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i. Statement of the Problem and Notation. In this papaer we consider the complexity 
of the computation of relative invariants of the full linear group in connection with some 
problems of combinatorial optimization. The necessary prerequisites from representation 
theory can be found in If, 2]; introductions to the combinatorial problems in question can 
be found in [3, 4]. 

Let V be an n-dimensional vector space over the field k (the field k is R, C or Q) 
with scalar product <, > and orthonorma[ basis e~, e 2 .... , e n. The space Y| the k-th 
.tmnsor power of V, can in the usual way be equipped with a scalar product (which will also be 
denoted by <, >), in which 

<ul | | u~. vl | | =[li= I <u~, v~>; 

u ~ , v ~ V .  

The group GL (Y) of nondegenerate linear transformations acts on the space V | by the k-th 

tensor power of its natural action on V, and the symmetric group S k acts by permutation of 

the components. For decomposable tensors these actions are expressed as follows: 

G (v, | . . . | v~) = Gu, | . . . | Gvk; G ~ GL (}9; 

g (v, | . . . | vk) = ~-,~,~ | , . | ~-,c~; g ~ Sk. 

These actions can be extended by k-linearity to the group algebras kSk, kGL. For more detail 
see [I, 2]. 

= sgn  g ' g ~ k [ S j ,  We f i x  a n u m b e r  l ~ N  a n d  a s s u m e  . t h a t  n = l m ,  m ~ N  . L e t  ~ ~g~s~ 

where sen g is the sign of the permutation g; sen g = l, if g is an even permutation and 

sgn g = -i, if g is an odd permutation. Let B~V| =~IB (i, ..... il) II, i<ij..<n (for con- 

venience we write the subscripts here and in future in parentheses). It is well known that 
the expression 

P (B) = <B | , re, | | .)> = ~:~s. ,gn ~ If= I B (g (z (~ - -  t) + i), g (z (~ - -  i) + 2) . . . . .  g (u)) 

is a relative invariant of the group GL (V), i.e., P (G (B)) = det G.P (B) (cf. [21). If the 

number s is odd, it is easy to see that P (B) =0 VB~V| t , and there@ore we shall assume 

from now on that, unless otherwise stated, the number s is even; s = 2p. The letters n, s 
m, p will denote the values introduced above for the rest of the paper. For s = 2 the corre- 
sponding invariant is well-known and is called the Pfaffian (notation: Pf (B); often one in- 
troduces a normalization factor I/2mml ). It is known that the computation of the Pfaffian 
can be achieved using a number of arithmetic operations which is polynomial in n (cf. [I, pp. 
229-232; 4, pp. 318-329]). 

In this paper we consider the complexity of the computation of the relative invariant 
P(B) for fixed s > 2. The complexity of an algorithm, working with real numbers, here 
denotes the number of arithmetical operations which it uses (addition~, subtractions, multi- 
plications, divisions) and of tests for equality to zero (necessary for admissibility of 
divisions). The precise definition of this so-called "real complexity" can be found in [5]. 
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We may also assume that the computational model of [6, pp. 34-40] applies. The results ob- 
tained here will also apply in the traditional setting of complexity theory under the assump- 
tion that all the numbers appearing in the process are rationals (cf. [3]). 

The polynomial P(B) is not the only relative invariant of the group GL(V). We fix a 
number d ~ N and let ~ ~ k [S,u] be an element of the group algebra contained in a two-sided 

simple ideal I d, on which an irreducible representation of the group Snd acts with Young 

diagram (d ..... d) (n terms). Let B ~ V| t and llnd . The polynomial P~ (B)= 

<B| p ((e~ Q . . . Q e,)| is the general form of a relative invariant of the group GL(V): 

P~(G(B)) = deteG'P~(B)(cf. [i; 2, p. 327]). The paper also discusses the complexity of the 

computation of the relative invariant P~. Note that for d = 1 ~ = c'E, c~ k, P~ (B)= c.P (B). 

