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Abstract

The classic Sperner lemma states that in a simplicial subdivision of a simplex in IRn and

a labelling rule satisfying some boundary condition there is a completely labeled simplex.

In this paper we ¯rst generalize the concept of completely labeled simplex to the concept

of a balanced simplex. Using this latter concept we then present a general combinator-

ial theorem, saying that that under rather mild boundary conditions on a given labelling

function there exists a balanced simplex for any given simplicial subdivision of a polytope.

This theorem implies the well-known lemmas of Sperner, Scarf, Shapley, and Garcia as well

as some other results as special cases. An even more general result is obtained when the

boundary conditions on the labelling function are not required to hold. This latter result

includes several results of Freund and Yamamoto as special cases.

Key words: Combinatorial theorems, integer labeling, ¯xed points, simplicial subdivi-

sion.



1 Introduction

The Sperner lemma (1928) is probably one of the elegant and fundamental results in combi-

natorial topology. It has become quite familiar in the ¯elds of mathematical programming

and economic equilibrium theory, because of its successful use in the computation of ¯xed

points of a continuous function, see e.g. Scarf (1967, 1973), Kuhn (1968), Eaves (1972),

Merrill (1972), van der Laan and Talman (1979), and many others. Surveys of the devel-

opments of the Sperner lemma can be found in Todd (1976), Forster (1980), Doup (1988)

and Yang (1999). The lemma states that given a simplicial subdivision of the unit simplex

Sn = fx 2 IRn+ j
nX

i=1

xi = 1g;

where IRn+ is the nonnegative orthant of the n-dimensional Euclidean space, and a labeling

function L from the set of vertices of simplices of the simplicial subdivision into the set

f 1; ¢ ¢ ¢ ; n g, satisfying that for any vertex x in the boundary of Sn that L(x) 6= i when

xi = 0, there exists a completely labeled simplex, i.e. a simplex whose vertices carry all of

the labels from 1 up to n. The Scarf lemma (1967, 1973) states a similar result when the

labeling function satis¯es that L(x) = minfj j xj = 0 and xj+1 > 0g, with the convention
that n + 1 = 1, when x is a vertex in the boundary of Sn. The Scarf lemma can be seen

as a dual version of Sperner lemma and vice versa. However, the conditions in these two

lemmas appear to be quite di®erent. As far as we know, there is no result which has uni¯ed

both the Sperner lemma and the Scarf lemma. The existing results extend either the scope

of the Sperner lemma or that of the Scarf lemma.

In Cohen (1967) a stronger version of the Sperner lemma is given, which claims the

existence of an odd number of completely labeled simplices. In Le Van (1982) an alternative

proof of this result using topological degree theory is given. Shapley (1973) generalized the

Sperner lemma by using a set labeling rule instead of an integer labeling rule. Furthermore,

the existence of completely labeled simplices have been generalized to the cube and the

simplotope, i.e. the Cartesian product of several simplices, while also more general labeling

rules have been considered, see e.g. Tucker (1946), Fan (1967), Garcia (1976), van der

Laan and Talman (1981, 1982), Freund (1984, 1986), van der Laan, Talman and Van der

Heyden (1987), and Yamamoto (1988). In Freund (1989) the lemmas of Sperner, Scarf,

and Garcia on a full-dimensional simplex are extended to a full-dimensional polytope, see

also Yamamoto (1988). In Bapat (1989) a permutation-based generalization of the Sperner

lemma has been presented.

In this paper we generalize the concept of completely labeled simplex to the con-

cept of balanced simplex. A rather boundary condition on the labelling rule is formulated

to guarantee the existence of a balanced simplex in any simplicial subdivision of a given

polytope in IRn. This leads to the ¯rst main theorem which implies most results mentioned
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above, including the lemmas of Sperner, Scarf, Shapley, and Garcia, as special cases and

therefore uni¯es the Sperner and Scarf lemma. Secondly, allowing for more general label-

ings, we establish our second main theorem which uni¯es several results of Freund (1989)

and Yamamoto (1988).

