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We show that the number of straight edge triangulations of any set of n points in the U_m: .
is at most 212-245113n—0(logn}

Let S be any set of n > 2 points in the plane and let E be the set of Amv

straight line segments joining points in S. A (straight edge) triangulation of S is
a maximal subset T' of E so that no two edges in T intersect except possibly at
common endpoints. We are interested in g(n), the maximum number of different
triangulations of any planar set S with n points.

i

It is well known that if S is in convex position the number of its triangulations

is given by the Catalan number C,_5 = Am?lmvv\?l 1). Using this it is easy to

n—2

come up with a set of 2n points [2] that has (Cp,.2)2 Ao: wv triangulations: place

n points each on the curves y==z2+1 and y=—22 — 1 with z-coordinates between
,,,,,, —1 and +1. Thus g(n)>237~Oosn) . 7
In this note we are interested in upper bounds for g(n). In the more general con- 2%

text of crossing-free subgraphs Ajtai, Chvétal, Newborn, and Szemerédi EE@\«“
that g(n) <29(%) must hold. Smith [4] proved a bound of g{n) <173000™. In this
note we present a rather simple argument showing that g(n) < 212.245113n—6(logn)

Let S now be a fixed set of n>>2 points. Without loss of generality we assume £~ Pee *o
that no three points of S are collinear. The idea of our proof is to show how one can %?\\T:,

encode mS\ :msq:_g:os T7of wnmm\m.gcgw string w(T') so that given S and string
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w(T) the triangulation T can be reconstructed. If every possible encoding string has
length f(n), then clearly S cannot have more than 2/(n) different triangulations.

Our method was inspired by the planar point location method of Kirkpatrick
[3]. Let T be a triangulation of 5. If n=3 there is only one possible triangulation
of §, which can be encoded by the empty string. So assume n > 3. Since T
forms a planar graph its vertices can be 4-colored, which implies that there is an
independent set I of vertices of size [n/4]. Remove I along with the incident edges
from the triangulation T and retriangulate the “holes” thus created. This results
in a triangulation T’ of the set §'=S\I. Let E'CT' be the set of edges created by
retriangulating, i.e. E/=T'\T. Our encoding of T' will then be given recursively
through

w(T) = p(S")p(E"Yw(T"),
i.e. the concatenation of a binary string p(S’) encoding S’ as a subset of S, a binary
string p(E') encoding E' as a subset of 77, and the recursive binary encoding of
the triangulation 7" of S'.

At first we need to argue that the triangulation T of S can be reconstructed
from w(T) and S. This can be done as follows: If |S| = 3, there is only one
triangulation. Otherwise use p(S’) to determine §'c S and recursively use w(T")
to determine the triangulation 77 of S’. Next remove from T' all edges described
by p(E'). This leaves [n/4] “holes” in T', one for each point of I=S5\S'. To finally
obtain T add to T'\ E' all edges connecting a point in J with a point in 5’ that do
not cross any edge in T\ E'. ) .

Finally we need to bound the length of the binary string w(T). This clearly

depends on the subset encodings p(S') and p(E'). These are most easily done
via characteristic vectors: S can be canonically ordered into py,...,pp, say by
lexicographic order of the coordinates; then one can use for p(S') the binary string

s of lenght n with s;=1 iff p; €S, Similarly the edges in the triangulation T’ can
be canonically ordered into ej,...,em, where m=|T’|, and one uses for p(E') the

binary string t of length m with t;=1iff e; € E'. Note that m depends only on &
since every triangulation of S’ has the same number of edges, namely

m = 3|5'| — 3 — # of extreme points of S <9nfd4—-6.
Thus the length f(n) of the string w(T") is bounded by
f(n) <n+9n/d -6+ f([3n/4]),
which with the boundary condition f(3)=0 implies f(n)<13n—©(logn).

This can be slightly improved by using a better encoding for p(S'). Since s
is a subset of S of size exactly [3n/4] there are only b(n)= Arwﬂw\ﬁv choices for 5,
and hence 5’ can be encoded by a string of length logg b(n). Since Aow:v Mm:m?w. ,
where H(z)=—zlogyz—(1—z)logy(1—1x) we therefore get that S’ can be encoded
by a binary string of length H(3/4)n<0.81128n. . “ ; \w
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Unfortunately this type of improvement cannot be applied to p(E') since the
size of E/ C E can be anywhere between 0 and more than half of the size of E.
Thus f(n), the length of the encoding string w(T), satisfies

f(n) < H(3/4)n+9n/4 - 6+ f(|3n/4]),
which yields the claimed bound of

f(n) < (4-H(3/4) + 9)n — O(logn) < 12.245113n — BO(logn) .

. Note that typically a triangulation T of S will be correctly encoded by many
strings w(T"). Thus our upper bound for g(n) is certainly not tight. Most likely the

true value of g(n) is much closer to the known lower bound of 237~ ©(logn),
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