics. We describe three of these programs in
this chapter. The programs presented here can be used by anyone studying unrestricted
Kostka polynomials. The code for these programs are provided in the appendix and can be
downloaded at http://math.ucdavis.edu/ deka.

The progams have also been incorporated into MuPAD-Combinat as a dynamic module

4.1. Program: allpaths_bijection.c 116

by Francois Descouens [58]. For example, the command

riggedConfigurations: :RcPathsEnergy: :

fromOnePath([L[31]1.L[[2]1.[111.L[[4.5.6]1.[1.2.311D

calculates ®(b) with b as in Example 2.4.9.
The programs have been compiled and tested using the gnu c++ compiler, (g++), ver-

sion 3.2.3.

4.1 Program: allpaths_bijection.c

The program named allpaths_bijection.c performs the bijection ® from the set of un-
restricted paths P(B, \) to the set of unrestricted rigged configurations RC(L,) for a
fixed value of A and L. Let us recall that A is the weight vector for the unrestricted
paths in P(B,\) and L is the multiplicity matrix for the shape of the tensor product
B = B™% @ ... ® B™*% . Let us denote the shape of B by a sequence of rectangular
partitions x. This program first calculates the set P(B, A). Then, for each b € P(B, \)
it calculates ®(b), thus calculates the set RC(L,). The program sorts the elements of
RC(L, \) so that all the rigged configurations with the same shape appear together. It also
calculates the statistics for each pair (b, ®(b)) and finally prints out the unrestricted Kostka

polynomial X (\, B).

Input: Here we explain how to input data for the program. The input file for this pro-

gram is called input_allpaths. The input data for this program are:

4.1. Program: allpaths_bijection.c 117

n = The rank of the Lie algebra of type A,, and we input it in the 1st line of the input file.

A = The fixed weight of the unrestricted paths. A is an n + 1 tuple of non-negative
numbers. We enter this in the 2nd line of the input file with exactly n + 1 parts including 0

if necessary.

1 = The fixed shape of the paths. u is a sequence of rectangular partitions. We enter a
rectangular partition columnwise. For example, 2 2 2 0 represents a rectangular partition
with 2 boxes in the 1st column, 2 boxes in the 2nd column and 2 boxes in the 3rd column.
The 0 at the end indicates the end of that partition. We input each component of ;. in a new

line.

We illustrate how to enter n, A and p to the program using a small example given below.

n=5 A=(1,2,2210), p=((1,1),(3,3)).

The input file is:

5
122210
20
2220

WARNING: Do not leave any extra blank space at the end of a line. Do not forget to
include O if necessary to make A an n + 1 tuple. Do not forget to put 0 at the end of a part
of . The program will read the input data incorrectly if you forget any of these and you

will get a wrong answer.

4.1. Program: allpaths_bijection.c 118

Remark 4.1.1. The maximum size of the rank n of the algebra A,, is limited by ‘RIGSIZE’
which is defined to be 20. For a larger n, the ‘RIGSIZE’ needs to be increased accordingly
in the beginning of the program. For a very large n, the program might take longer to

compile and run.

Output: Let us consider the input data: » = 3, A = (0,1,1,1) and p = ((1), (1, 1)).

Input file is

3
0111
10
20

The output of the program for this example is shown below.

n =3
Lambda is: 0111

Path (1):

4.1. Program: allpaths_bijection.c

Corresponding rigged configuration is:

€y

I 1 -1 -1
)

I -1] -1

Statistic is

0

119

4.1. Program: allpaths_bijection.c 120

FTEEAIEAAAIAAIAAAALAATAAAAATAAXAAATAAXAAAAIAAAITAIAXAIAAAXAAKAAXAAXX

Path (2):

Corresponding rigged configuration is:

4.1. Program: allpaths_bijection.c 121

Statistic is = 0

B R R S S R S R S R o S R R S e R e S R R e R

Path (3):

Corresponding rigged configuration is:

4.2. Program: one_path_bij.c 122

Statistic is =1

AEEAIAAAAIAAAAAITAAAAATXAAXAAATAAXAAAAIAAAITAI AT XAAXAAKXAAXAAXX

Unrestricted Kostka polynomial is: 2q°0 + 1q71

The output means there are 3 unrestricted paths. Each of the path and the corresponding
rigged configuration are printed together along with the statistic. Finally the unrestricted

Kostka polynomial, X (B, \) = 2 +q.

4.2 Program: one_path _bij.c

The program called one_path_bij.c calculates the image of an unrestricted path b € P(B, \)
under the map ®. The output is an unrestricted rigged configuration in RC(L, \). The pro-
gram also calculates the corresponding statistic.
Input: The input file for this program is called inputpath. We explain how to enter a
path to the program using an example. Suppose we want to input the following path:
b=[2[3]4/® ; g ?1

214(5
®® ST TG for the algebra of type As.

315
This path has 4 parts and the rank n = 5. The input for this example will be

(@)

54 [First entry is n=5, 2nd is number of parts=4]
2 34 [This is the 1st part of the path]

4.2. Program: one_path_bij.c 123

0 [0 separates the parts]
123

2 34 [2nd part]

356

0 [0 separates the parts]
2 [3rd part]

4

0 [0 separates the parts]
245 [4th part of the path]
356

0 [0 to indicate the end of the path]

WARNING: Do not leave any extra blank space at the end of a line. The program will
read the input incorrectly in that case and you will get a wrong answer.

Output: Now the output for our example is

n=5
Given path is:

4.2. Program: one_path_bij.c 124

4
2 4 5
3 5 6

I 1-110

4.2. Program: one_path_bij.c 125

I 1 1 1-11 -1

I 1-110
€Y

I I 1-110
I 1-110
)

I 1 OO0

Statistic = 5

For the path, the dotted lines separates the parts of the path. For the rigged configuration
the program gives the component number for the rigged partition and separates the different

components with dotted lines. In the end, the program gives the statistics corresponding

4.3. Program: inverse_bijection.c 126

to the path and the rigged configuration. We proved in Chapter 2 that the statistics for the

path and the rigged configuration are preserved under the bijection.

4.3 Program: inverse_bijection.c

The program called inverse_bijection.c computes the inverse map of ®. It takes an unre-
stricted rigged configuration (v, J) € RC(L, A) as an input and finds the image under the
inverse bijection. The output is a path in P(B, \).

Input: Let us explainthe input file with an example. The input file is called inputrigged
for this program. Suppose we want to find the image of the rigged configuration
(v,7) = 1 0

0 T1_1 o

withn = 5and p = ((1), (1), (3,3),(2,2,2)). To enter components of mu we use the
dimension of the rectangular box. For example, the third component of in our example
is entered as 2 3 indicating a 2 by 3 rectangle.

The input file for this example is

514 [h=5, 4 is the number of components in muj
11 [first component of mu]

11 [2nd component of mu]

2 3 [3rd component of mu]

32 [4th component of mu]

4 1 [first rigged partition]

-1 0 [riggings for respective parts right below]

4 3 [2nd rigged partition]

4.3. Program: inverse_bijection.c 127

-1 0 [riggings for respective parts]
411 [3rd rigged partition]

0 -1-1 [riggings for respective parts]

31 [4th rigged partition]
-1 0 [riggings for respective parts]
2 [5th rigged partition]
-1 [riggings for respective parts]

WARNING: As in the previous cases, do not leave any extra blank space at the end of a
line. The program will get confused and will give a wrong result.

Output: The output for our example is:

n=5 L=4
mu

11

11

2 3

32

Given rigged configuration is:

I 0l O

4.3. Program: tnverse_bijection.c

128

4.3. Program: inverse_bijection.c 129

)

Note that the program first prints out the input data and then prints the image of the
rigged configuration under the inverse map which is an unrestricted path. The different

parts of the path are separated by dotted lines. The output of the above example is the path

—_
—_

= o

=N

[3]®[2]® 5

| Ot

o
(@]

.1. Code for allpaths_bijection.c 130

1 Codefor allpaths_bijection.c

This program computes the bijection for all unrestricted paths, finds all the unrestricted
rigged configurations for a fixed A and p. It also calculates the statistics and the unre-

stricted Kostka polynomial corresponding to the A and .

#include <stdio.h>

#define UNUSED 9999

#define RIGSIZE 20

int n, I, num_shapes;

int lambda[100];

int tab_shape[100];

int tableau[100][100];

int r, tab_indx, num_rc_lb_ tab;
int *cum_lambda;

int *new_lambda;

int bigL [RIGSIZE][RIGSIZE];
int curL [RIGSIZE][RIGSIZE];
int path_index;

int tblu_index;

int num_paths;

int exp[1000];

FILE *fp;

class shape class;

.1. Code for allpaths_bijection.c 131

class tblu_row {
public:
int *col;
int num_col;
tblu_row(int c);
void print_row();
};
tblu_row: :tblu_row(int c¢):num_col(c) {
col = new iInt[c];
for (int i=0; 1 < c; i++) col[i] = UNUSED;
by
void tblu row::print_row() {
it (col[0] == UNUSED) return;
int 1 = 0;
while (col[i] '= UNUSED && 1 < num_col) {
fprintf(stderr, "%2d ", col[i]);
i++;
by
fprintf (stderr, '\n");
¥

A doubly linked list of objects of type tblu_class makes up a path. Each object of type

tblu_class represents a tableau which is a part of a path.

class tblu _class {

public:

.1. Code for allpaths_bijection.c

j

int tblu_id;

tblu_row* row;

int* tab_lambda;

InNt num_row;

tblu _class* next;

tblu_class* prev;

shape_class* tblu_shape; // pointer to the mu
// from which we got the shape

tblu_class(int r, iInt c);

void print_tbluQ;

tblu_class::tblu_class(int r, int c):num_row(r) {

}

row = new tblu _row [r](c);
tab_lambda = new int[n+1];

for (int i=0; i<=n; i++) tab_lambda[i] = O;

next NULL;

NULL;

prev

tblu_shape = NULL;

Prints a tableau

void tblu_class::print_tblu(){

fprintf (stderr,"--—-———————————— \n");
for (int i=0; 1 < num_row; i++) {

row[i].print_row();

