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Abstract. Let C' be an n X m matrix. Then the sequence § :=
((41,71), (22, J2)5 - - -, (Ynmy Jum )) Of pairs of indices is called a Monge sequence with

respect to the given matrix C' if and only if, whenever (7, j) precedes both (7, s) and
(r,7)in S then c[z, 7]+ c[r, s] < c[¢, s]+ ¢[r, 7]

Monge sequences play an important role in greedily solvable transportation problems.
Hoffman showed that the greedy algorithm which maximizes all variables along a
sequence S in turn solves the classical Hitchcock transportation problem for all supply
and demand vectors if and only if S is a Monge sequence with respect to the cost
matrix C'.

In this paper we generalize Hoffman’s approach to higher dimensions. We first in-
troduce the concept of a d-dimensional Monge sequence. Then we show that the
d-dimensional axial transportation problem is solved to optimality for arbitrary right
hand-sides if and only if the sequence S applied in the greedy algorithm is a d-
dimensional Monge sequence.

Finally we present an algorithm for obtaining a d-dimensional Monge sequence which
runs in polynomial time for fixed d.

1 Introduction

The well known Hitchcock transportation problem (7T'P) can be formulated as a linear
program in the following way :

(TP)y  min Y > i, flay

=1 j7=1

such that z:xi]-:a1 Vi=1,...,n
i=1

n

2 .
g ri;=a; Vj=1,....,m
=1
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It is well known that due to the special structure of (7'P) an initial feasible solution of
(T'P) can be obtained as follows: Take an arbitrary order of the variables, say a sequence
S = ((t1,51), (¢2,92)s - - -y (fmy Jnm )) and perform the subsequent Greedy algorithm G :

Algorithm Gs : For k:=1 to nm do

e mind ol 2
Set x,j, = min{a; ,a
T I
a’ik T a’ik :L.Zk]k
2 . .
A, 2= Qg = Tiggn

This algorithm proceeds along the sequence & and maximizes each variable in turn. Thus
its running time is O(nm). By choosing special sequences S, the greedy algorithm Gs turns
e.g. into the “north-west corner rule” or the “minimum ¢;; rule” (see e.g. Hadley [8]).

It is easy to see that in general G's constructs only a feasible but not an optimal solution
of (I'P). Hoffman [9] gives, however, a sufficient and necessary condition on &, such that
(s always constructs an optimal solution of (7'P) for arbitrary demand and supply vectors
a' and a*. Hoffman’s condition looks as follows:

For every 1 < i,r < n, 1 < j,s < m, whenever (¢,7) precedes both (i,s) and
(r,7), the corresponding entries in the matrix C' are such that

cle, g] + c[r, s] < i, s] + c[r, j].

Sequences § which fulfill the property above are called Monge sequences, named after
a similar condition found by G. Monge [10].

Closely related with matrices C' for which there exists a Monge sequence are Monge
matrices, 1.e. matrices fulfilling the Monge property

clt, ]+ c[rys] < efiys]+cfr,j] foralll <i<r<n,1<j<s<m.

Note that for each Monge matrix there exists a Monge sequence, e.g. choose as sequence
the lexicographical ordering of all pairs of indices of C'. In this special case Gs degenerates
to the “north-west corner rule” and therefore the transportation problem can be solved in
O(n + m) time.

A generalization of the classical transportation problem (7'P) which occurs in some
applications (see e.g. [7]) is the so-called d-dimensional axial transportation problem. This
problem, (dT'P) for short, can be formulated as follows:

(dT'P) min i i e f: clir, tay -y 0d)Tiyiy. iy

11=115=1 ig=1
such that E $i1i2...id:a§ Vk=1,...,dVqg=1,...,np
11,09, ..., 04
i = (q

Tiyigiy >0 Vg, 29,..., 2.
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Obviously, a similar greedy algorithm as used for the classical problem (7'P) can be
applied to (dT'P) to obtain a feasible solution. Given a sequence S of d-tuples of indices,
this greedy algorithm maximizes each variable of S in turn. As in the two-dimensional
case the question raises on a necessary and sufficient condition on S which guarantees the
optimality of Gs.

