
Algorithm and Software for Integration over a
Convex Polyhedron

Mark Korenblit1 and Efraim Shmerling2

1 Department of Computer Science
Holon Institute of Technology
52 Golomb Str., P.O. Box 305

Holon 58102, Israel
korenblit@hit.ac.il

2 Department of Computer Science and Mathematics
The College of Judea and Samaria

Ariel 44837, Israel
efraimsh@yahoo.com

Abstract. We present a new efficient algorithm for numerical integration
over a convex polyhedron in multi-dimensional Euclidian space defined by
a system of linear inequalities. The software routines which implement this
algorithm are described. A numerical example of calculating an integral
using these routines is given.

1 Introduction and Description of the Algorithm

This article describes a new step in the development of algorithms and software
for multiple integration.

Available standard numerical routines for multiple integration enable one to
integrate over cubes of the form

[
a
(0)
1 ; a(1)

1

]
×

[
a
(0)
2 ; a(1)

2

]
× ...×

[
a
(0)
n−1; a

(1)
n−1

]
×[

a
(0)
n ; a(1)

n

]
in the n-dimensional Euclidean space En, where n is small, as well

as over the sets in En defined by
[

f
(0)
1 ; f (1)

1

]
×

[
f

(0)
2 ; f (1)

2

]
× ... × [f (0)

n−1; f
(1)
n−1] ×[

a
(0)
n ; a(1)

n

]
, where f

(0)
k , f

(1)
k

(
k = 1, n − 1

)
are functions, the only possible ar-

guments of which are variables xk−1, xk−2, ..., x1 .
If the area of integration is more complicated, there are no available algorithms

and software. There are only two universal methods that enable one to integrate
over an arbitrary convex set (CS) in En, the boundary of which is defined by
the equation F (x1 , x2 , ..., xn) = 0. The first is the Monte-Carlo method [4]. The
second is based on integration over a minimum n-dimensional cube C such that
CS ⊂ C, and instead of the integral

∫
cs

f(x1 , x2 , ..., xn)dx1...dxn the equivalent

integral
∫
c

f1(x1 , x2 , ..., xn)dx1 ...dxn is calculated, where

f1(x1 , x2 , ..., xn) =
{

f(x1 , x2 , ..., xn), if (x1 , x2 , ..., xn) ∈ CS
0, otherwise .

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 273–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 M. Korenblit and E. Shmerling

Obviously, both methods are inefficient from the perspective of computation,
and the second method requires a great number of ”check on condition” op-
erations which take a relatively long time. In the case where the domain of
integration is a convex polyhedron much more efficient numerical methods can
be developed.

Assuming that a convex polyhedron (CP) in En is defined by the system of
linear inequalities over the variables x1 , x2 , ..., xn, integration over the CP can
be reduced to integration over a set of non-intersecting domains of the form[

f
(0)
1 ; f (1)

1

]
×

[
f

(0)
2 ; f (1)

2

]
× ... × [f (0)

n−1; f
(1)
n−1] ×

[
a
(0)
n ; a(1)

n

]
, where the functions

f
(0)
k , f

(1)
k

(
k = 1, n − 1

)
are linear combinations of variables xk−2, xk−1, ..., x1 .

Integration over such domains can be carried out utilizing available multiple
integration routines (such routines are considered in [5] and [6]).

Integration over a convex polyhedron (and in the simplest case, calculating
the volume of a convex polyhedron) has many applications. For example, it is
required in solving certain probabilistic problems. Let’s formulate one of them.
For an n-th order random polynomial

a0(ω) + a1(ω)x + a2(ω)x2 + ... + a
n
(ω)xn = 0,

where a0(ω), ..., an(ω) are independent random variables uniformly distributed
in the intervals

[
a
(0)
1 ; a(1)

1

]
,
[

a
(0)
2 ; a(1)

2

]
, ...,

[
a
(0)
n ; a(1)

n

]
, respectively, find the

distribution of the number of real zeros of the polynomial belonging to a certain
real interval [a; b] (see [2]).

This problem can be easily reduced to the calculation of the volumes of a
finite number of convex polyhedrons, defined by systems of linear inequalities.

An example of solving a problem of this kind with the help of the presented
algorithm for multiple numerical integration is given in section 3 of the article.

In order to describe the presented method we need the following notations.

Notation 1. Double inequality.
Double inequality (DI) of j-th order is an ordered pair of j-th order vectors LP =
(LP0, ..., LPj−1), RP = (RP0, ..., RPj−1) which correspond to the inequality

LP0 +LP1 ×x1 + ...+LPj−1 ×xj−1 < xj < RP0 +RP1 ×x1 + ...+RPj−1 ×xj−1.