132

.1. Code for allpaths_bijection.c 133

}

}
tblu class *tblu_list;

tblu _class *tblu_list _end;
typedef tblu_class* tblu_class_ptr;
tblu _class _ptr *tblu_array;
class shape class {
public:
Int* shape;
int num_col;
int num_row;
shape_class* prev;
shape_class* next;
tblu_class* first_tblu;

shape_class(int ncol, int nrow);

shape _class::shape class (int ncol, int nrow){
num_col = ncol;
num_row = Nrow;

shape = new iInt[ncol];
for (int i=0; i<ncol; i++) shape[i]=nrow;

first_tblu = NULL;

prev NULL;

next NULL;

.1. Code for allpaths_bijection.c 134

shape_class* shape_list;

shape_class* shape_list_end;

An object of type path_class represents a path. A doubly linked list of objects of type
path_class has all the unrestricted paths and the corresponding rigged configuration for

each path.

class path_class {
public:
int path_len;
int index;
int rigged[RIGSIZE][5][RIGSIZE];
// the rigged set for this path
tblu _class _ptr *path;
// the array of pointers to tableaux
path_class* next;
path_class* prev;
int cocharge;
int Energy;
path_class(int path_len);
void print_path(Q);
void path_class::reset_flags(int pathi);
void path_class::print_rigged_for_this_path(Q);
int path_class::
find_largest_inside_outside_others

(int index, int old_largest_index, int pathi);

.1. Code for allpaths_bijection.c 135

Iint path_class::
find_largest_inside _outside_first
(int index, Int pathi) ;
void path_class::add new_col
(int index, Int pathi);
void path_class::init _unused _rigged
(int index, Int pathi);
void path_class::add_to_rigged
(int index, int column_index, iInt pathi) ;
int path_class::num_box_1k col
(unsigned int 1, int k, int pathi);
int path_class::add box to rigged
(int index, iInt begin,
int old_largest_index, Int pathi) ;
int path_class::second_func(int part_size,
int rig_num);
void path_class::calc_outer_label
(int rig_num, iInt pathi);
void path_class::calc_inner_label
(int 1, Int pathi);
void path_class::insert_element_to rigged
(int num, Int row_indx, int col_indx,
int nrow, Int ncol);
void path_class::insert_tableau_to rigged

(tblu_class™ cur_tblu);

.1. Code for allpaths_bijection.c 136

void path_class::build_rigged_for_path () ;
void path_class::calculate _cocharge();
int path_class::alpha(int k, iInt i1);

};

path_class::path_class(int len):path_len(len) {
path = new tblu_class_ptr [len];
for (int 1=0; i<len; 1++) path[i] = NULL;

next = NULL;
prev = NULL;
index=0;

< RIGSIZE; i++) {

for (int i=0;
0; J <3; jJ+t)

for (int j
for (int k = 0; k < RIGSIZE; k++)
rigged [i10JLK] = UNUSED;
for (int j = 3; j < 5; j++)
for (int k = 0; k < RIGSIZE; k++)
rigged [i10]1[K] = O;

};
Prints a path.

void path_class::print_path() {
for (int 1=0; 1 <path_len; i++) {
if (path[1] '= NULL) path[i]->print_tblu(Q);

.1. Code for allpaths_bijection.c 137

}
typedef path_class* path_class_ptr;

path_class _ptr tmp_path;
path_class ptr path_list;
path_class_ptr path_list _end;
path_class ptr *path_array;

int *print_order;

void reset_tableau() {
for (int i=0;i<RIGSIZE; i++){
for (int j=0; J<RIGSIZE;j++){
tableau[1] [J]=UNUSED;

}

void initialize_lambda() {
int i, j, k,m;
for (i=0; i < RIGSIZE; i++) {
lambda[i] = -1;
tab_shape[i]=-1;
by
for (i=0; i<1000; i++);
exp[1]=0;

reset_tableau();

.1. Code for allpaths_bijection.c
Reads the input file.

void read_input(){
int i, tmp;
tmp = UNUSED;
i =0;
1 =0;

fp = fopen (input_allpaths™,"rw);

fscanf(fp,"%d\n", &n);
while (i< n+1) {

fscanf (fp, "%d", &tmp);

lambda[i] = tmp;
1 =1 + tmp;
i++;

}

Prints the input data: n, A and p.

void print_input() {

int 1;

fprintf (stderr, "'n = %d \n", n);

fprintf (stderr, 'Lambda is:

for (i=0; 1 <=n; i++) {

1T (lambda[1] == -1) break;
fprintf (stderr, "%d ",

");

lambda[i1]);

138

.1. Code for allpaths_bijection.c 139

fprintf (stderr, "\n");
}

Copies the tableau constructed to the tableau list.

void print_and_copy_tableau(int k, Int nrow,

int ncol, shape class* shape obj) {

tblu_class *my_tblu =
new tblu class(nrow,ncol);
my_tblu->tblu_id = tblu_index;
tblu _index += 1;
while (tableau[i][0] '= UNUSED){
J=0;
while (tableau[1][J]'=UNUSED){
my_tblu->row[i].col[j] = tableau[1][]}];
my_tblu->tab_lambda[tableau[i][j] - 1] =
my_tblu->tab_lambda[tableau[1][jJ] - 1]
+ 1;

if (shape_obj->first_tblu == NULL)
shape_obj->first_tblu = my_tblu;

.1. Code for allpaths_bijection.c

my_ tblu->tblu_shape = shape obj;
if (tblu_list == NULL){

tblu_list = my tblu;
tblu_list_end = my_ tblu;

} else {
tblu_list_end->next = my_tblu;

tblu_list_end;

my_tblu->prev

tblu _list _end my_tblu;

}

Builds a tableau recursively.

void build_tableau(int m,int row,int col, Int nrow,
int ncol, shape_class* shape_obj){

int k,p,q,m1,h,hl1,valid,num,a,b,c ;

iT ((col == 0 && row == 0) ||
((col == 0) && (n > tableau[row - 1][col]))
Il (row == 0 && m >= tableau[row][col-1]) ||
(row > 0 && col > 0 & m >
tableau[row-1][col] && m >=
tableau[row][col-1]))

tableau[row][col]=m;

if (row == tab_shape[col]-1) {

140

.1. Code for allpaths_bijection.c

iT (tab_shape[col+1] < 1) {
print_and_copy_tableau(tab_indx,
nrow, ncol, shape obj);
tab_indx=tab_indx+1;
return;

}

else{
for (k=1; k <= n+l; k++) {
build_tableau(k,O0,

col+1,nrow,ncol, shape obj);

¥
} else{
for (k=m+1l; k<=n+l; k++) {
build_tableau(k, row+1,col,nrow,

ncol, shape obj);

}

Finds all possible tableaux of a given shape.

void find_tableau(){
int i,j,k,h,tmp;

141

.1. Code for allpaths_bijection.c 142

int nrow, ncol;

tab_indx=0;num_rc_Ib tab=0;

num_shapes = 0;

for (1=0;iI<RIGSIZE;i++){
tab_shape[i]=0;

tblu list = NULL;
tblu_list_end = NULL;
shape_list = NULL;
shape_list _end = NULL;
tblu_iIndex = 0;
fprintf (stderr, "mu is :\n");
while (fscant (fp, "%d', &tmp) = EOF){
iIf (tmp == 0) {
k = 0;
shape _class* my_shape_obj
= new shape_class(k,tab_shape[0]);
iT (shape_list == NULL){
shape_list = my _shape _obj;
shape_list _end = my_shape _obj;
} else {
my_shape_obj->prev = shape_list_end;
shape_list_end->next = my_shape_obj;

shape list _end = my_shape obj;

.1. Code for allpaths_bijection.c 143

}

fprintf (stderr, \n");

while (tab_shape[k] '= 0) {
fprintf (stderr, "%2d ', tab_shape[k]);
K++;

by

num_shapes++;

fprintf (stderr, ""\n");

nrow = tab_shape[0];

ncol = k;

reset_tableau();

for (int 1 = 1; 1 <= n+l; i++){
build_tableau(i, 0, O,

nrow, ncol, my shape obj);

}
for (int i = 0; i < RIGSIZE; i++)
tab_shape[i] = 0;
j = 0;
} else {

tab_shape[j] = tmp;

J++;

.1. Code for allpaths_bijection.c 144

}

Finds the possible parts (which are tableaux) of a path with the given x and .

void find_path_element(int position, shape class*

cur_shape, tblu class* cur_tblu) {

if (cur_tblu == NULL) {

return;

int *this_lambda = cur_tblu->tab lambda;
bool satisfy = true;
for (int i=0; i<= n; i++) {
new_lambda[i] =
cum_lambda[i] + this_lambda[i];
if (new_lambda[i] > lambda[i]) {

satisfy = false;

break;
}
+
IT (satisfy == false) {
return;
} else {

for (int i=0; i<=n; i++)

cum_lambda[i] = new_lambda[i];

.1. Code for allpaths_bijection.c 145

tmp_path->path[position] = cur_tblu;
iT (position == num_shapes - 1) {
bool found= true;
for (int 1=0; i<=n; i++)
iIT (cum_lambda[i] '= lambda[i])
found = false;
it (found) {
path_class* tmp_path_list =
new path_class (num_shapes);
path_index=path_index+1;
tmp_path_list -> index=path_index;
for (int 1=0; i<num_shapes; i1++) {
tmp_path_list->path[i] =
tmp_path->path[i];
by
iIf (path_list == NULL) {
path_list = tmp_path_list;
path_list _end = tmp_path_list;
} else {
path_list_end->next =
tmp_path_list;
tmp_path_list->prev =
path_list _end;

path_list _end = tmp_path_list;

.1. Code for allpaths_bijection.c 146

}
} else {

tblu _class* this tblu =
cur_shape->next->first_tblu;
shape_class* this_shape =cur_shape->next;
while (this_tblu = NULL &&
this_tblu->tblu_shape == this_shape){
find_path_element(position +1,
this_shape, this tblu);

this_tblu = this_tblu->next;