Our results: We first introduce the notion of a d-dimensional Monge sequence which
generalizes Hoffman’s Monge sequences. Then we show that being a d-dimensional Monge
sequence is a necessary and sufficient condition for a sequence § in order to guarantee the
optimality of a greedy approach to the d-dimensional axial transportation problem (d7'P).
Furthermore, we deal with the problem of deciding whether there exists a d-dimensional
Monge sequence for a given d-dimensional array €. Finally, we present an algorithm for
constructing d-dimensional Monge sequences which runs in polynomial time for fixed d.

Related results: In [2] Aggarwal and Park generalize the concept of a Monge matrix
to arbitrary d-dimensional arrays. Bein, Brucker, Park and Pathak [3] then prove that a
generalized lexicographical Greedy algorithm solves the d-dimensional axial transportation
problem (dT'P) if and only if the cost array is a d-dimensional Monge array.

In Rudolf [11] a polynomial time algorithm for recognizing permuted d-dimensional Mon-
ge arrays is given which generalizes the recognition algorithm of Deineko and Filonenko [4]
for n x n matrices C.

Alon, Cosares, Hochbaum and Shamir [1] deal with the problems of detecting and
constructing a Monge sequence for an n x m matrix C'. Their results were generalized to
matrices with infinite entries by Dietrich [5] and Shamir [12] as well as by Dietrich and
Shamir [6].

2 d-dimensional Monge Sequences

We start with introducing some basic notations and definitions. Let C' be an nq XngXx- - - Xny
array and let Ny := {1,2,...,nz} be the set of feasible indices for dimension k, k = 1,...,d.
Let furthermore be a set F of ¢ d-tuples of feasible indices, say F := {(it,1%,...,i%)|1 <
k < gq,it € Nj}. Then I,(F) := {it]l <k < ¢} is defined to be the corresponding list of
all indices occuring at position ¢ of a d-tuple in F. Note that in contrast to a set, the lists
I,(F) need not contain pairwise distinct elements.

We call a set F of d-tuples feasible with respect to the d-tuple (i1, 72, ... ,14) iff each index
i is contained at least once in the list [(F),k =1,...,d. A set F is said to be minimal
with respect to (i1,29,...,24) iff F is feasible and no proper subset F; C F is feasible.
Furthermore, denote by M(F) := {(v1,02,...,%4)|tx € [x(F)} the set of all d-tuples which

can be composed using the indices occuring in F.

Now we are prepared to introduce the notion of a d-dimensional Monge sequence. For
the ease of exposition, let us first state the condition for a three dimensional n; x ny X ns
array C.

Definition 2.1 S is said to be a 3-dimensional Monge sequence if and only if the following
conditions are satisfied :
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1. (a) Whenever (i,j, k) precedes (i,s,k) and (i,7,t) in S then
cli, g, k] + cli, s, t] < cli, j,t] + c[i, s, k].

(b) Whenever (i,7,k) precedes (i,7,t) and (r,j,k) in S then
cli, 3, k] + c[r, j,t] < cli, j,t] + c[r, 7, k].

(¢) Whenever (1,7, k) precedes (i,s,k) and (r,j,k) in S then
cli,j, k] + c[r, s, k] < i, s, k] + [r, 7, k].

2. Whenever (i,7,k) precedes (i,3,t), (r,s,k), (¢,8,t), (r,J, k), (1,8, k) and (r,j,1) in S
then

(a) cli, g, k] + clr, s, 4] < c[i, 5, 1] + c[r, s, k],
(b) cli,j, k] + c[r, s, 1] < cft, 5, 1] + c[r, j, k] and
(c) cli,g, k] + c[r,s,t] < c[i, s, k] + c[r, 5, 1].
3. Let (1,7,k) € S. Then for each set F = {(i,81,t1),(r1,7,t2), (r2, 82, k)} which is
minimal with respect to (1,7, k), the following has to be satisfied:

Whenever (i, j, k) is the element which occurs first in S among all elements in M(F)
then

cli, 7, k| +m1H{C[T1a5¢ 1), o] + clra, sp2), tu)]} < cle, s1,ta] + [, g, ta] 4 c[ra, s2, K],
where ¢ and ¢ are mappings from {1,2} — {1,2}.