Remark 1. From here on all the inequalities mentioned in the text are double
inequalities. Assume that possible values of the variables xi

(
i = 1, n

)
are re-

stricted to bounded intervals [LConsti; RConsti]
(
i = 1, n

)
, respectively, this

enables one to rewrite each linear inequality as a DI which is a necessary pre-
liminary step for the algorithm.

Notation 2. System of r-type.
We say the system of inequalities belongs to r-type (2 ≤ r ≤ n) if it contains
exactly one inequality of order i for each i such that r < i ≤ n and more than
one r-th order inequalities. The system of inequalities belongs to a one-type if it
has exactly one inequality of order i for each i such that 1 ≤ i ≤ n.

Algorithm and Software for Integration over a Convex Polyhedron 275

Notation 3. Transformation of an ordered pair (LV, RV) of vectors of i-th or-
der into DI of order k (k ≤ i − 1) .

The inequality corresponding to the pair (LV, RV) is of the form

LV0 +LV1 ×x1 + ... + LVi−1 × xi−1 < RV0 + RV1 × x1 + ... +RVi−1 × xi−1 (1)

If LVi−1 < RVi−1, we rewrite (1) in the form

RConsti−1 > xi−1 >
LV0 − RV0

RVi−1 − LVi−1
+

LV1 − RV1

RVi−1 − LVi−1
× x1 +

+
LV2 − RV2

RVi−1 − LVi−1
× x2 + ...

LVi−2 − RVi−2

RVi−1 − LVi−1
× xi−2. (2)

DI corresponding to (2) is then the result of the transformation.
If LVi−1 > RVi−1, we rewrite (1) in the form

LConst < xi−1 <
RV0 − LV0

RVi−1 − LVi−1
+

RV1 − LV1

RVi−1 − LVi−1
× x1 +

+
RV2 − LV2

RVi−1 − LVi−1
× x2 + ... +

RV i −2 −LVi−2

RVi−1 − LVi−1
× xi−2. (3)

If LVi−k = RVi−k , k = 1, ..., k1 , LVi−k1−1 �= RVi−k1−1 ,we transform the pair
of vectors (LV0, LV1, ..., LVi−k1−1) of order i − k1 into DI of order i − k1 − 1 via
formulae (2) or (3), where instead of i we substitute i − k1.

Notation 4. Decomposition.
Assume that the initial system of inequalities (IS) belongs to r-type. The system
has at least two inequalities of r-th order. These inequalities have ndlp distinct
left parts and ndrp distinct right parts. So we have a pair of vectors (LP, RP),
which consist of distinct left parts and distinct right parts, respectively, of r-th
order inequalities belonging to the system.

The IS is decomposed into ndlp × ndrp systems Sij , i = 1, ndlp, j = 1, ndrp.
Each of the systems Sij is formed in the following way:

(a) All inequalities (LPi, RPj) of orders different from r which belong to IS
are included in Sij ;

(b) Only one inequality (LPi, RPj) of order r is included in Sij;
(c) All the inequalities obtained via transformations of all pairs of vectors

(LPi, RPj), s �= i, s = 1, ndlp
(RPj , RPp), p �= j, p = 1, ndrp

are included in Sij;
(d) The inequality obtained via the transformation of the pair of vectors

(LPi, RPj) is included in Sij.
The systems Sij which have no solutions (we call them invalid) are ignored.

276 M. Korenblit and E. Shmerling

It can be easily shown that:

– The system {Sij}
i=ndlp

j=ndrp

is equivalent to IS.

– The system {Sij}
i=ndlp

j=ndrp

consists of nonintersecting systems of inequalities.

– The types of systems Sij are less than or equal to r − 1.

Algorithm 1. Algorithm for Integration over a Convex Polyhedron
Step 1. Set Sum = 0 (initialization of the calculated integral).
Step 2. Check what is the type of IS. If the IS belongs to a one-type, go to step

3, otherwise go to step 4.
Step 3. Integrate over the set defined by the IS, add the calculated integral to

Sum and terminate.
Step 4. Decompose the IS into nonintersecting systems and for each of them

go to step 2 viewing it as IS.

Any available routine for numerical integration can be applied in step 3 of this
algorithm.

2 Software Routines for the Algorithm Realization

The algorithm has been programmed in C++ language.
We define three basic structures named Inequality, SOKOI (system of k-

th order inequalities), and SOI (system of inequalities). Their description is
presented in Listing 1.