For d > i and s odd we h~ve in general P~(B)~=0. 

To conclude this section we introduce the tensor Uv.l ~ ]7| (often denoted simply by U) 

which will be used in the sequel: U(1,2 ..... l) = U(lq- I ..... 2Z) ..... U((m-- l)/q- I ..... ml)= 

~, U(i, ..... Q) = 0 , if there does not exist a number 0<t <~-- I such that ~j = tl q-j, 

I <j < Z. It is easy to verify thatP(Uv, z) = m!(s even). 

2. Main Results. Definition. The rank of a tensor B ~ ]yet is the smallest number 

r = rank B, such that the tensor B can be represented in the form 

(cf. [7]). . . . .  

The 2-rank of a tensor B~'F| z is the smallest number r = rank 2 B such that the tensor 

B can be represented in the form 

B ~ , :  ~|174 | A~V| (2) z.ai= 1 �9 �9 . 

THEOREM I. l) Let k ~ N be a fixed number and assume that at least one of the follow- 
ing conditions holds: 

a)rankB = n/l q- k and the tensor B is given in the form (i); 

b) rank~ B = k and the tensor B is given in the form (2). 

Then there exists a polynomial algorithm for the computation of P(B). 

2) The problem of computing the relative invariant P for an arbitrary s is poly- 
nomial with respect to the problem of computing P(B) if we assume that: 

a')rsnkB < 2nil and the tensor B is given in the form (I). 

In points i) and 2) the number s is assumed to be fixed and the problem extends over 

v ~ N, B ~ V| ~. 

Proof. i) Below we set out the required algorithms which are readily seen to be poly- 

nomial in the number n of arithmetic operations. The degree of the polynomial depends 
linearly on /~. 

a) We extend the set of vectors 'e,,..., en to an orthonormal basis of the space ]7'~ V 

by means of the vectors ~,+,, ..., r dim ]7' ~_ rl = n' . We construct an operator G ~ End (V[) 

(End denotes the ring of endomorphisms of the space) such that G(e,)----u~ , where = (i -i)s + 

j, 1 <_ j <_ s Let U = Uv,,l~ ]7'| We have G(U) and 

P(B) = < B | 1 7 4  | = <G(U) | 1 7 4  
�9 �9 �9 @ e n d  = < U  |  G*  ~ ( e , ' |  . . .  | e , ,)>.  

The space LCI V'| generated by all vectors of the form s (e~,| ~ e~) (i < i,< i2<... < 

i n < n') is invariant under the action of the group GL(V') and of the ring End (V'). In 

particular, the subspace L ~ V ~| is an isotypic component of the irreducible representation 



of the group S n corresponding to the Young diagram (i, 1 ..... I), and therefore an isotypic 

component of the corresponding irreducible representation of the group GL (V') (cf. [i, 2]). 

Here dimL= n ,~<n~t For convenience we will abbreviate the vector e(eh~...~ei .) 

by fT, where T is the ordered set of indices i I ..... i n , and the vector e(e,~...~) 

will be denoted by f. 

It is clear that we have <U| IT> =-~-m! if the sequence of numbers in T can be re- 

corded in such a way that we have m non-interesecting intervals of length s the sign is 

given as the sign of corresponding permutation. <U| = 0 in all other cases. For the 

computation of P(B) it suffices to construct a decomposition of the vector G*f in the basis 

{fT} of the space L. The ring End (V') is generated under multiplication by the generators 

Eii(a) = I + aeij , where I is the identity operator, eil(k, s) = 6i~6j, a matrix unit. These 

generators operate as follows on the basis vectors of the space L: for l=/=] Eij(a)/T =IT if 
].~T or i~ 7'; Eij(a)]r =/T-+-~/T\JUi otherwise, where the sign is determined by the permuta- 

tion which rearranges the sequence {i, ..... in}~] ~ i; Ei~(=)/T= (I + ~)/T; if i~ T and 