In Section 2 we discuss the basic notations and concepts related to polytopes and

simplicial subdivisions. In Section 3 we present the ¯rst main theorem and illustrate the

strength of the theorem by showing that it contains many well-known results as special

cases. In Section 4 we present the second main theorem. Again many known results are a

special cases of this theorem.

2 Preliminaries

For a convex set B ½ IRn, let bnd(B), int(B) and dim(B) denote the relative boundary,

the relative interior and the dimension of B, respectively. For k a nonnegative integer,

the set of integers f1; : : : ; kg is denoted by Ik, with the convention that I0 = ;. Given an
integer k, 1 � k � n, let be given a k-dimensional polytope P in IRn. Then there exists an

integer m ¸ k+1, a set I of m integers, real vectors ai 2 IRn, i 2 I and dh 2 IRn, h 2 In¡k,
and real numbers ®i, i 2 I and ±h 2 IRn, h 2 In¡k, such that P can be written as

P = fx 2 IRn j ai>x � ®i; i 2 I and dh>x = ±h; h 2 In¡k g;

and chosen in such a way that none of the inequalities is an implicit equality and that none

of the constraints is redundant. Given a subset B of P , we de¯ne the carrier of B as

Car(B) = fi 2 I j ai>x = ®i for all x 2 Bg:

For given polytope P , we de¯ne the set V by

V = fx 2 IRn j x =
X

i2In¡k
ºhd

h; ºh 2 IRg;

as the set of vectors spanned by ai corresponding to the equality constraints, with V = f0g
when k = n, and we de¯ne the set

V ¤ = fx 2 IRn j x>y = 0 for all y 2 V g

as the k-dimensional subspace orthogonal to V . For T ½ I, we further de¯ne

F (T ) = fx 2 P j ai>x = ®i for i 2 Tg;

with F (;) = P . When F (T ) is nonempty, we call F (T ) a face of P . A face is called proper
when the dimension of the face is at most equal to k¡ 1 and a face F (T ) is called a vertex
of P if the dimension of the face is zero. Finally, for T ½ I, we de¯ne

A(T ) = fx 2 IRn j x =
X

i2T
¸ia

i; ¸i ¸ 0g+ V:
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Observe that in case k = n the set A(T ) is a cone spanned by the vectors ai, i 2 T , with
top the zero vector 0.

Next, for given integer q, 0 � q � n, a q-dimensional simplex or q-simplex in IRn,

denoted by ¾(x1; : : : ; xq+1), in short by ¾, is de¯ned as the convex hull of q + 1 a±nely

independent vectors x1, : : :, xq+1 in IRn. For `, 0 � ` � q, an `-simplex being the convex

hull of ` + 1 vertices of ¾ is a face of ¾. A ¯nite collection G of k-simplices is a simplicial
subdivision of the k-dimensional polytope P if

(a) P is the union of all simplices in G;

(b) the intersection of any two simplices in G is either empty or a common face of both.

In the following G+ denotes the collection of all simplices in G and their faces and G0
denotes the the set of all vertices of the simplices in G. When G is a simplicial subdivision
of P , then for every face F (T ) of P the collection of all faces of G+ lying in F (T ) form a

simplicial subdivision of F (T ). The simplicial subdivision of F (T ) induced by G is denoted
by G(T ), i.e.

G(T ) = f¿ ½ F (T ) j ¿ = ¾ \ F (T ); ¾ 2 G; dim(¿) = dim(F (T ))g:

To introduce the concept of labeling function, let be given some arbitrary ¯nite set

J of at least n+ 1 elements, called the labels, and a collection of vectors cj 2 IRn, j 2 J .
For a nonempty set S ½ J , we de¯ne

C(S) = Conv(fcj j j 2 Tg);

where for X ½ IRn, Conv(X) denotes the convex hull of X. A labeling function assigns an

index from the set J to any vertex in the set G0. Let L:G0 ! J be such a labeling rule

and for a q-face ¾(x1; : : : ; xq+1) in G+, let L(¾) = fL(x1); : : : ; L(xq+1)g denote the set of
labels of the vertices of ¾. We are now ready to de¯ne the concept of balanced simplices.