¥
for (int i=0; i<=n; i++) cum_lambda[i] =
cum_lambda[1] - this_lambda[i];

tmp_path->path[position] = NULL;

}

Builds paths of shape 1 and weight).

void build paths(Q) {

new Int [n+1];

cum_lambda

new_lambda = new int [n+1];

0;

path_index

for (int i O; 1 <=n; 1++) {

cum_lambda[i] = O;

.1. Code for allpaths_bijection.c 147

new_lambda[i] = O;
by
tmp_path = new path_class (nhum_shapes);
path_list = NULL;
path_list_end = NULL;
tblu _class* this _tblu = shape_ list->first_tblu;
while (this_tblu = NULL &&
this_tblu->tblu_shape == shape_list) {
find_path_element (0, shape_list, this_tblu);

this_tblu = this_tblu->next;

path_class* tmp_path_list = path_list;
while (tmp_path_list = NULL) {

tmp_path_list = tmp_path_list->next;

void path_class::reset_flags (int pathi) {
int i, k;
for (i=0; 1 < RIGSIZE; i++) {
for (k=0; k < RIGSIZE; k++) {

.1. Code for allpaths_bijection.c 148

rigged [1][3][k] = O;

}

This finds the cocharge for a given rigged configuration.

int path_class::alpha(int k, int 1){
int num_coln,j;
num_coln=0;
it (k>=n) num_coln=0;
else{
for (J=0; J<RIGSIZE;j++){
if (rigged[k][0][0]==UNUSED){
num_coln=0 ;
break;
ks
else{
if (rigged[K1[0]L[j]!=UNUSED){
it (rigged[K][0]Li1>=i1+1){

num_coln=num_coln+1;

.1. Code for allpaths_bijection.c 149

return num_coln;
by
void path_class::calculate_cocharge(){
int k,j,1,sum,cosum;
sum=0;
for (k=0;k<=n-1;k++){
ifT (rigged[k][0][0]!'=UNUSED){
for (i=0;i< rigged[K][O0][O0];i++){
sum=sum+alpha(k, 1)*(alpha(k, 1)-alpha(k+1,1));
by

}

cosum=sum;
for (k=0;k<=n-1;k++){
for (J=0;j<RIGSIZE;j++){
iIT (rigged[k][2][J]==UNUSED) break;
if (rigged[k][21[j]!=UNUSED){
cosum=cosum + rigged[K]1[21[i1;

}

cocharge=cosum;
fprintf (stderr, "Statistic is = %d \n', cosum);

exp[cosum]=exp[cosum]+1;

.1. Code for allpaths_bijection.c 150
Prints the rigged configuration corresponding to a path.

void path_class::print_rigged for_this _path() {

int 1, j, k, 1,a,b;

for (i =0; i <n; i+) {
if (rigged[i]1[0][0]==UNUSED) {
fprintf (stderr,"-————————————————— \n"");
fprintf(stderr, " (%d) Empty\n", 1+1);
} else {
if (rigged[i]1[0][0] !'= UNUSED) {
fprintf (stderr,”"-——————————————— \n");
fprintf(stderr, "(%d)\n", i+l);

J=0;
if (rigged[i][0]1[j]1 '= UNUSED)
for (k=0; k <rigged[i][O][]]; k++)
fprintf (stderr, ™ __ ');
fprintf (stderr,'\n");
while (rigged[i][O0][J] '=UNUSED){
k=rigged[i]1[0]1[i1;
for (1=0; I<k-1;1++){
fprintf (stderr, "| ")

ke
it (I==k-1) fprintf (stderr,

.1. Code for allpaths_bijection.c 151

"l %2d™,rigged[11[2]Li1):

fprintf (stderr,
"1 %d\n",rigged[iJ[110Li1D;
for (1=0; I<k; I++){
fprintf (stderr, " ---");
¥
fprintf (stderr,'\n");

J++;

}

calculate_cocharge(Q);

fprintf (stderr,'\n");
}

Finds the largest singular string in a rigged partition other than the first one which is bigger

or equal to the string selected in the previous rigged partition.

int path_class::find_largest_inside_outside others
(int index, int old_largest_index,

int pathi) {

.1. Code for allpaths_bijection.c 152

int largest_index = UNUSED;
while ((rigged[index][O][i] '= UNUSED) &&
i < RIGSIZE) {
iIT ((rigged[index][1][1] ==
rigged[index][2][1]) &&
(rigged[index][1][1] '= UNUSED) &&
(rigged[index][O][1]
<= old_largest_index)) {
largest_index = 1i;

break;

i++;
}

return largest_index;

}

Finds the largest singular string in the first rigged partition

int path_class::find_largest_inside_outside_ fTirst

(int index, int pathi) {

int 1 = 0;

int largest_index = UNUSED;

while ((rigged[index][O][i] '= UNUSED) &&

i < RIGSIZE) {
iIT ((rigged[index][1][1] ==
rigged[index][2][1]) &&

.1. Code for allpaths_bijection.c 153

(rigged[index][1][1] '= UNUSED)) {
largest_index = i;

break;

i++;
by
return largest_index;
by
void path_class::add_new_col(int index, int pathi){
int i1=0;
while (rigged[index][O][i] '= UNUSED) i++;
rigged[index][O][1] = 1;
rigged [index][3][i] = 1;
ke
void path_class::init_unused_rigged
(int index, int pathi) {
rigged [index][0][O]
rigged [index][3]][0]

1;

1;
ks
void path _class::add_to rigged (int index,
int column_index, int pathi) {
rigged [index][O][column_index] += 1;
rigged [index][3][column_index] = 1;

.1. Code for allpaths_bijection.c 154

Calculates the number of boxes in the first £ columns of a rigged partition.

int path_class::num_box 1k col

(unsigned iInt 1, int k, int pathi){

int j, I;

Iint num_boxes = 0;

for (1=1; I <= k; 1++) {

for (J = 0; j < RIGSIZE; j++){

if (rigged[1][O0][J] == UNUSED) break;
it (rigged[11[0101 >= {

num_boxes += 1;

}

return num_boxes;

}

This adds a box to a rigged partition while doing the bijection.

int path_class::add box to rigged (int index,

int begin, int old_largest_index, int pathi){
int largest_index;
iIT (index == begin) {

largest_index =

find_largest _inside_outside_ first(index,
pathi);

} else {

.1. Code for allpaths_bijection.c 155

largest_index =
find_largest_inside_outside_others(index,
old_largest_index, pathi);
by
iIT (largest_index == UNUSED) {
if (rigged[index][0][0] == UNUSED)
init _unused rigged (index, pathi);
else
add_new_col (index, pathi);
return O;
} else {
add_to_rigged (index, largest _index, pathi);

return (rigged [index][O][largest _index] - 1);

}

This calculates the second function in the definition of vacancy numbers.

int path_class::second_func
(int part_size, int rig_num) {
int sum = O;
for (int i=1; I<RIGSIZE; i++) {
iT (curL[rig_num+1][i] '= 0) {
int minimum = part_size;
if (i < part_size) minimum = 1i;

sum =sum + minimum * curL[rig_num+1][i];

.1. Code for allpaths_bijection.c 156

}
}

return sum;

}

This calculates the vacancy numbers.

void path_class::calc _outer_label (int rig_num,
int pathi){
int part_num=0;

int part_size, p;

if (rig_ num == 0) {
for (int part_num=0; part_num < RIGSIZE;
part_num++) {
part_size = rigged[O][O][part_num];
if(part_size == UNUSED) break;
p = (-2*num_box_1k col (0, part_size,
pathi)) +
(num_box_1k col (1, part_size, pathi)) +
second_func(part_size, rig_num);
rigged [O][1][part_num] = p;
by
} else {
for (part_num=0; part_num < RIGSIZE;

rt_num++) {

.1. Code for allpaths_bijection.c 157

part_size = rigged[rig_num][O][part_num];
if(part_size == UNUSED) break;
p = -2*num_box_1k _col (rig_num, part_size,
pathi) +
num_box 1k col (rig_num-1, part_size,
pathi) +
num_box_1k col (rig_num+l, part_size,
pathi) +
second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

¥
This calculates the labels or the riggings.

void path_class::calc_inner_label
(int 1, Int pathi) {
int j,k;
int tmp;
for (J = 0; j < RIGSIZE; j++) {
if (rigged[1][O0][J] == UNUSED) break;
it (rigged[i]310]1 == 1) {
rigged [i][2][i]1 = rigged [i][1101];

.1. Code for allpaths_bijection.c 158

}
for (j = 0; j < RIGSIZE; j++) {
for (k = 1; k < RIGSIZE; k++) {
if (rigged[i1[0]1[k] == UNUSED) break;
if (rigged[i][0]1[k] == rigged[i][0]1[k-1]
&& rigged[i]1[1]1[k] == rigged[i1[1]1[k-1]
&& rigged[i]1[2]1[k-1] < rigged[i][2]1[kD)
{
tmp = rigged[i1]1[2]1[k-1];
rigged[i][2][k-1] = rigged[i][2][K];
rigged[i][2][k] = tmp;

}

This inserts each element of a part in the path into the bijection

void path_class::insert _element_to rigged
(int num, Int row_indx, int col_indx,
int nrow, Int ncol) {
int old_largest_index;
reset_flags(0);
for (int 1 = (num-2); 1 >= row_indx; 1--) {
old_largest_index =

add_box_to_rigged(i, num-2, old_largest _index, 0);

.1. Code for allpaths_bijection.c

by
for (int i=0; 1 < RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)
curL[i]1[§] = bigL[i1[i];
if (row_indx == nrow - 1) {
curL [nrow][1] += 1;

iIT (col_indx = ncol - 1) {

curL [nrow][ncol - col _indx - 1] += 1;

by
} else {
curL [nrow][ncol - col _indx - 1] += 1;
curL [row_indx + 1][1] += 1;
by
for (int 1 = 0; 1 < nj; i++) {
calc_outer_label (i, 0);
by
for (int i =0; i <n; i++) {
calc_inner_label (i, 0);
by
1T (row_indx == nrow - 1) {
for (int i=0; i < RIGSIZE; i++)
for (int j = 0; j < RIGSIZE; j++)
curL[i]1[j] = bigL[i][i];:

// update curL - this is different from above

159

.1. Code for allpaths_bijection.c 160
curL [nrow][ncol - col_indx] += 1;
for (int i = 0; 1 < n; i++) {

calc_outer_label (i, 0);

}

This inserts each part of a path into the bijection

void path_class::insert_tableau_to_rigged
(tblu_class* cur_tblu) {

Int nrow = cur_tblu->num_row;

int ncol cur_tblu->row[0] .num_col;

ncol-1; j >=0; j--) {

for (int j
for (int 1 = 0; 1 < nrow; i++) {
insert_element_to_rigged

(cur_tblu->row[i].col[j], i,j,nrow, ncol);

+
bigL [nrow][ncol] = bigL [nrow][ncol] + 1;
for (int i = 0; i < RIGSIZE; i++)
for (int j = 0; j < RIGSIZE; j++)
curL[i][§j] = bigL[i][il;
}

This insert all the parts of a path to the bijection

void path_class::build_rigged for_path () {

.1. Code for allpaths_bijection.c 161

int j;
for (int i=0; 1 < RIGSIZE; i++) {
for (J =0; j < RIGSIZE; j++)
bigL[i1[j] = O;
curL[i][j] = O;
by
for (int 1 = path_len - 1; 1 >=0; 1--) {

insert_tableau_to _rigged (path[i]);

}

Sorts the rigged configurations in a order so that the configurations with the same shape

appears together.

void sort_rigged(){
int 1,jJ,k,a,b,p,T,m,h,al,bl;

a=0;p=0;a1=0;

for (int a=0; a < num_paths; at++) {
iIT (path_array[a]->rigged[0][4]1[0] '= 0)
continue;
print_order[p] = a;
p=p+1;
for (int i=at+l; 1 < num_paths; 1++){
if (path_array[i]->rigged[0][4]][0] = 0)

continue;

.1. Code for allpaths_bijection.c

T = 0;
for (b=0;b<=n-1;b++){
// pick the b-th rig-element of
// a-th path with i-th path
k=0;
while(path_array[a]->rigged[b][0][K]
1=UNUSED) {
ifT (path_array[i]->rigged[b][O0][Kk] !=
path_array[a]->rigged[b][0][k]){

T=1;break;
by
if (path_array[i]->rigged[b][4][K]
1=0) {
T=1;break;
by
k++;
}

// Make sure 1f we exited while
// loop because af[..] unused
if (path_array[a]->rigged[b][0][K]
1= path_array[i]->rigged[b][O]IK])
T=1;
// if unequal quit searching

iT (T == 1) break;

162

.1. Code for allpaths_bijection.c 163

}

}

}

// if rig-element comparison failed
// quit path comparison
it (T==1) {

continue;

print_order[p]=1;
path_array[i]->rigged[0][4]][0]=1;
p=p+1;

} /7 inner for loop - i

// outer for loop - a

Calculates the rigged configurations corresponding to each of the possible paths.

void build rigged() {

path_class* tmp_path_list = path_list;

num_paths = 0;

while (tmp_path_list = NULL) {
tmp_path_list->build_rigged for_path ();
tmp_path_list = tmp_path_list->next;
num_paths++;

by

path_array = new path_class ptr [num_paths];

print_order = new int [num_paths];

for (int i=0; i<num_paths; i++) {

.1. Code for allpaths_bijection.c 164

print_order[i1] = 1;
by
tmp_path_list = path_list;
while (tmp_path_list = NULL) {
path_array[tmp_path_list->index - 1] =
tmp_path_list;
tmp_path_list = tmp_path_list->next;
by
sort_rigged();
fprintf(stderr,"-—————————— \n");
fprintf(stderr,"”There are %d unrestricted
paths.\n", num_paths);
fprintf(stderr,"-——————————— \n");
fprintf(stderr,'\n"");
for (int i=0; i<num_paths; i++) {
fprintf (stderr, "Path (Wd): \n",i1+1);
path_array[print_order[i1]]->print_path();
fprintf (stderr, ""\nCorresponding rigged
configuration is:\n"");
path_array[print_order[i]]->

print_rigged_for_this path();

by
fprintf(stderr,

"Unrestricted Kostka polynomial i1s: ™);

.1. Code for allpaths_bijection.c

int begin=1;
for (int 1=0; i1<1000; i++) {
if (exp[i]!=0) {
it (begin)
fprintf(stderr, ™ + ™);
begin=0;
fprintf(stderr, "%dq %d ", exp[i],1);

by
fprintf(stderr,\n"");

}

Main program.

int main() {

int 1;

initialize_lambda(); // initialization.

read_input(); // this reads the input.

print_input(); // this prints the input.

find_tableau();// this finds all the tableaux of
// all the shapes from mu

build _paths(); // this finds all the paths for
// given lambda and mu

build _rigged();// this calculates all the rigged

// configurations via the bijection

// and sorts them in the order so

165

.2. Code for the program one_path_bij.tex.c 166

// that all the configurations

// with the same shape appear together.

.2 Codefor the program one_path_bij.tex.c

This program does the bijection from the set of paths to the set of rigged configurations.
Input data is a single path and the program calculates the corresponding rigged configu-

ration using the bijection. It also calcutales the statistics.

#include <stdio.h>

#define UNUSED 9999

#define RIGSIZE 50

int n,l;

int tab_shape[100];

int tableau[100][100];

int r;

int rigged[RIGSIZE][5][RIGSIZE];
int bigL [RIGSIZE]J[RIGSIZE];
int curL [RIGSIZE][RIGSIZE];
int path_index;

int tblu index;

FILE *fp;

.2. Code for the program one_path_bij.tex.c 167

A doubly linked list of objects of type tblu_class makes up a path. Each object of type

tblu_class represents a tableau which is a part of a path.

class tblu_class {
public:
int tblu_id;
int** tb; // 2-dimensional array of integers
// holding the tableau
int* tab_lambda;
int num_row;
int num_col;
tblu_class™ next;
tblu_class* prev;
tblu _class(int r, int c¢);
void print_tblu(Q);
}:

tblu_class::tblu _class(int r, iInt c)
znum_row(r),num_col(c) {
th = new int* [r];
for (int i=0; 1 < r; i++) {
tb[i] = new iInt [c];
for (int j = 0; J < c; j++)
tb [i][J] = UNUSED;

.2. Code for the program one_path_bij.tex.c 168

tab_lambda = new int[n+1];

for (int i=0; i<=n; i++) tab_lambda[i] = O;

next NULL;

prev NULL;

}

Prints a tableau.

void tblu class::print_tblu(Q{
fprintf (stderr, "---——------—— \n");
for (int 1=0; 1 < num_row; i++) {
for (int j=0; j < num_col; j++)
fprintf (stderr, "%2d ", th[i]Li1);
fprintf (stderr, '\n");

typedef tblu_class* tblu_class_ptr;

tblu_class ptr *tblu_array;

An object of type path_class represents a path. In this program it has only one object and

the corresponding rigged configuration.

class path_class {

public:

.2. Code for the program one_path_bij.tex.c

int path_len;
int index;
int rigged[RIGSIZE][5][RIGSIZE];
// this is the rigged set for this path
tblu_class_ptr *path; // this is the array
// of pointers to tableaux
path_class* next;
path_class* prev;
Int cocharge;
path_class(int path_len);
void print_path(Q);
void path_class::reset_flags(int pathi);
void path_class::print_rigged_for_this_path();
int path_class::fTind_largest_inside_outside_others
(int index, int old_largest _index, int pathi);
int path_class::find_largest _inside outside first
(int index, Int pathi) ;
void path_class::add _new_col
(int index, Int pathi);
void path_class::init _unused _rigged
(int index, Int pathi);
void path _class::add _to rigged (int index,
int column_index, int pathi) ;
int path_class::num_box_1k col (unsigned int i,

int k, Int pathi);

169

.2. Code for the program one_path_bij.tex.c 170

int path_class::add_box_to_rigged (int index,
int begin, int old_largest_index,
int pathi) ;
Iint path_class::second_func
(int part_size, iInt rig_num);
void path_class::calc_outer_label
(int rig_num, iInt pathi);
void path_class::calc_inner_label
(int i, Int pathi);
void path_class::insert_element_to rigged
(int num, Int row_indx, int col_indx,
int nrow, int ncol);
void path_class::insert_tableau_to rigged
(tblu_class* cur_tblu);
void path_class::build_rigged for _path () ;
void path_class::calculate _cocharge();

int path_class::alpha(int k, Int 1);

path_class: :path_class(int len):path_len(len) {

path = new tblu _class _ptr [len];
for (int i=0; i<len; i++) path[i] = NULL;

next = NULL;

.2. Code for the program one_path_bij.tex.c 171

prev = NULL;
index=0;
for (int i=0; i < RIGSIZE; i++) {
for (int j = 0; j < 3; j++)
for (int k = 0; Kk < RIGSIZE; k++)
rigged [i][J]1[k] = UNUSED;
for (int j = 3; j < 5; j++)
for (int k = 0; k < RIGSIZE; k++)
rigged [i10]1[K] = O;

void path_class::print_path() {
fprintf (stderr, "Given path is:\n");
for (int i=0; 1 <path_len; i1++) {
it (path[1] '= NULL) path[i]->print_tblu();

typedef path_class* path_class_ptr;

path_class_ptr input_path;

.2. Code for the program one_path_bij.tex.c 172

void reset_tableau() {
for (int i=0;iI<RIGSIZE; i++){
for (int j=0; J<RIGSIZE;j++){
tableau[1][J]=UNUSED;

This reads the input file. 1st number we input is ’n”> which is the number of nodes in the
Dynkin diagram of type A_n. 2nd number we input is the number of parts in the path, called
path length. Then we input each part of the path which is a tableau, we seperate the parts

by putting a 0. At the end of the last part we put a ’0” to ensure the end of the path.

void read_input(){

int i, §J, k, tmp, c;

int path_len, path_index;
int col;

tmp = UNUSED;

path_index = 0O;