If we look at the definition above in more detail, we see that conditions 1(a)-1(c) coincide
with the classical definition of a Monge sequence in two-dimensional matrices. Conditions
2(a)—(c) derive from the Monge condition for three-dimensional arrays (see [2] for details),
whereas condition (3) has to be added to ensure the optimality of a greedy approach.

To generalize Definition 2.1 to d dimensions we introduce a more compact form of
notation. Let (i1,4%,...,4%) be a d-tuple and let F be a set of ¢ d-tuples which is minimal
with respect to (i1,:2,...,1%). Let again I,(F) denote the list of all indices which occur at
the (-th position of a d-tuple in F. Then we define U, := I,(F)\ {i{} to be the list obtained

from I,(F) by removing the element 5. Furthermore, we define

W(Ul, UQ, sy Ud) = ml%d{z C[’L'i, iig(k)7 s 7ijﬁd(k)}

where ¢y, ¢ = 2,...,d are mappings from {2,...,q} onto {2,...,¢}.
Now we are able to describe the property for a d-dimensional Monge sequence § in avery
compact form.
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Definition 2.2 S is called a d-dimensional Monge sequence, if and only if the subsequent
condition is satisfied:
Let (i1,12,...,19) € 8. Then for each set F of d-tuples which is minimal with respect to

(21,42,...,19) we need to have the following:
Whenevm (21,22,...,1%) is the element which occurs first in S among all elements of
M(F) then

clid, i, ... 09 + mm {Z c[zk,z¢ ij’d(k')]} < an, (1)

27 7d aEF

where again ¢, . .., ¢4 are mappings from {2,...,q} onto {2,...,q}.

Note that in the case of d = 3 we arrive at Definition 2.1 by choosing in Definition 2.2
minimal feasible sets F with two or three triples of indices.

Remark: For the ease of exposition, we henceforth adopt the following convention: When
referring to the terms in an equality of type (1), we assume that the minimum on the left
hand side has already been evaluated. So on each side we have exactly ¢ terms.

3 A Generalization of Hoffman’s Theorem

We are now prepared to prove the main result of this paper, the generalization of the
theorem of Hoffman to d > 3 dimensions. For the ease of exposition we only show the
three-dimensional case, the proof for arbitrary dimensions can easily be established using
the same techniques.

Theorem 3.1 The greedy-algorithm Gs solves the 3-dimensional axial transportation prob-
lem (3TP) for all right hand-side vectors a', a* and a® if and only if S is a 3-dimensional
Monge sequence.

Proof. “=7: Let an instance of (37 P) with cost array C be given. Assume that the greedy
algorithm (is solves this instance to optimality for arbitrary right hand-side vectors a!, a?
and a® Suppose that S is not a 3-dim. Monge sequence. But then there must exist a
triple ( i1,42,47) and a minimal set F of triples with respect to (i1,43,77), such that (¢],3,4)

precedes all other elements of M(F) in § and

C[L17L17 ] + W(U17U27U3) an (2)

a€EF

In order to construct a contradiction we generate the following special instance of (37 P):
Denote by af the number of occurencies of an index i in the list I,(F). Now choose the
right hand-side vectors a!, a* and a® in such a way that o := of, for all 1 € I,(F), £ = 1,2,3
and all other coefficients of the vectors a', a® and a® are zero. Then (s applied to this
particular instance of (37 P) generates a solution with an objective function value bounded
from below by

C[Lla iy, ] + W(Ula U27 US)
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But this solution, however, is not optimal (confer (2)).

“<": Let § be a 3-dimensional Monge-sequence and let z be the corresponding solution
produced by algorithm Gs. Assume z is not optimal. Choose the optimal solution y which
maximizes p such that z,, = y,, V p1 < p and whose y, is largest among the set of all
optimal solutions maximizing p. Let (i1, j1, k1) be the triple of indices corresponding to p.
Since x, # y, and Gs maximizes each variable in turn, we have x, > y,. To compensate the
i, @ and a} some positive variables with indices (i1, -,-), (-, j1,-) and (-, -, k1)
have to succeed (i1, j1, k1) in S. The triples of indices corresponding to these variables form
a feasible set F'. Next we choose a set F C F’ such that F is minimal with respect to
(41,1, k1). Note that F contains ¢ < d triples. Let the lists of indices [1(F), I5(F) and
I3(F) be as defined before.