It should be noticed that the balancedness of a simplex depends on the set J of labels and

the collection cj, j 2 J , of vectors.

De¯nition 2.1

Let G be a simplicial subdivision of a polytope P . For given label set J and vectors cj,

j 2 J, a q-simplex ¾(x1; : : : ; xq+1) in G+ is balanced if 0 2 C(L(¾)).

With slightly abuse of notation, we also call the collection fcj j j 2 L(¾)g and the labelset
L(¾) balanced, when ¾ is balanced. More general, a set S µ J of labels is called balanced

if 0 2 C(S), i.e. if the system of equations
P
j2S ¹jc

j = 0 has a nonnegative solution

satisfying
P
j2S ¹j = 1. In the next section we formulate a su±cient condition to guarantee

the existence of a balanced simplex in G+.
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3 The existence of a balanced simplex

In this section we state the ¯rst main combinatorial theorem to be discussed in this paper.

We further illustrate the strength and generality of the theorem by showing that a wide

variety of combinatorial results appear to be a special case of the theorem. The theorem

states a su±cient condition for existence of at least one balanced simplex in G+ for a given
simplicial subdivision G of P .

Theorem 3.1 (Main Theorem I)

Let be given a k-dimensional polytope P in IRn, k � n, a simplicial subdivision G of P ,

a ¯nite nonempty set J of labels and a collection of vectors fcjjj 2 Jg in IRn, satisfying
C(J) \ V = 0. Further, let L:G0 ! J be a labeling rule such that for every simplex ¾ of

the induced simplicial subdivision G(T ) of a proper face F (T ) of P , the set A(T )\C(L(¾))
either is empty or contains the point 0. Then there exists a balanced simplex in G+.

Proof.

Let x be any point in P and let ¾(x1; : : : ; xq+1) be the unique simplex in G+ containing
x in its relative interior. Then there exist unique positive numbers °1, : : :, °q+1 satisfyingPq+1
i=1 °i = 1 such that x =

Pq+1
i=1 °ix

i. Then, let f :P ! IRn be a function de¯ned at x 2 P
by

f(x) =
q+1X

i=1

°ic
ij ;

where ij = L(x
j), j = 1, : : :, q+1. Clearly, f is a continuous function from P to C(J). Since

P is compact and convex and f is continuous there exists an x¤ 2 P being a stationary

point of f on P , i.e.

x>f(x¤) � x¤>f(x¤) for all x 2 P:

Consequently, x¤ is a solution of the linear programming problem

maximize x>f(x¤) subject to ai>x � ®i; i 2 I and dh>x = ±h; h 2 In¡k:

Let T ¤ ½ I be de¯ned by T ¤ = fi 2 I j ai>x¤ = ®ig. So, by de¯nition x¤ 2 F (T ¤).

Moreover, according to the duality theory in linear programming there exist ¸¤i ¸ 0, i 2 T ¤
and º¤h 2 IR for h 2 In¡k, such that

f(x¤) =
X

i2T ¤
¸¤ia

i +
n¡kX

h=1

º¤hd
h

and thus f(x¤) 2 A(T ¤).

4



Next, let ¾¤ be any simplex of the induced simplicial subdivision G(T ¤) of the
face F (T ¤) of P containing x¤. Since x¤ 2 ¾¤, we have f(x¤) 2 C(L(¾¤)) and so

f(x¤) 2 A(T ¤) \ C(L(¾¤)). First, suppose that T ¤ 6= ;. Then F (T ¤) is a proper face
of P and therefore according to the boundary condition we have 0 2 A(T ¤) \ C(L(¾¤)).
Consequently, ¾¤ is balanced. Second, suppose that T ¤ = ; and thus F (T ¤) = P . Then
A(T ¤) = V and therefore f(x¤) 2 V \ C(L(¾¤)). Since V \ C(L(¾¤)) ½ V \ C(J) = 0

by the conditions of the theorem, it follows that f(x¤) = 0 and thus ¾¤ is balanced. Q.E.D.