Structure Inequality implements an inequality of order k. Structure SOKOI
realizes a system of m inequalities, each one of order k. Structure SOI includes
n SOKOI structures, each of which presents a group of mj inequalities of order
j, j = 1, 2, . . . , n. Thus, SOI forms a general system of inequalities.

Listing 1. Basic Structures

/* Implementation of inequality of order k */
struct Inequality
{

int coefficients num; // order of inequality
// (number of coefficients)

double *left, *right; // pointers to left and right vectors

Inequality (int k=0) // constructor
: left (NULL),

right (NULL)
{

coefficients num = k; // set number of coefficients

Algorithm and Software for Integration over a Convex Polyhedron 277

if (coefficients num > 0)
{

// dynamic allocation of a left vector
left = new double[coefficients num];
// dynamic allocation of a right vector
right = new double[coefficients num];

}
} // constructor Inequality

}; // struct Inequality

/* Implementation of a system of m inequalities,
each one of order k */

struct SOKOI // SOKOI - system of k-th order inequalities
{

int inequalities num, // number of inequalities in a system
coefficients num; // order of inequality

// (number of coefficients in inequality)
Inequality *inequalities vector; // pointer to array

// of inequalities

SOKOI (int m=0, int k=0) // constructor
: inequalities vector (NULL)

{
inequalities num = m; // set number of inequalities
coefficients num = k; // set number of coefficients

// in inequality
if (inequalities num > 0)
{ // dynamic allocation of array of inequalities

inequalities vector = new Inequality[inequalities num];
// initialization of array of inequalities
for (int i=0; i < inequalities num; i++)

inequalities vector[i] =
Inequality (coefficients num);

}
} // constructor SOKOI

}; // struct SOKOI

/* Implementation of n-th order system of inequalities */
struct SOI // SOI - system of inequalities
{

int levels num, // order of system (number of levels)
*inequalities num in level; // pointer to array of

// numbers of inequalities
// in each level

SOKOI *systems vector; // pointer to array of SOKOIs;
// each SOKOI implements a subsystem consisting
// of inequalities of equal orders
// (inequalities which are in the same level)

SOI (int n=0, int m[] = NULL) // constructor
: systems vector (NULL)

{
levels num = n; // set number of levels

278 M. Korenblit and E. Shmerling

inequalities num in level = m; // set pointer to array of
// numbers of inequalities
// in each level

if (levels num > 0)
{ // dynamic allocation of array of SOKOIs

systems vector = new SOKOI[levels num + 1];
// initialization of array of SOKOIs
for (int j=1; j <= levels num; j++)

systems vector[j] =
SOKOI (inequalities num in level[j], j);

}
} // constructor SOI

}; // struct SOI

The following basic functions are used:

– double SKoAl (SOI system)
– double Recursion (SOI *father system, int level)
– bool VectorsEqual (double vect1[], double vect2[], int size)
– bool Transform (int level, int left num, int right num, SOI old system, SOI

&new system)
– void DeleteSoi (SOI *ptr SOI)
– double Integration (SOI system)

In addition, the following auxiliary functions are utilized:

– void Auxiliary (double in left[], double in right[], int in level, Inequality
&new inequality, int &out level)

– void CopyIneq (Inequality in inequality, Inequality &out inequality)
– void DeleteIneq (Inequality inequality)
– bool FirstLevel (double old left 0, double old right 0, double old left 1,

double old right 1, SOI &new system)

SKoAl is the basic function which realizes the algorithm. Its input is a system
of inequalities (type SOI) and its output is a numeric value of the integral.

As follows from Algorithm 1, the algorithm is an iterative process accompanied
by the decreasing of parameter r (r determines the type of the system). This
iterative process is provided by function Recursion (see Listing 2) which is a
basis for function SKoAl.

Listing 2. double Recursion (SOI *father system, int level)
{

double sum = 0; // initialization of the calculated integral
if (level > 1) // system is not one-type
{

/* Scanning all left and right parts */
for (int j = 0; // scanning right parts

j < (*father system).inequalities num in level
[level];

j++)
{

Algorithm and Software for Integration over a Convex Polyhedron 279

// scanning all previous right parts
for (int kj = 0; kj < j; kj++)

// comparison of a right part with previous one
if (VectorsEqual ((*father system).

systems vector[level].
inequalities vector[kj].

right,
(*father system).

systems vector[level].
inequalities vector[j].
right,

level))
break; // from "for kj"

// loop "for kj" wasn’t completed because of
// finding identical right parts
if (kj < j)

continue; // "for j"
for (int i = 0; // scanning left parts

i < (*father system).inequalities num in level
[level];

i++)
{

// scanning all previous left parts
for (int ki = 0; ki < i; ki++)
// comparison of a left part with previous one

if (VectorsEqual ((*father system).
systems vector[level].
inequalities vector[ki].