We now have to show that (21,71, k1) is the element of M(F) which occurs first in
S. Assume the contrary, i.e. that there exists a triple (¢,7,k) € M(F) which precedes
(41,J1,k1) in 8. Since GGs maximizes y;;k, either we have y;,,, = 0 for all (¢,v,w) which are
successors of (¢,7, k) in &, yujw = 0 for all (u, 5, w) following (7, 7,k) in S or Yy = 0 for all
(u,v, k) later in §. This leads, however, to a contradiction to the choice of F, since this
would imply that at least one variable indexed by a triple of indices of F has to be zero, a

deficits in a

contradiction.
Thus (41, j1, k1) is the first element of M(F) in S. F is feasible and minimal with respect
to (i1, 71, k1) and since S is a Monge sequence, we get that

g
cli, j1, k1] + Ig%bﬂ{z clie, Joge)s ky)} < Z Cas (3)
T4=2 a€F
where ¢ and ¢ are mappings from {2,...,q} onto {2,...,q}.

According to our convention there are exactly ¢ variables on both sides of (3). Next
we construct from the solution y a new solution gy as follows: First note that since F is
minimal with respect to (i, j1, k1) a triple of indices can occur at most once on the right
side of (3). Next we fix €1 := minger Yo and set € := min{@;, j 6, — Yiyj1k,s €15 > 0. Now we
can obtain a new feasible solution § by setting

o J ys+(vg—wg)e , if B occurs in equation (3)
Yo = Y3 , otherwise

where vg and wg denote the number of occurings of 5 on the left — respectively on the right
— side of (3). It is easy to verify that g is a feasible solution and because of (3) ¢ is also
optimal. Furthermore we have ,, = z,, Vp; < p and 9,4, = Yi,juky + €, Which leads to a
contradiction to the selection of y. Thus the theorem is proven. a

4 Construction of d-dimensional Monge sequences

We start with some negative results, which on one hand point out the differences to d-
dimensional Monge arrays and to classical Monge sequences and on the other hand show
that the construction of d-dimensional Monge sequences is not as easy as the recognition
of d-dimensional Monge arrays.
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d-dimensional Monge arrays have the nice property that each subarray is again Monge
and moreover if each k-dimensional subarray of a d-dimensional array, k& < d, fulfills the
Monge property then the d-dimensional array itself is a Monge array (confer [2]). In the
case of Monge sequences no analogous result holds. If an array C' has a d-dimensional
Monge sequence, clearly all subarrays of C' have a lower dimensional Monge sequence, but
in contrast to Monge arrays the reverse is not true (consider the example given below).

As a second main difference we point out the following: In an n x 2 matrix C' there
always exists a Monge sequence which can be constructed in O(nlogn) time by sorting the
rows of C' such that ¢;;7 — ¢;3 < --- < ¢,1 — ¢,2. Unfortunately, this property does not
generalize to higher dimensions as can be seen from the following example:

Consider the 2 x 2 x 2 array given by

(1e) (Ge)

This array has no 3-dimensional Monge sequence, although each 2 x 2 submatrix clearly
has one.

The observations above demonstrate that an approach as used for the recognition of
d-dimensional Monge arrays does not work for the construction of d-dimensional Monge
sequences.

Fortunately, the construction of d-dimensional Monge sequences can be done using a
generalization of a simple algorithm for two dimensions which was proposed by Alon et
al. [1]. For the ease of exposition and to facilitate the complexity analysis we assume
henceforth that our array is an n x n x --- X n array. An extension to n; X ny X -+ X ny
arrays is straightforward.

The idea of our algorithm for constructing d-dimensional Monge sequences is based on
a directed graph GG which has the following properties. The nodes of G correspond to the
entries in the array C, therefore we have n? nodes. Furthermore we have an arc (u,v) from
node u to node v, iff u # v and u has to precede v in the Monge sequence, i.e. the index
corresponding to u occurs on the left side of (1), whereas v lies on the right side of (1) and
(1) is indeed an inequality. Next we number the inequalities in (1) consecutively starting
from 1. Each arc (u,v) in G is then labeled by the number of the unique inequality which
induces this arc.