.2. Code for the program one_path_bij.tex.c 173

fp = fopen (inputpath™,rw™);
fscanf(fp,"%d %d\n", &n, &path_len);
input_path = new path_class (path_len);
reset_tableau();
while (fscanf (fp, "%d", &tmp) 1= EOF) {
iT (tmp == 0) {
tblu _class *my_tblu =
new tblu_class(i,col);

1 = 0;

my_tblu->tblu_id = tblu_index;

tblu_index += 1;

while (tableau[i][0] '= UNUSED){

J=0;
while (tableau[i][J]"=UNUSED){
my_tblu->tb[i][j] = tableaul[i][]];
my_tblu->tab_lambda[tableau[1][jJ] - 1] =
my_tblu->tab_ lambda[tableau[i][j] - 1] + 1;

J+t;

i++;

input_path->path[path_index] = my_ tblu;

reset_tableau ();

path_index += 1;

.2. Code for the program one_path_bij.tex.c

continue;
by
tableau[1][J] = tmp;
Jo+= 1
c = fgetc(fp);
if (c == ’\n”) {

1 += 1;
col = j
J =0;

void path_class::reset_flags (int pathi) {

int i, k;

for (i=0; 1 < RIGSIZE; i++) {
for (k=0; k < RIGSIZE; k++) {
rigged [i]1[31[k] = O;

174

.2. Code for the program one_path_bij.tex.c 175

This prints the rigged configuration obtained from the bijection and prints the correspond-

ing statistic.

void path_class::print_rigged_for_this_path() {
int i, j, k, 1,a,b;
for (i = 0; 1 <n; 1++) {
if (rigged[i]1[0][0]==UNUSED) {
fprintf (stderr,”"—-—-—————————————————— \n");
fprintf(stderr," (%d) Empty\n", 1+l);
by

else {
if (rigged[i1[01[0] '= UNUSED) {
fprintf (stderr,"--———————————————-— \n"");
fprintf(stderr, "(%d)\n", 1+l);
J=0;
if (rigged[i1[01[j]1 !'= UNUSED)
for (k=0; k <rigged[i1]1[O1[j]1; k++)
fprintf (stderr, " __ ');
fprintf (stderr,\n");
while (rigged[i][O0][J] '=UNUSED){
k=rigged[1]1[0]1[]1;
for (1=0; I<k-1;1++){
fprintf (stderr, "| ");

¥
if (I==k-1) fprintf

.2. Code for the program one_path_bij.tex.c 176

(stderr, | %2d",rigged[i][2]13D):

fprintf (stderr,

"1 %d\n",rigged[i1[1101D):
for (1=0; I<k; I++){

fprintf (stderr, " ---"");
by
fprintf (stderr,'\n");
J+t;
}
}
¥
}
fprintf (stderr,"--—-———————————— \n");

calculate_cocharge(Q);

Finds the largest singular string in a rigged partition other than the first one which is

bigger or equal to the string selected in the previous rigged partition by 4.

int path_class::find _largest _inside outside_others
(int index, int old_largest_index, int pathi) {
int 1 = 0;
int largest_index = UNUSED;

while ((rigged[index][O][i] '= UNUSED) &&

.2. Code for the program one_path_bij.tex.c 177

i < RIGSIZE) {
iIT ((rigged[index][1][1] ==
rigged[index][2]1[1])
&& (rigged[index][1][1] '= UNUSED) &&
(rigged[index][0][1] <= old_largest_index)) {
largest_index = 1i;

break;

i++;

}

return largest_index;

Finds the largest singular string in the first rigged partition.

int path_class::find_largest_inside_outside_ fTirst
(int index, Int pathi) {
int 1 = 0;
int largest_index = UNUSED;
while ((rigged[index][O][1] '= UNUSED)
&& 1 < RIGSIZE) {
if ((rigged[index][1][1] ==
rigged[index][2][1]) &&
(rigged[index][1][1] '= UNUSED)) {

largest_index = i;

.2. Code for the program one_path_bij.tex.c 178

break;

i++;

}

return largest_index;

void path_class::add_new_col (int index, int pathi)
{
int i1=0;
while (rigged[index][O][1] '= UNUSED) i++;
rigged[index][O][1] = 1;
rigged [index][3][i] = 1;

void path_class::init_unused _rigged (int index,
int pathi) {

rigged [index][0][0O]

rigged [index][3]][0]

nnu
e

void path _class::add_to rigged (int index,
int column_index, int pathi) {
rigged [index][O][column_index] += 1;
rigged [index][3][column_index] = 1;

.2. Code for the program one_path_bij.tex.c 179

}

Calculates the number of boxes in the first £ columns of a rigged partition.

int path_class::num_box 1k col (unsigned int 1,
int k, int pathi){
int j, I;
int num_boxes = 0;
for (1=1; I <= k; 1++) {
for (J = 0; j < RIGSIZE; j++){
if (rigged[1][O0][J] == UNUSED) break;
it (rigged[i]1[01[] >= D{

num_boxes += 1;

}

return num_boxes >

This adds a box to a rigged partition while doing the bijection.

int path_class::add_box_to_rigged (int index,
int begin, int old_largest_index,
int pathi) {

int largest_index;

.2. Code for the program one_path_bij.tex.c 180

ifT (index == begin) {
largest_index =
find_largest_inside_outside_first
(index, pathi);
} else {
largest_index =
find_largest_inside_outside_others
(index, old_largest_index, pathi);
bs
if (largest_index == UNUSED) {
if (rigged[index][0][0] == UNUSED)
init _unused rigged (index, pathi);
else
add_new_col (index, pathi);
return O;
} else {
add_to _rigged (index, largest _index, pathi);
return

(rigged [index][O][largest _index] - 1);

This calculates the second function in the definition of vacancy numbers.

int path_class::second_func(int part_size,

.2. Code for the program one_path_bij.tex.c 181

int rig_num) {

int sum = 0O;

for (int i=1; I<RIGSIZE; i++) {
ifT (curL[rig_num+1][i] = 0) {
int minimum = part_size;
iT (i < part_size) minimum = 1;

sum =sum + minimum * curL[rig_num+l1][i];

}

return sum;

This calculates the vacancy numbers.

void path_class::calc_outer_label
(int rig_num, int pathi){
int part_num=0;

Int part_size, p;

1T (rig_num == 0) {
for (int part_num=0; part_num < RIGSIZE;
part_num++) {
part_size = rigged[O0][O][part_num];
if(part_size == UNUSED) break;

p = (-2*num_box_1k col (0, part_size,

.2. Code for the program one_path_bij.tex.c

pathi))
+ (num_box_ 1k col (1, part_size,
pathi))
+ second_func(part_size, rig_num);
rigged [O][1][part_num] = p;
be
} else {
for (part_num=0; part_num < RIGSIZE;

part_num++) {

part_size = rigged[rig_num][O][part_num];

if(part_size == UNUSED) break;

p = -2*num_box_1k_col (rig_num, part_size,

pathi) + num_box 1k col (rig_num-1,
part_size, pathi) + num _box 1k col
(rig_num+l, part_size, pathi) +
second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

This calculates the labels or the riggings.

void path_class::calc_inner_label

182

.2. Code for the program one_path_bij.tex.c

(int 1, Int pathi) {
int j,k;
int tmp;
for (J = 0; j < RIGSIZE; j++) {
iIT (rigged[1][0][J] == UNUSED) break;
it (rigged[i1[3]10] == 1) {
rigged [11[2]101] = rigged [i]1[1]1Li1:

+
for (j = 0; j < RIGSIZE; j++) {
for (k = 1; k < RIGSIZE; k++) {
it (rigged[1][0][k] == UNUSED) break;
if (rigged[i][0]1[k] == rigged[i][0]1[k-1]
&& rigged[1][1]1[Kk] == rigged[1][1][k-1]
&& rigged[i]1[2]1[k-1] < rigged[i][2]1[kD{
tmp = rigged[i][2]1[k-1];
rigged[1][2][k-1] = rigged[i]1[2][Kk];
rigged[i][2][k] = tmp;

This inserts each element of a part in the path into the bijection.

183

.2. Code for the program one_path_bij.tex.c 184

void path_class::insert_element_to_rigged (int num,

int row_indx, int col_indx,int nrow, int ncol)

int old _largest _index;
reset_flags(0);
// add the new element - num - to rigged and
// add box If necessary
for (int i = (num-2); 1 >= row_indx; 1--) {
old_largest _index =
add_box_to_rigged(i, num-2,

old_largest_index, 0);

// initialize curL to bigL
for (int i=0; 1 < RIGSIZE; i++)

for (int j

0; j < RIGSIZE; j++)
curL[i][j] = b

igLLil0l;

// update curL to include the part of the

// tableau seen so far

// we just Finished a column
if (row_indx == nrow - 1) {
curL [nrow][1] += 1;
iT (col_indx = ncol - 1) {

.2. Code for the program one_path_bij.tex.c 185

curL [nrow][ncol - col _indx - 1] += 1;

by

// we are in the middle of a column

} else {
curL [nrow][ncol - col_indx - 1] += 1;
curL [row_indx + 1][1] += 1;

¥

// calculate outer and inner labels

// based on curL

for (int 1 = 0; 1 < nj; 1++) {
calc_outer_label (i, 0);

ke

for (int 1 = 0; 1 < nj; 1++) {

calc_inner_label (i, 0);

// only 1f we are at the end of a column
// initialize curL to bigL - we’ll update
// curL differently now in a FUSED way
// and recompute outer labels
if (row_indx == nrow - 1) {
for (int i=0; 1 < RIGSIZE; i++)
for (int j = 0; J < RIGSIZE; j++)

curL[i][§j] = bigL[i]1[il;

.2. Code for the program one_path_bij.tex.c 186

// update curL -

// this is different from above
curL [nrow][ncol - col_indx] += 1;
for (int 1 = 0; 1 < nj; 1++) {

calc_outer_label (i, 0);

This inserts each part (which is a tableau) of a path to the bijection.