Eii(a)/r=/r otherwise (cf. [2, pp. 328-330]). By decomposing the operator G*~End (V') 

into a product of no more than (n') a generators Eij (~) (a standard problem of linear algebra) 

and then applying the above formulas we obtain the required decomposition of the vector Gef 

in terms of the basis of the space L. 

b) Let {Ci}, i = ] ..... p be tensors, Ci~V(~V. ft is easily seen that <Ci,~...~ 

Cip,]> does not depend on the order of the indices i, ..... ip . Therefore 

P(B)-~- q, . . . . .  q~ <(~i,i(C{)| ( 3 )  

where the sum is taken over all (q, ..... q~)~N ~, q,+ ... ~-q~ =m; the index i ranges over 

the set [i: k], the index j over the set If: p]. Each of the 

puted if we apply the following method. Let C, ..... C,~F(~V 

Put Ct = t,C, +... +t,C,, 

We have 

~m+k--l) 'termsm is easily corn- 

a n d  t = ( t , ,  . . . ,  t~), ti  ~ k  . 

. . .  |  | c? I>. 

We compute the Pfaffians of the matrices C t for the distinct values tl, ..., t s (in our case 

s 2 kp) and use the resulting system of linear equations to compute in standard fashion each 

of the terms in this sum. This is precisely the form of the terms in the sum (3). 
t 

2) We represent the tensor B in the form of a sum of N tensors of rank i: 

t u ~ V .  = |  | u .  

This is easily done, for example, by putting N = n s Put n' = Ns we extend the basis {el}, 

i = 1 ..... n to an orthonormal basis of V'~ V 

and let ~ be the span of the additional vectors: 

We put further 

by means of the vectors {el}, L = n q- I, .... n' 

V' = VGF, dimF----fi, m=~/l, m' =n'/l. 

/ '  ---- ~ ' g a s ~ ,  sgn  g .  g (el  ~ ) . . .  | e , , ) .  



We have 

<:',:', = 4r-<:" | �9 

The computation of the last expression follows from the computation of the values of 

P (B + tU~,t) for m' distinct values of the parameter t~k similarly to what was done in 

part i), b). Here Bt B + tU~,l~ V'| and rankBt~_m . The theorem is established. 

In order to raise the question of the complexity of the computation of a general 
invariant P,(B) as a function of n, ~, B, it is necessary to determine exactly how the 

element ~Ek [Snd] is given since for each fixed d > 1 the dimension of the ideal I d grows 
exponentially with n. We will therefore assume that the number n and the element ~ are fixed 

and consider the problem over B~V| dim V =n. The number I is not necessarily even now. 

THEOREM 2. For all numbers d, k, l~N there exists a polynomial t(x), such that Vn, 

n = Im and ~[d in the computation of the expression Pu (B) on the set {B~V| l , 

dim V = n and the tensor B satisfies condition i) a) of theorem I} there exists an algorithm 

whose complexity does not exceed t(n). 

Proof. We repeat the considerations of i) a) in Theorem i, except that now the space 
L and its basis have to be constructured for each n, ~ individually. As before we extend the 
space V to V' and construct an element G~End (V') . We denote by f the element ~ (e,~... 

| en) | ~ V~ nd 

We have 

P~ (S) = <S| /> = <U~d, G*D 

Put L =Lin {G],G~End (V')}. The space L is contained in an isotypic component of the repre- 

sentation ~ of GL (V') corresponding to the Young diagram (d .... , d). Since the space L is 

generated as GL (V')-module by a unique element we have dim L<dim2= and for fixed d, k it 

follows from the formula for dim ~ (cf [2, p. 326)] that dim L~.<q (n), where q is some poly- 
nomial. We choose a basis {fT} in the space L (for example as union of standard bases of 

Weyl modules [2, pp. 320-327]) on which the generators Eij (=) act as follows: 

E,j (=)/r = Y-*r, P%J, r, (=) &,, (4) 

where ~.T'} are polynomials and degp~,z.<d . For the required algorithm it suffices 

to compute the values ?z = <uema,]z>. 