left,
(*father system).
systems vector[level].

inequalities vector[i].
left,

level))
break; // from "for ki"

// loop "for ki" wasn’t completed because of
// finding identical left parts
if (ki < i)

continue; // "for i"
SOI *child system = new SOI; // memory allocation

// for a new system
// generating a new system that is
// nearer to one-type
if (Transform (level, i, j,*father system,

*child system))
// recursive call on new system and adding
// calculated integral to sum
sum += Recursion (child system, level - 1);

DeleteSoi (child system); // free a space
// of the new system

280 M. Korenblit and E. Shmerling

} // "for i"
} // "for j"
return sum;

} // if (level > 1)
else // level == 1 (system is one-type)

// integration over set defined by one-type system
return Integration (*father system);

}

Function Recursion constructs a tree in such a way that each node of this
tree is an IS. The root of the tree is an original system of inequalities which
enters function SKoAl. The tree leaves are systems of inequalities which belong
to a one-type. Input parameters of Recursion are a pointer to SOI named
father system and an integer variable level that is equal to r.

In order to avoid generating duplicates of systems due to identical vectors,
we use a boolean function, VectorsEqual in the course of the execution of
Recursion. Input parameters of VectorsEqual are two numeric vectors and
their size. This function compares the left/right part of an inequality currently
under consideration with the left/right parts (respectively) of previously consid-
ered inequalities of the same system (as noted in Notation 4, we consider only
distinct left parts and only distinct right parts.). If the corresponding parts are
identical, then the next left/right part is compared with previously considered
ones. If the corresponding parts are not identical, then the memory for a child of
a node which is currently under consideration is allocated dynamically by means
of a pointer to SOI named child system.

The child node is intended for one of the new nonintersecting systems gener-
ated in step 4 of Algorithm 1. This system is constructed by means of a boolean
function, Transform. The parameters of this function are (a) level; (b) integer
variables left num and right num (which are substituted by the current num-
bers of the left and right parts, respectively, of the r-th order inequalities (see
Notation 4)); and (c) two systems of inequalities (type SOI) named old system
and new system. Function Transform is invoked by substituting structures
pointed by pointers father system and child system instead of parameters
old system and new system, respectively.

If a new system which is constructed by Transform is invalid, then the func-
tion returns false. Otherwise, Transform returns true, and the next recursion
step of the algorithm is performed by the call of function Recursion with pa-
rameters child system and level − 1. After return from this recursive call, the
returned value is added to the local variable, sum (according to step 3 of Algo-
rithm 1). Then (or immediately after the call of Transform if it returns false)
function DeleteSoi frees a space allocated for a child of a currently considered
node, and the value accumulated in sum is returned.

Recursive calls terminate when the value of level is equal to one, i.e., for the
system belonging to a one-type. In this case, step 3 of Algorithm 1 is performed.
Function Integration integrates over the set which is defined by the correspond-
ing system and returns the calculated value to Recursion. Then, Recursion
returns this value to its previous copy, into which this value is added to sum.

Algorithm and Software for Integration over a Convex Polyhedron 281

The final value of sum is returned by Recursion to function SKoAl, and is
returned by SKoAl as a result.

Other functions are used in function Transform.
Function Auxiliary realizes transformation of an ordered pair of vectors

into the double inequality (this procedure is described in Notation 3). Its in-
put parameters named in left, in right, and in level, correspond to the pair
of vectors and to its order, respectively. The output parameters are structure
new inequality of type Inequality and integer variable out level. They cor-
respond to the constructed double inequality and to its order, respectively.

Function CopyIneq copies content of an input structure in inequality (type
Inequality) into a new structure out inequality. This function is used for
copying inequalities into new system of function Transform.

Function DeleteIneq frees a space allocated for temporary objects of type
Inequality in function Transform. This function is applied in function Delete-
Soi as well.

A boolean function, FirstLevel constructs an inequality of the first order in a
system which is generated by function Transform. If this inequality has no so-
lutions, then FirstLevel returns false into Transform, and the corresponding
system is declared invalid.

The iterative process provided by function Recursion can be visualized as
a recursion tree the nodes of which are recursive calls. And in this particular
case, each recursion step includes a dynamic allocation. That is, as stated above,
function Recursion also constructs a real tree the nodes of which are systems of
inequalities implemented by structures of type SOI. But we need not keep all the
nodes of this tree in the memory simultaneously. Before generating a new system
of r-type, the previous r-type system is erased from memory. Thus, at most n
nodes (a path from the the root to a leaf) are kept in memory simultaneously.