void path_class::insert_tableau_to_rigged
(tblu_class* cur_tblu) {

int nrow = cur_tblu->num_row;

cur_tblu->num_col;

int ncol

for (int j = ncol-1; j >=0; j--) {

for (int i = 0; i < nrow; i++) {
insert_element_to_rigged(

cur_tblu->tb[i][j]l, 1, j, nrow, ncol);

+
bigL [nrow][ncol] = bigL [nrow][ncol] + 1;
for (int i = 0; 1 < RIGSIZE; i1++)
for (int j = 0; jJ < RIGSIZE; j++)
curLLi][s] = bigL[illi]:

.2. Code for the program one_path_bij.tex.c 187

}

This inserts all the parts of a path to the bijection.

void path_class::build_rigged_for_path () {
int j;
for (int i=0; i < RIGSIZE; i++) {
for (J =0; j < RIGSIZE; j++)
bigL[i1[J]1 = O;
curL[i]1[J] = O;
by
for (int 1 = path_len - 1; 1 >= 0; i1--) {

insert_tableau_to_rigged (path[i]);

Calculates the « function used in the definition of cocharge.

int path_class::alpha(int k, Int i1){
int num_coln,j;
num_coln=0;
it (k>=n) num_coln=0;
else{
for (J=0; J<RIGSIZE;j++){
if (rigged[k][0]1[0]==UNUSED){

.2. Code for the program one_path_bij.tex.c 188

num_coln=0 ;
break;
} else{
if (rigged[K]1[0][§]'=UNUSED){
if (rigged[K][O]1L[J]1>=1+1){
num_coln=num_coln+1;

}

}

return num_coln;

Calculates the cocharge for the rigged configuration corresponding.

void path_class::calculate_cocharge(){
int k,j,1,sum,cosum;
sum=0;
for (k=0;k<=n-1;k++){
if (rigged[k][0][0]!'=UNUSED){
for (i=0;i< rigged[K][O0][O0];i++){
sum=sum+alpha(k, 1)*(alpha(k,1)-alpha(k+1,1));

}

.2. Code for the program one_path_bij.tex.c 189

}

cosum=sum;

for (k=0;k<=n-1;k++){
for (J=0;j<RIGSIZE;j++){
it (rigged[k][2][J]1==UNUSED) break;
if (rigged[K][2]1[§]!=UNUSED){
cosum=cosum + rigged[k]1[21[i1;

}

cocharge=cosum;

fprintf (stderr, "Statistic = %d \n", cosum);

This is the main program.

int main() {
int 1;
read_input();
// this reads the input file.
fprintf (stderr, "n=%d\n'", n);
input_path->print_path(Q);
// this prints the input path

.3. Code for the program inverse_bijection.c 190

input_path->build_rigged_for_path(Q);
//finds the corresponding rigged

//configuration via the bijection.

fprintf (stderr, "--——————-——-——— - \n'");
fprintf (stderr, "\n");

fprintf (stderr,

"Corresponding rigged configuration is : \n");

input_path->print_rigged_for_this path();

// prints the resulting rigged configuration.

.3 Codefor the program inverse_bijection.c

This program does the inverse bijection from rigged configuration (RC) to path. Given a
rigged configuration, n, path length and the shape of the path it calculates the correspond-

ing path via the bijection.

#include <stdio.h>
#define UNUSED 9999
#define RIGSIZE 20
int n, I, num_shapes;

int lambda[100];

.3. Code for the program inverse_bijection.c

int

int

FIL

VOi

path_shape[100][100];
tableau_ list[40000][10][10];
tableau[100][100][100];
pick[100];

r, tab_indx, num _rc_lb tab;
rigged[RIGSIZE][5][RIGSIZE];
bigL [RIGSIZE][RIGSIZE];
curL [RIGSIZE][RIGSIZE];
tblu_index , path_len;
num_paths;

E *fp;

d initializeQ {

int i, j, k,m;

for (i=0; i<RIGSIZE;i++){

for (J=0; j<5; j++){
for (k=0; K<RIGSIZE; k++){

rigged[i][i][k]=UNUSED;
curL[i]1[k]=0;
bigL[i][k]=0;

by
for (1=0; 1<100;i++){

191

.3. Code for the program inverse_bijection.c 192

for (J=0; J<100; j++){
for (k=0; k<100; k++){
tableau[1][J]1[K]=UNUSED;

by
for (i=0;i<100; i++){
for (J=0; j<100; j++){
path_shape[1][J]=UNUSED;

}

Reads the input from file called inputrigged™.

void read_input(){
int i,j,k,tmp,tmu ;
char c,cl;
fp = fopen (inputrigged”, rw™);
fscanf(fp,"%d %d\n', &n, &path_len);

for (i=0;i<=path_len-1;i1++){
for (g=0; j<2; j++t){

fscanf(fp,"%d",&tmu) ;

path_shape[i][j]=tmu;

.3. Code for the program inverse_bijection.c 193

by

i = 0;
J =0;
k = 0;

while (fscanf (fp, "%d', &tmp)!= EOF){
rigged[i]10i1[k] = tmp;

K++;

c=fgetc(fp);

if (c=="\n"){
k=0;
ITg<1) j=j+2;
else {J=0; 1++;}

}

Prints the input.

void print_input() {

int i,j;
fprintf (stderr, "n = %d L= %d\n", n, path_len);
fprintf (stderr, "mu \n"");
for (i=0; 1 <=path_len-1; i++) {

J=0;

while (path_shape[i][j] '= UNUSED){

fprintf (stderr, "%d ™, path_shapel[il[j]);

.3. Code for the program inverse_bijection.c

J++;

}
fprintf(stderr, "\n");

fprintf (stderr, "\n");

void reset _flags O {

int i, k;

for (i=0; 1 < RIGSIZE; i++) {
for (k=0; k < RIGSIZE; k++) {
rigged [1][3][k] = O;

}

Prints the RC.

void print_rigged() {

int 1, j, k, 1,a,b;

fprintf(stderr, "Given rigged configuration is:\n"");

for (i =0; i <n; i++) {

iIT (rigged[i]1[0][0]==UNUSED) {
fprintf (stderr,"-—-——————————————————————

194

.3. Code for the program inverse_bijection.c 195

fprintf(stderr, " (%d) Empty\n", i1+1);
}
else {
if (rigged[i]1[0][0] !'= UNUSED) {
fprintf (stderr,"---—————————————————— \n"");
fprintf(stderr, "(%d)\n", 1+1);

J=0;
it (rigged[i][0]1[§] !'= UNUSED)
for (k=0; k <rigged[i]1[01[j]; k++)
fprintf (stderr, ™ __ ");
fprintf (stderr,'\n");
while (rigged[i][O0][J] '=UNUSED){
k=rigged[i][0]1Lil:
for (1=0; I<k-1;1++){
fprintf (stderr, “| ");
}
it (1==k-1)
fprintf (stderr, | %2d",rigged[i1[21[ID;

fprintf (stderr,
"1 %d\n",rigged[iJ[110LID;
for (1=0; I<k; I++){
fprintf (stderr, " ---");

.3. Code for the program inverse_bijection.c

fprintf (stderr,'\n");

J++;

}

fprintf (stderr,"----—————————

}

Finds the smallest singular string in a middle RC.

int find _smallest_iInside outside_others
(int index, int old_index) {
int 1 = 0;
int smallest _index = UNUSED;
while ((rigged[index][O][1] '= UNUSED)
& i < RIGSIZE) {
iIT ((rigged[index][O][1] >= old_index) &&

(rigged[index][1][1] == rigged[index][2][1])

&& (rigged[index][1][1] '= UNUSED)) {

smallest_index = 1;

i++;
+

return smallest_index;

196

.3. Code for the program inverse_bijection.c 197
Finds the smallest singular string in the starting RC.

int find_smallest_inside_outside_first (int index) {
int i = 0;
int smallest_index = UNUSED;
while ((rigged[index][O][i] '= UNUSED) &&
i < RIGSIZE) {
ifT ((rigged[index][1][1] == rigged[index][2][i])
&& (rigged[index][1][1] '= UNUSED)) {

smallest_index = 1;

by

return smallest_index;

Calculates the new shape of the RC after removing a box.

void remove box_ from this_rigged
(int index, Int column_index) {
iIT (rigged [index][O][column_index]==1) {
rigged [index][O][column_index]=UNUSED;
rigged [index][3][column_index]=1;
by
else {

rigged [index][O][column_index] -= 1;

.3. Code for the program inverse_bijection.c 198

rigged [index][3][column_index] = 1;

int num_box 1k col (unsigned int i, int k){
int j, I;
int num_boxes = 0;
for (I=1; 1 <= k; I++) {
for (J = 0; j < RIGSIZE; j++){
if (rigged[i][O0][J] == UNUSED) break;
it (rigged[i][010] >= {

num_boxes += 1;

}

return num_boxes >

}

Finds the selected singular string and remove boxes from those parts.

int remove box_ from_rigged
(int index, Int begin, int old_smallest_index) {
int smallest_index;
iIT (index == begin) {
smallest _index =

find_smallest_inside_outside_ first(index);

.3. Code for the program inverse_bijection.c 199

} else {
smallest _index =
find_smallest_inside_outside_others (index,
old_smallest_index);
by
ifT (smallest_index == UNUSED) return (-1);
else {
remove_box_ from_this_rigged (index,
smallest_index);
//this removes a box from selected part
if (rigged[index][O][smallest_index]
==UNUSED) return 1;
else return (rigged [index][O][smallest_index]+1);

// returns the length of the selected part

}

This calculates the extra term in the calculation of the vacancy num, which is the contri-

bution from the shape of the path.

int second_func(int part_size, iInt rig_num) {
int sum = O;
for (int i=1; I<RIGSIZE; i++) {
if (curL[rig_num+1][i] = 0) {
int minimum = part_size;

if (i < part_size) minimum = 1i;

.3. Code for the program inverse_bijection.c 200

sum =sum + minimum * curL[rig_num+1][i];

}

return sum;

}

Calculates the vacancy numbers for each part of a rigged partition.