The algorithm consists of the following computations, starting from formula (4) for the 

decomposition of the vector GWf in terms of the basis {fT} followed by the computation of the 
values P~(B) using the coefficients {YT}- The theorem is establisSed. 

Remark. A similar result can be established for the computation of invariants P~(B) 
for tensors of fixed 2-rank. As in the proof of i) b) of Theorem 1 this requires the ability 

to compute the corresponding invariant for s = 2. The corresponding algorithm is based on 

the reduction of bilinear forms to canonical form [8, pp. 411-440]. This question will be 
addressed in more detail in a further paper by the author. 

3. Problems Concerning Weighted Decompositionst Covers and the Computation of Relative 
Ivariants. Many problems in combinatorial optimization can in general form be expressed as 
maximum problems: 

Find 
max {/ (g), g ~ S=} (5) 



for some function ]: S,~R, 

We introduce the following statistical sum: 

s ~  (/; t) = Y , , ~  exp  (t l  (g)} ~ (g), 

where ~: S=---~R is some weight function on the group Sn; t ~ R .  

Then 

Proposition I. Assume that the following implication holds: f (g) = [ (h) ~ ~ (g) = ~ (h). 

lira t -* log I St, (I; t) [ = m a x  {] (g): g ~ S,,, ~ (g) =ja 0}.  
t-.--4-~ 

Various modifications of this obvious result have been applied in optimization, e.g., 
in the "annealing" method derived from statistical physics (cf. [9]), although it appears 
that they have never before been formalized in this way. Below we give examples of problems 
for which the computation of the sums S~(f; t) reduces to the computation of relative in- 
variants. 

I. The matching problem (cf. [4, pp. 307-318]). Let IIa (i, ])H (1~< i, ]~<~ be a real 

matrix and f (g) =~?=la (L, g (0). Put At (~, ]) = exp {ta (i, ])} and z (g) = sgn g . Then 

Se (f; t) = det II At (~, ]) II. 

II. The problem of weighted decompositions. Given a real tensor b= lib(i, ..... iz)ll ~ V| 

dimV = n =Im and /(g) = ~.~_~ b (g (l (i -- I) -}- :1),g(l(~_ i) Jr-2) ..... g (10). f(g) is a summation 

weight of the decomposition of the set {[, 2 ..... n} into m ordered s {g (I) ..... 

g(s {g (s + i) ..... g (2s ..... {g (s (m - i) + i) ..... g (s where the weight o[ 

the ordered vector {i I ..... is equals the number b(il ..... is If the element g ranges 
over the entire group Sn, then f(g) ranges over the values of the weights of all decomposi- 

tions of the set {I, 2, .... n} into ordered s For even s the set of tensors 
b EV | for which the function f and the weight function e satisfy the condition of Proposi- 

tion I form an open and dense set. PutBt~ V | Bt(il ..... it) = exp{tb(i, ..... it)}. Then it is 

clear that S,(/;t) ='P (Bt). For s = 2 the result S~(/;0 = Pf(B,) is known in a different 

form [4, pp. 318-329]. The NP-hard problem of the existence of a decomposition into s 
tors from a given set Z reduces polynomially in the sense of a probabilistic Turing machine 

[10] to the computation of the relative invariant P. We put B(I) = 0, if I # Z and B(I) = 
II~R if I~Z; I = {ii ..... Q}. The polynomialP (B)= P (xi, 1~ Z)is identically zero if and 

only if there does not exist a decomposition of the set {I, 2 ..... n} into s from E 

(s even). The test of the condition p (x1,1~Z)~0 can be accomplished in polynomial 

time with arbitrarily smallerror probability if the values P(B) can be computed polynomially 

(cf. [i0]). This is a strong indication that the problem of computing the invariant P is 
of high complexity. 