Lemma 4.1 The directed graph G described above can be constructed in O(dQ(d!)d_lndQ)
time.

Proof. A fixed d-tuple (i1,42,...,i%) occurs on the left side of at most O(n¥?~1)) inequalities

of type (1). Thus we have to consider O(ndQ) inequalities. To calculate the minimum in (1)
we need O((d!)?~!) time per inequality. Since each inequality induces at most d* arcs in G,
(G can be constructed in overall O(dQ(d!)d_lndQ) time. O

After the initialization of G described above our algorithm proceeds as follows: We
construct a d-dimensional Monge sequence step by step. In each step we have to find a
node v € G with indegree equal to zero. If no such node exists, no d-dimensional Monge
sequence exists and we stop, otherwise the corresponding d-tuple of indices can be chosen
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as next element in the Monge sequence. If the algorithm stops with an empty graph we
have obtained a d-dimensional Monge sequence, otherwise no such sequence exists.

In each step, after the selection of a node v with indegree 0, we have to update the
graph (G. More precisely, we need to delete the node v and all arcs adjacent to v together
with all arcs which are assigned a label of an arc with tail v. This is equivalent to cancelling
all conditions in which v occurs.

Lemma 4.2 The update of G as described above can be performed in O(dQ(d!)d_lndQ_d)
time.

Proof. Since there are almost O((d!)4"'n¥@=1)) arcs emanating from node v which have
distinct labels and since there are at most d? arcs with the same label, we can perform the
necessary updates in O(d?(d!)?*'n®~%) time. O

Theorem 4.3 The algorithm above constructs a d-dimensional Monge sequence in case
one exists in O(dQ(d!)d_lndZ)) time.

Proof. First we have to show the correctness of our algorithm. Suppose the algorithm
stops while G is non-empty. Then each node in GG has indegree greater than zero. But this
means that all nodes in G occur at least once on the right side of an inequality which is
still to be considered, i.e. an inequality all of whose terms correspond to nodes still in G.
But this implies that no Monge sequence exists.

Now only the running time complexity remains to be proven. From Lemma 4.1 we
have that the initial graph G can be constructed in the claimed time. Each update needs
O(dz(d!)d_lndQ_d) time per step, and since we have n? steps — G has n? nodes, we are

finished. O

It seems not to be worth trying to derive an improved algorithm for constructing d-
dimensional Monge sequences which proceeds along the lines of the second algorithm of
Alon, Cosares, Hochbaum and Shamir [1] since using these techniques would lead to a very
large amount of needed space by gaining only a minor improvement in running time.

We close this section by mentioning that the results described in this paper directly
lead to a new class of polynomially solvable d-dimensional axial assignment problems. The
d-dimensional axial assignment problem, (dAP), is obtained from the d-dimensional axial
transportation problem by setting all right hand-side coefficients a;- equal to 1 and by
requireing additionally that all variables x;,;,..;, are integer and thus either 0 or 1. (dAP)
is NP-hard in general, but in case that the cost array C' has a d-dimensional Monge sequence,
the problem becomes polynomially time solvable.

We mention that for the (dAP) the condition for a d-dimensional Monge sequence can
be slightly relaxed. It is sufficient to require only those inequalities in (1) which are induced
by minimal sets F for which the lists [,(F) are indeed sets and no lists, i.e. contain no
multiple entries. For the greedy algorithm applied to (dAP) Theorem 3.1 can then be
strengthened to hold for this relaxed notion of a d-dimensional Monge sequence. Hence
(dAP)’s whose cost array has a d-dimensional Monge sequence can be solved in O(ndz})
time. (If the Monge sequence is already at hand, O(n?) time suffices.)
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5

Conclusion

In this paper we investigated d-dimensional Monge sequences and generalized a known the-
orem of Hoffman for d = 2 to higher dimensions. Furthermore, we presented a polynomial

time algorithm for the construction and detection of a d-dimensional Monge sequence in a
d-dimensional array for a fixed value of d.

Acknowledgement: We would like to thank Bettina Klinz for pointing out some

inconsistencies in a first version.
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