References

- [1] P ERDÖS: Solved and unsolved problems in combinatorics and combinatorial number theory, Congressus Numerantum, 32 (1981), 49-62.
- [2] P Erdős and A. Gyárfás: A variant of the classical ramsey problem, Combinatorica, 17 (1997), 459-467.

Dhruv Mubayi

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160
mubayi@math.gatech.edu

HOTE

ON THE NUMBER OF TRIANGULATIONS OF PLANAR POINT SETS

RAIMUND SEIDEL*

Received November 1, 1995

We show that the number of straight edge triangulations of any set of n points in the plane is at most $2^{12\cdot245113n}-\Theta(\log n)$.

Let S be any set of n > 2 points in the plane and let E be the set of $\binom{n}{2}$ straight line segments joining points in S. A (straight edge) triangulation of S is a maximal subset T of E so that no two edges in T intersect except possibly at common endpoints. We are interested in g(n), the maximum number of different triangulations of any planar set S with n points.

It is well known that if S is in convex position the number of its triangulations is given by the Catalan number $C_{n-2} = {2(n-2) \choose n-2}/(n-1)$. Using this it is easy to come up with a set of 2n points [2] that has $(C_{n-2})^2 {2n-2 \choose n-1}$ triangulations: place n points each on the curves $y = x^2 + 1$ and $y = -x^2 - 1$ with x-coordinates between -1 and +1. Thus $g(n) \ge 2^{3n-\Theta(\log n)}$.

In this note we are interested in upper bounds for g(n). In the more general context of crossing-free subgraphs Ajtai, Chvátal, Newborn, and Szemerédi [1] proved $f(n) \leq 2^{O(n)}$ must hold. Smith [4] proved a bound of $g(n) \leq 173000^n$. In this note we present a rather simple argument showing that $g(n) \leq 2^{12.245113n} - \Theta(\log n)$.

Let S now be a fixed set of n > 2 points. Without loss of generality we assume $\mathcal{L} \to 0$ that no three points of S are collinear. The idea of our proof is to show how one can encode any triangulation T of S in a binary string w(T) so that given S and string

Mathematics Subject Classification (1991):

* Supported by NSF Presidential Young Investigator award CCR-9058440.

w(T) the triangulation T can be reconstructed. If every possible encoding string has length f(n), then clearly S cannot have more than $2^{f(n)}$ different triangulations.

in a triangulation T' of the set $S' = S \setminus I$. Let $E' \subset T'$ be the set of edges created by independent set I of vertices of size $\lceil n/4 \rceil$. Remove I along with the incident edges from the triangulation T and retriangulate the "holes" thus created. This results of S, which can be encoded by the empty string. So assume n > 3. Since T retriangulating, i.e. $E' = T' \setminus T$. Our encoding of T will then be given recursively [3]. Let T be a triangulation of S. If n=3 there is only one possible triangulation forms a planar graph its vertices can be 4-colored, which implies that there is ar Our method was inspired by the planar point location method of Kirkpatrick

$$w(T) = \rho(S')\rho(E')w(T'),$$

the triangulation T' of S'. string $\rho(E')$ encoding E' as a subset of T', and the recursive binary encoding of i.e. the concatenation of a binary string $\rho(S')$ encoding S' as a subset of S, a binary

by $\rho(E')$. This leaves $\lceil n/4 \rceil$ "holes" in T', one for each point of $I = S \setminus S'$. To finally not cross any edge in $T' \setminus E'$ obtain T add to $T' \backslash E'$ all edges connecting a point in I with a point in S' that do to determine the triangulation T' of S'. Next remove from T' all edges described triangulation. Otherwise use $\rho(S')$ to determine $S' \subset S$ and recursively use w(T')from w(T) and S. This can be done as follows: If |S|=3, there is only one At first we need to argue that the triangulation T of S can be reconstructed

since every triangulation of S' has the same number of edges, namely be canonically ordered into e_1, \ldots, e_m , where m = |T'|, and one uses for $\rho(E')$ the s of length n with $s_i = 1$ iff $p_i \in S'$. Similarly the edges in the triangulation T' can via characteristic vectors: S can be canonically ordered into p_1, \ldots, p_n , say by lexicographic order of the coordinates; then one can use for $\rho(S')$ the binary string depends on the subset encodings $\rho(S')$ and $\rho(E')$. These are most easily done binary string t of length m with $t_i = 1$ iff $e_i \in E'$. Note that m depends only on S'Finally we need to bound the length of the binary string w(T). This clearly

$$m=3|S'|-3-\#$$
 of extreme points of $S'\leq 9n/4-6$.

Thus the length f(n) of the string w(T) is bounded by

$$f(n) \le n + 9n/4 - 6 + f(\lfloor 3n/4 \rfloor),$$

which with the boundary condition f(3) = 0 implies $f(n) \le 13n - \Theta(\log n)$

where $H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$ we therefore get that S' can be encoded by a binary string of length $H(3/4)n \le 0.81128n$. and hence S' can be encoded by a string of length $\log_2 b(n)$. Since $\binom{n}{\alpha n} \leq 2^{nH(\alpha)}$ is a subset of S of size exactly $\lfloor 3n/4 \rfloor$ there are only $b(n) = \binom{n}{\lfloor 3n/4 \rfloor}$ choices for S'This can be slightly improved by using a better encoding for $\rho(S')$. Since S'

where did he use general position? yase, si u EDP

size of $E' \subset E$ can be anywhere between 0 and more than half of the size of EUnfortunately this type of improvement cannot be applied to $\rho(E')$ since the

Thus f(n), the length of the encoding string w(T), satisfies

$$f(n) \le H(3/4)n + 9n/4 - 6 + f(\lfloor 3n/4 \rfloor),$$

which yields the claimed bound of

$$f(n) \le (4 \cdot H(3/4) + 9)n - \Theta(\log n) \le 12.245113n - \Theta(\log n)$$

true value of g(n) is much closer to the known lower bound of $2^{3n-\Theta(\log n)}$ strings w(T). Thus our upper bound for g(n) is certainly not tight. Most likely the Note that typically a triangulation T of S will be correctly encoded by many

- [1] M. AJTAI, V. CHVÁTAL, M. NEWBORN, and E. SZEMERÉDI: Crossing-free Subgraphs, Annals of Discrete Math., 12 (1982), 9-12.
- A. GARCÍA, M. NOY, and J. TEJEL: Lower bounds for the number of crossing free subgraphs of K_n , Proc. 7th Canadian Conf. on Computational Geometry,

<u></u>

- G. KIRKPATRICK: Optimal Search in Planar Subdivisions, SIAM J. on Computing, 12 (1983), 28-35
- <u>4</u> W. D. SMITH: Studies in Computational Geometry motivated by Mesh Generation, Ph.D. Thesis, Princeton Univ. (1989).

Raimund Seide

D-66041 Saarbrücken FB Informatik seidel@cs.uni-sb.de Postfach 15 1150 Universität der Saarlandes