In veiw of the results of section 2 it is natural to ask: for which tensors b~V| t does 

the tensor Bt Vt~B satisfy the condition B t ~ r or rank= B t ~ r, and the value P(B) can be 
computed polynomially? We can list several types of conditions of combinatorial character. 

I) Tensors with block structure. Assume that the index set is partiontioned into r 
parallelepipeds N =/ix... • It, Ii C [l:n], where for each of the parallelepipeds ~: 

a) there exist vectors ul ..... ut ~ V (depending on H) such that VI ~ ~, I = {i, ..... it} 
b ( I )  = u ,  ( i , )  + u= (i=) + . . . + u t  ( i , )  ; 

b)  t h e r e  e x i s t  m a t r i c e s  a,  . . . . .  a v ~ V Q V  ( d e p e n d i n g  on N) s u c h  t h a t  V I ~ H ,  I = {i,, 

. . . .  it} b (1) = a, (i,, i~) + a2 (i3, i4) + . . .  * % (it- , ,  i~) ; 



I t  i s  c l e a r  t h a t  in  ca se  a)  r a n k B , < r  and in  c a s e  b) r a n k ~ B t < r  . 

2) Tensors of fixed rank with given number of distinct coordinates. Let D CR be 

the set of the coordinates b(i I ..... is of the tensor b, ID[ = d (the smallest combina- 

torial case is evidently D = {0, I}, d = 2) and rank b = c. Then ~t~R there exists a 

polynomial q(x), degq<d--1 such that Bt(1) =q(bU)), I = {i, ..... i~}(a corollary of 

Lagrange's interpolation theorem). Then one finds by direct calculation that rank B t 5 

(, § ~  ,) 
t . If a representation of the tensor b in the form (I) is known then one 

can also find a representation of the tensor B t in the form (I). An analogous formula 

holds also for the 2-rank of the tensors b and B t. 

In the space of tensors i) b) the tensors for which the function f and the weight 

function z satisfy the condition of Proposltion 1 form an open and dense set. The function 

f for tensors I) a) does obviously not satisfy the condition of the theorem, but nontheless, 

the limit = = lim t-~loglS,(/;t) l has an obvious combinatorial meaning: in general, a is the 
t--+~ 

maximum of the values of f on those decompositions for which no 2s belong to one 

index of the parallelepiped H. 

III. Problems with weighted coverings. Assume first that b~V | dim V = n and 
fix a number d ~ _ N  . We denote by ~ the remainder a (mod n) , assuming that I <~ <n 

We define the function /: Sna'-~R by 

~nd/l 
/ (g) = --i=o b (g (li q- t ) , . . . ,  g (li + 1)). 

The value f(g) is a sunmmtion weight of a covering of the set {I, 2, .... n} by nd/s ordered 

s (possibly with treated elements) where each element of the set belongs to exactly 
d vectors (allowing for multiplicities). If the element g ranges over the full group Snd, 
then the value f(g) ranges over the weights of all such coverings. Let ~ R  ISn,t and ~la . 

Then, if we put Bt (i, ..... Lz) = exp {tb (i, ..... il) } we have S~ (f; t) = P~. (B,), ~* (g) = ~ (g-l); 

~*~14 . As in example II there are some special cases where there exist algorithms for 

the computation of the sums S~(f; t) for which the number of arithmetic operations and 
exponentiations is polynomial in n. 

Remark. If the function f is integer valued, then the sums SB(f; t) also allow the 
computation of the multiplicity mu|t,(];c) =~/(~)=:~ (g) of the values c~Im / of the func- 

tion f relative to the weight function ~ according to the obvious formula 

S~ (/; t) = ~ E z  exp {to} mult ,  (1; c). 

In the particular examples above (example II, i), 2)) the resulting algorithms are pseudo- 
polynomial. 

The author is grateful to A. M. Vershik for advice with this paper. 
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