void calc_outer_label(int rig _num){
int part_num=0;
int part_size, p;
if (rig_ num == 0) {
for (int part_num=0; part_num < RIGSIZE;
part_num++) {

part_size = rigged[0][O][part_num];

if(part_size == UNUSED) break;

p = (-2*num_box_ 1k col (0O, part_size)) +
(num_box_1k col (1, part_size)) +
second_func(part_size, rig_num);

rigged [O][1][part_num] = p;

by
} else {
for (part_num=0; part_num < RIGSIZE; part_num++) {
part_size = rigged[rig_num][O][part_num];
if(part_size == UNUSED) break;

p = -2*num_box_1k col (rig_num, part_size) +

.3. Code for the program inverse_bijection.c 201

num_box_1k col (rig_num-1, part_size) +
num_box 1k col (rig_num+l, part_size) +
second_func(part_size, rig_num);

rigged [rig_num][1][part_num] = p;

}

Calculates the riggings for each part of a rigged partition.

void calc_inner_label (int 1) {
int j,k;
int tmp;
for (J = 0; j < RIGSIZE; j++) {
iIT (rigged[1][0][J] == UNUSED) break;
it (rigged[i1[3]10] == 1) {
rigged [11[2]10] = rigged [i]1[1]1Li1:

+
for (j = 0; j < RIGSIZE; j++) {
for (k = 1; k < RIGSIZE; k++) {
if (rigged[i]1[0]1[k] == UNUSED) break;
if (rigged[i][0]1[k] == rigged[i][0]1[k-1]
&& rigged[i]1[1]1[Kk] == rigged[i1[1]1[k-1]
&8 rigged[i]1[2]1[k-1] > rigged[i1[2]1IKD {
tmp = rigged[i][2]1[k-1];

.3. Code for the program inverse_bijection.c 202

rigged[i][2][k-1]1 = rigged[i][2]1[k];
rigged[i][2]1[k] = tmp;

}

Calculates each element of a tableau in a path.

void get_element_from_rc(int row_indx,
int col_indx, int pathi) {
int old _smallest_index;

reset_flags(Q);

// only if we are starting a new column
// we’ll update curL by spliting and
// recompute outer labels first
iIT ((row_indx == path_shape[pathi][0]-1)
&& (col_indx < path_shape[pathi][1]-1)) {
curL[row_indx+1][1] +=1;
curL [row_indx+1][path_shape[pathi][1]-col_indx]
= 1:
curL[row_indx+1][path_shape[pathi][1]-col_indx-1]
+=1;
for (int 1 =0; 1 <n; i++) {

calc_outer_label (i);

.3. Code for the program inverse_bijection.c 203

}

// get a new element r from rigged and remove
// box if necessary
int end=0;
for (aint 1 = row_indx ; 1 < nj; 1++) {
old _smallest_index =
remove_box_from_rigged(i, row_indx,
old_smallest_index);
if (old_smallest _index == -1) {
end=1;
tableau[pathi][row_indx][col _indx]=i+1;

break;

by

if (end==0) {
tableau[pathi][row_indx][col_indx]=n+1;

by

// update curL to exclude the part of the

// tableau seen so far

// we just finished a column

if (row_indx == 0) curL [1][1] -= 1;

.3. Code for the program inverse_bijection.c 204

// we are in the middle of a column
else {
curL [row_indx+1 J[1] -= 1;
curL [row_indx J[1] += 1;

// calculate outer and inner labels based

// on updated curL

for (int 1 = 0; 1 < nj; 1++) {
calc_outer_label (1);

by
iIT (tableau[pathi][row_indx][col_indx]

I=Crow_indx+1)) {
for (int 1 = 0; 1 < n; 1++) {

calc_inner_label (i);

}

Calculates the rigged configuration for one tableau in the path.

void get_tableau_from_rc(int pathi) {

int nrow = path_shape[pathi][0];

int ncol path_shape[pathi][1];
for (int j = 0; j <= ncol-1; j++) {

for (int i = nrow-1; i >=0; i--) {

.3. Code for the program inverse_bijection.c 205

get_element_from_rc(i,j,pathi);

}

bigL [nrow][ncol] bigL [nrow][ncol] - 1;

for (int 1 = 0; 1

AN

RIGSIZE; i++)

for (int j = 0; j < RIGSIZE; j++)
curL[i]1[j] = bigL[i1[i]:
fprintf(stderr, "-——————————————— \n");

for (int 1=0; 1 <= nrow-1; 1++) {
for (int j=0; j<= ncol-1; j++) {
fprintf(stderr, "%2d", tableau[pathi][i]l[i]):;

b5
fprintf(stderr, "\n");

}

Calculates the rigged configuration for a given path.

void build_path_for_rc(Q) {
int i,j,k,tmp;
for (i=0; i < RIGSIZE; i++) {
for (j =0; j < RIGSIZE; j++) {
it ((J==0) && (path_shape[i][j] '= UNUSED)) {
bigL[path_shape[i][j1]1[path_shape[i][j+1]1] += 1;
curL[path_shape[i][j]1]1[path_shape[i][j+1]] += 1;

.3. Code for the program inverse_bijection.c 206

}
for (int i = 0; i <n; i++) {
calc_outer_label (1);
}
for (1=0;i1<n; 1++) {
for (j = 0; j < RIGSIZE; j++) {
for (k = 1; k < RIGSIZE; k++) {
iIT (rigged[i][O]1[k] == UNUSED) break;
if (rigged[i][0]1[k] == rigged[i]1[0]1[k-1]
&& rigged[1][1]IKk] == rigged[i1][1][k-1]
&8 rigged[i][2]1[k-1] > rigged[i][2][KD {
tmp = rigged[i][2][k-1];
rigged[i][2][k-1] = rigged[i][2][K];
rigged[i][2][k] = tmp;

print_rigged();

fprintf(stderr, " The corresponding path is:\n");

for (i = 0; 1 < path_len; i++) {

.3. Code for the program inverse_bijection.c 207

get_tableau_from_rc (i);

}
fprintf(stderr, "———-—ommm \n");

Main program.

int main(QQ{
initialize();
read_input();
print_input(Q;
build_path_for_rc(Q;

BIBLIOGRAPHY 208

Bibliography

[1] A.K. Agarwal, G.E. Andrews, D.M. Bressoud, The Bailey lattice, J. Ind. Math. Soc.
51 (1987), 57-73.

[2] G.E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for

odd moduli, Prod. Nat. Acad. Sci. USA 71 (1974), 4082-4085.

[3] G.E. Andrews, The theory of partitions, Encyclopedia of Mathematics, vol. 2
(Addison-Wesley, Reading, Massachusetts, 1976).

[4] G.E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math.
114 (1984), no. 2, 267-283.

[5] G.E. Andrews, A. Berkovich, A trinomial analogue of Bailey’s Lemma and N = 2

superconformal Invariance, Commun. Math. Phys.

[6] G.E. Andrews, A. Schilling, S.O. Warnaar, An A, Bailey lemma and Rogers-
Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999) 677-702.

[7] W.N. Bailey, ldentities of the Rogers—Ramanujan type, Proc. London Math. Soc. (2)
50 (1949) 1-10.

BIBLIOGRAPHY 209

[8] H.A.Bethe, Zur Theorie der Metalle, I. Eigenwerte und Eigenfunktionen der linearen

Atomkette, Z. Physik 71 (1931) 205-231.

[9] A. Berkovich, B.M. McCoy, Continued fraction and fermionic representations for

characters of M (p, p") minimal models, Lett. Math. Phys. 37 (1996), 49-66.

[10] A. Berkovich, B.M. McCoay, A. Schilling, N = 2 Supersymmetry and Bailey pairs,
Physica A 228 (1996) 33-62.

[11] A. Berkovich, B.M. McCoy, A. Schilling, Rogers-Schur-Ramanujan type identities
for the M (p, p’) minimal models of conformal field theory, Commun. Math. Phys. 191
(1998), 325-395.

[12] A. Berkovich, B.M. McCoay, A. Schilling, S.O. Warnaar, Bailey flows and Bose-Fermi
identities for coset models (A7) y x (A1) n /(AM) y4nr, Nucl. Phys. B 499 [PM]
(1997), 621-649.

[13] A.A. Belavin, A.M. Polyyakov,A.B.Zamolodchikov, Infinite conformal symmetry of
critical fluctuations in two dimensions, J. Stat. Phys. 34, no.5-6 (1984), 763-774.

[14] A.A. Belavin, A.M. Polyyakov,A.B.Zamolodchikov, Infinite conformal field symme-
try in two dimensionsal quantum field theory, Nucl.Phys. B241 (1984), 333-380.

[15] D.M. Bressoud, An analytic generalization of the Rogers-Ramanujan identitieswith

interpretation, Quart. J. Math. Oxford (2) 31 (1980), 385-399.

[16] A. Capelli, C. Itzykson, J.B. Zuber, The A-D-E classifications of minimal and Agl)

conformal Invariant theoies, Commun. Math. Phys. 113 (1987), 1-26.

BIBLIOGRAPHY 210

[17] S. Dasmahapatra, R. Kedem, B.M. McCoy, E. Melzer, Virasoro characters from
Bethe equations for the critical ferromagnetic three-state Potts model, J. Stat. Phys.

74 (1994), 239-274.

[18] L. Deka, A. Schilling, New Explicit expression for Af,f,)l supernomials, 17th Interna-
tional conference, FPSAC’2005, University of Messina, Italy, June 2005.

[19] V.K. Dobrev, Characters of the irreducible highest weight modules over the Virasoro
and super-Virasoro algebras, Suppl. Rendiconti Circolo Matematici di Palermo, Serie

I, Numero 14 (1987), 25-42.

[20] M. Dorrzapf, The embedding structure of unitary N = 2 minimal models, Nucl.

Phys. B 529 (1998), 639-655.

[21] W. Eholzer, M.R. Gaberdiel, Unitarity of rational N = 2 superconformal theories,
Commun. Math. Phys. 186 (1997) 61-85.

[22] B.L. Feigin, D.B. Fuchs, Verma modules over the Virasoro algebra, Topology
(Leningrad, 1982), 230-245, Lecture Notes in Math. 1060 (Springer, Berlin-New
York, 1984).