In fact, our algorithm is based on depth-first search (DFS) (see [1], [3]). How-
ever, in this particular case, a node is created directly before it is visited. The
call of Transform corresponds to the visit. After all children of a node have
been visited, the node is deleted by DeleteSoi.

Let’s estimate the maximum number of nodes in our tree. Consider the n-th
order system that has m inequalities. Suppose all m inequalities are of order n,
i.e., the root of the tree has the maximum size which is possible. Also, suppose
that a system of r-type generates only systems of r − 1-type in every recursion
step. The last supposition is that function VectorsEqual always returns false,
i.e., ndlp is equal to ndrp all the time. In such a case, the number of nodes is

1 +
n∑

i=2

i∏
j=2

(
2j−2m − 2j−2 + 1

)2
>

n∑
i=1

m2(i−1) =
m2n − 1
m2 − 1

.

However, the actual number of nodes which are kept in memory simultane-
ously is determined by the height of the tree and does not exceed n. It is clear
that the sizes of these nodes are different. Corresponding computations show
that in this case, the amount of required memory is O (m2n).

282 M. Korenblit and E. Shmerling

3 The Illustrative Example

In order to utilize the software described in section 2 for calculating volumes
of convex polyhedrons in E4, the simplified version of function Integration
(mentioned in the previous section) which calculates the integral

a2∫

a1

a5+a6x1∫

a3+a4x1

a10+a11x1+a12x2∫

a7+a8x1+a9x2

a17+a18x1+a19x2+a20x3∫

a13+a14x1+a15x2+a16x3

1 dx4dx3dx2dx1

can be applied. This integral is the volume of the convex set corresponding to
the following one-type system of inequalities:

⎧
⎪⎪⎨
⎪⎪⎩

([a13, a14, a15, a16] , [a17, a18, a19, a20])
([a7, a8, a9] , [a10, a11, a12])

([a3, a4] , [a5, a6])
([a1] , [a2])

.

With the help of these tools, we solve the following simple probabilistic prob-
lem.

Problem 1. Calculate the probability that the polynomial equation with random
coefficients

c1 (ω) + c2 (ω)x + c3 (ω)x2 + c4 (ω)x3 = 0,

where c1 (ω), c2 (ω), c3 (ω), c4 (ω) are independent random variables uniformly
distributed in the interval [−1; 1], has one or three real roots belonging to the
interval [0; 1].

Obviously, the problem can be reduced to calculating the volumes of two
convex sets in E4 (the volumes are equal). The first set is defined by the system
of inequalities ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 > 0
c1 < 0
−1 < c1 < 1
−1 < c2 < 1
−1 < c3 < 1
−1 < c4 < 1

.

The second one is ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 < 0
c1 > 0
−1 < c1 < 1
−1 < c2 < 1
−1 < c3 < 1
−1 < c4 < 1

.

Algorithm and Software for Integration over a Convex Polyhedron 283

The first system can be rewritten in the following form:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 < c4 < 1
−c1 − c2 − c3 < c4 < 1
−1 < c3 < 1
−1 < c2 < 1
−1 < c1 < 0

.

This system has been expressed as a system of double inequalities. The volume
calculated by means of our software is equal to 2.79167. This result has been
checked by the Monte-Carlo method and appears to be correct.

4 Conclusion and Future Work

We have presented a new algorithm for numerical integration over a convex
polyhedron in the n-dimensional Euclidean space defined by a system of linear
inequalities. We have described the software routines implementing the algo-
rithm and estimated the memory costs required for their realization. We intend
to estimate the running time of the algorithm as well. We also intend to deter-
mine maximum values of both n and the number of inequalities for which our
algorithm is practically realizable. In addition, we plan to compare our algorithm
with alternative methods based on various criteria.

References

1. Algorithms and Theory of Computation Handbook, edited by M. J. Atallah. CRC
Press, Boca Raton (1999)

2. A. T. Bharucha-Reid and M. Sambandham: Random Polynomials. Academic Press
(1986)

3. T. H. Cormen, C. E. Leiseron, and R. L. Rivest: Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts (1994)

4. M. H. Kalos and P. A. Whitlock: Monte Carlo Methods. John Wiley & Sons (1986)
5. W. H. Press, S. A. Tenkovsky, W. T. Vetterling, and B. P. Flannery: Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)
6. J. R. Price: Numerical Methods, Software and Analysis. Academic Press (1993)

	Introduction and Description of the Algorithm
	Software Routines for the Algorithm Realization
	The Illustrative Example
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