[23] O. Foda, Y.H. Quano, Polynomial identities of the Rogers-Ramanujan type, Int. J.
Mod. Phys. A 10 (1995), 2291-2315.

[24] O. Foda, Y.H. Quano, Virasoro character identities from the Andrews-Bailey con-

struction, Int. J. Mod. Phys. A 12 (1996), 1651-1675.

[25] O. Foda, T.A. Welsh, On the combinatorics of Forrester-Baxter models, Physical
combinatorics (Kyoto, 1999), 49-103, Progr. Math., 191, Birkhiser Boston, Boston,
MA, 2000.

BIBLIOGRAPHY 211

[26] H.O. Foulkes, A survey of some combinatorial aspects of symmetric functions, Per-

mutations, Cauthier-Villas, Paris (1974), 79-92.

[27] W. Fulton, Young Tableaux, London Math. Soc., Student Texts 35, Cambridge Uni-

versity Press.

[28] P. Goddard, A. Kent, D. Olive, Unitary representations of the Virasoro and super-
Virasoro algebras, Comm. Math. Phys. 103 (1986), no. 1, 105-119.

[29] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities,

Amer. J. Math. 83 (1961), 393-399.

[30] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crystals and
fermionic formulae, Prog. Math. Phys. 23 (2002) 205-272, Birkhauser Boston,
Boston, MA.

[31] G. Hatayama, N. Kirillov, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Character
formulae of si,,-modules and inhomogeneous paths, Contemp. Math. 248 (1999) 243—
291.

[32] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crsytals
and fermionic formulae, MathPhys.odyssey, 2001, 205-272, Prog. Math. Phys. 23,
Birkh&user Boston, Boston, MA, 2002.

[33] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic
formula, Contemp. Math. 248 (1999) 243-291.

[34] V.G. Kac, Infinite dimensional Lie algebras, third edition, Cambridge University

Press.

BIBLIOGRAPHY 212

[35] H. Klemm, Embedding diagrams of the N = 2 superconformal Algebra under spec-

tral flow, preprint hep-th/0306073.
[36] H. Klemm, private communication.

[37] M. Kashiwara, Crystalizing the g-analogue of universal enveloping algebras, Com-

mun. Math. Phys. 133 (1990) 249-260.

[38] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the g-analogue

of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295-345.

[39] E.B. Kiritsis, Character formulae and the structure of of the representations of the

N =1and N = 2 superconformal algebras, Int. J. Mod. Phys. A 3 (1988) 1871.

[40] R. Kedem, B.M. McCoy, Construction of modular branching functions from Bethe’s

equations in the 3-state Potts chain, J. Stat. Phys. 71 (1993), 865-901.

[41] R. Kedem, T.R. Klassen, B.M. McCoy and E. Melzer, Fermionic quasi-particle rep-
resentations for character of (G x (G /(GL”, Phys. Lett. B 304 (1993),263-270.

[42] R.Kedem, T.R. Klassen, B.M. McCoy and E. Melzer, Fermionic sum representations

for conformal field theory characters, Phys. Lett. B 307 (1993), 68-76.

[43] S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashimaand A. Nakayashiki,
Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992) 499607.

[44] S.V. Kerov, A.N. Kirillov, N.Y. Reshetikhin, Combinatorics, the Bethe ansatz and

representations of the symmetric group J. Soviet Math. 41 (1988), no. 2, 916-924.

[45] A.N. Kirillov, Dilogarithm identities, Progress of Theor. Phys. Suppl. 1995, v.118,
61-142.

BIBLIOGRAPHY 213

[46] A.N.Kirillov, New combinatorial formula for modified Hall- Littlewood polynomials,
in “g-series from a contemporary perspective” (South Hadley, MA, 1998), 283-333,
Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.

[47] A.N. Kirillov, N.Y. Reshetikhin, The Bethe ansatz and the combinatorics of Young
tableaux, (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
155 (1986), Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, 65-115, 194;
translation in J. Soviet Math. 41 (1988), no. 2, 925-955.

[48] A.N. Kirillov, A. Schilling, M. Shimozono, A bijection between Littlewood-
Richardson tableaux and rigged configurations, Selecta Mathematica (N.S.) 8 (2002)
67-135.

[49] A.N. Kirillov, M. Shimozono, A generalization of the Kostka-Foulkes polynomials,
J. Algebraic Combin. 15 (2002), no. 1, 27-69.

[50] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi, Y. Yamada, private communication.

[51] A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions,

quantum affine algebras and unipotent varieties, J.Math. Phys. 38 (1997) 1041-1068.

[52] A. Lascoux, M.-P. Schiitzenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad.
Sci. Paris Sér. A-B 286 (1978), no. 7, A323-A324.

[53] B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig
polynomials, Adv. Stud. in Pure Math. 28 (2000) 155-220.

[54] P.A. MacMohan, Combinatory analysis vol. 2 (Cambridge University Press, Cam-
bridge, 1916).

BIBLIOGRAPHY 214

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

I.G. Macdonald, Symmetric functions and Hall polynomials, second edition, Claren-

don Press, Oxford.

S.C. Milne, G.M, Lilly, The A, and C, Bailey transform and lemma, Bull. Amer.
Math. Soc. (N.S.) 26 (1992), 258-263.

S.C. Milne, G.M, Lilly, Consequences of the A, and C, Bailey transform and Bailey
lemma, Discrete Math. 139 (1995), 319-346.

MuPAD-Combinat available at
http://www-igm.univ-mlv._fr/~descouen/MuPAD-Combinat
/MuPAD-Combinat.html.

A. Neveu, J.H. Schwarz, Factorizable dual model of pion Nuclear Phys. B31 (1971),
86-112.
A. Nakayashiki, Y. Yamada, Kostka polynomials and energy functions in solvable

lattice models, Selecta Math. (N.S.) 3 (1997), no. 4, 547-599.

M. Okado, A. Schilling, M. Shimozono, Virtual crystals and fermionic formulas of

type Dﬁi{l, Agi) and OV, Represent. Theory 7 (2003), 101-163.

M. Okado, A. Schilling, M. Shimozono, A crystal to rigged configurations bijection
for nonexceptional affine algebras, Algebraic combinatorics and quantum groups, 85-

124, World Sci. Publishing, River Edge, NJ, 2003.

P. Paule, On identities of the Rogers—Ramanujan type, J. Math. Anal. Appl. 107
(1985), 255-284.

L.J. Rogers, Second memoir on the expansion of certain infinite products, Proc. Lon-

don Math. Soc. ser. 1 25 (1894), 313-343.

BIBLIOGRAPHY 215

[65] L.J. Rogers, On two theorems of combinatory analysis and some allied identities,

Proc. London Math. Soc. (2) 16 (1917), 315-336.
[66] P. Ramond, Dual theory for free fermions, Phys. rev. D(3) 3 (1971) 2415-2418.

[67] A.Rocha-Caridi, *“ Vacuum vector representations of the Virasoro algebra’ in Vertex
operators in mathematics and physics, eds. J. Lepowsky, S. Mandelstam and |.M.

Singer, Springer-Verlag (1984).

[68] L.J. Rogers, S. Ramanujan, Proof of certain identities in combinatory analysis, Proc.

Camb. Phil. Soc. 19 (1919), 211-216.

[69] A. Schilling, A bijection between type DY crystals and rigged configurations, J.
Algebra 285 (2005) 292-334.

[70] A. Schilling, Crystal structure on rigged configurations, preprint math.QA/0508107.

[71] 1. Schur, Ein Beitrag zur additiven Zahlentheorie and zur Theorie der Kettenbriiche,

S.-B. Preuss. Akad. Wiss. Phys.-Math. KI. 302-321 (1917), 117-136.

[72] A. Schwimmer, N. Seiberg, Commentsonthe N = 2, N = 3, N = 4 superconformal
algebras in two dimensions, Phys. Lett. B 184 (1987), 191-196.

[73] A. Schilling, M. Shimozono, Fermionic formulas for level-restricted generalized
Kostka polynomials and coset branching functions, Commun. Math. Phys. 220 (2001)
105-164.

[74] A. Schilling, M. Shimozono, X = M for symmetric powers, J. Algebra, to appear
(math.QA/0412376).

BIBLIOGRAPHY 216

[75] A. Schilling, S.O. Warnaar, Supernomial coefficients, polynomial identities and g-

series, The Ramanujan Journal 2 (1998) 459-494.

[76] A. Schilling, S.O. Warnaar, Inhomogeneous lattice paths, generalized Kostka poly-
nomials and A,,_; supernomials, Commun. Math. Phys. 202 (1999) 359-401.

[77] M. Shimozono, A cyclage poset structure for Littlewood-Richardson tableaux, Euro-

pean J. Combin. 22 (2001), no. 3, 365-393.

[78] M. Shimozono, Multi-atoms and monotonicity of generalized Kostka polynomials,

European J. Combin. 22 (2001), no. 3, 395-414.

[79] M. Shimozono, J. Weyman, Graded characters of modules supported in the closure

of a nilpotent conjugacy class, European J. Combin. 21 (2000), no. 2, 257-288.

[80] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, De-
mazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2,

151-187.

[81] L.J. Slater, A new proof of Rogers’s transformation of infinite series, Proc. London

Math. Soc. (2) 53 (1951), 460—475.

[82] L.J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math.
Soc.(2) 54 (1952), 147-167.

[83] T. Takagi, Inverse scattering method for a soliton cellular automaton, Nuclear Phys.

B 707 (2005) 577-601.

[84] T.A. Welsh, Fermionic expressions for the minimal model Virasoro characters, Mem.

Amer. Math. Soc. 175 (2005), no.827, viii+160pp.

BIBLIOGRAPHY 217

[85] S.O. Warnaar, A note on the trinomial analogue of the Bailey’s lemma, J. Combin.

Theory Ser. A 81 (1998), no. 1, 114-118.

[86] S.O. Warnaar, The Bailey lemma and Kostka polynomials, J. Algebraic Combin. 20
(2004) 131-171.