A labeling rule L on G0 satisfying the boundary condition of the theorem is called

a proper labeling rule. Furthermore, notice that the condition C(J) \ V = 0 is satis¯ed if
0 2 C(J) and C(J) ½ V ¤. Although a balanced simplex is not required to be of dimension

k, it holds that every simplex of G containing a balanced simplex as a face is also balanced
and hence the theorem says that when C(J) \ V = 0 and the boundary condition holds

the simplicial subdivision contains a k-dimensional balanced simplex. Here, it should be

noticed that in all existing results in the literature, the boundary condition is imposed

on every vertex of the simplicial subdivision lying on the boundary of the polytope. The

novelty of Theorem 3.1 lies in the fact that the boundary condition is imposed on every

simplex of the simplicial subdivision lying on the boundary of the polytope. The next

result considers the case that the boundary condition is not required to hold and follows

immediately from the proof of Theorem 3.1.

Corollary 3.2

For a ¯nite collection of vectors cj 2 IRn, j 2 Jg, let G be a simplicial subdivision of the

polytope P and let L:G0 ! J be a labeling rule. Then there exist a set T ½ I and a simplex

¾ 2 G(T ) with A(T ) \ C(L(¾)) 6= ;.

To illustrate the strength of Theorem 3.1 we ¯rst consider several applications on

the (n¡ 1)-dimensional unit simplex Sn. For h 2 In, Snh denotes the facet Snh = fx 2 Sn j
xh = 0g, and for a proper subset T ½ In, S

n(T ) = \h2TSnh . Furthermore, for K ½ In,

let the n-vector mK be de¯ned by
P
i2K

1
jKje

i, where jKj denotes the number of elements
in K and ei is the i-th unit vector in Rn. Observe that mK = ei if K = fig. For ease of
notation we write mIn = m. Now, take k = n¡ 1, d1 = m, ±1 = 1=n, m = k + 1 = n and

I = In, a
i = m¡ ei and ®i = 1=n for i 2 I. Observe that ai 2 V ¤ for all i 2 I. For K ½ I,

de¯ne A0(K) = fx 2 IRn j x = P
i2K ¸ia

i; ¸i ¸ 0; i 2 Kg. Now, the unit simplex Sn can
be rewritten in the framework of this paper as

Sn = fx 2 IRn j ai>x � ®i; i 2 I and d1>x = ±1g:

We ¯rst apply Theorem 3.1 to prove the Sperner lemma (1928).
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Theorem 3.3 (Sperner lemma)

Let G be a simplicial subdivision of Sn and let L:G0 ! In be a labeling rule such that

L(x) 6= i when xi = 0. Then there exists a completely labeled simplex of G, i.e. a simplex
¾ 2 G such that L(¾) = In.

Proof.

Take J = I = In and for j 2 J , set cj = aj+1. Clearly, 0 2 C(J) and C(J) ½ V ¤.

Therefore we have C(J) \ V = f0g. Notice that 0 2 C(K) if and only if K = J and

hence a balanced simplex must be full-dimensional and its vertices bear all labels 1 up

to n. To show the existence of a balanced simplex it remains to show that the boundary

condition of Theorem 3.1 is satis¯ed by every simplex in a proper face Sn(T ) of Sn. So, let

¾ 2 G(T ) for some nonempty T ½ I. Then L(¾) \ T = ; since for every vertex x of ¾ we
have xi = 0 for every i 2 T and hence L(x) 62 T . Since the vectors ai, i 2 S, are linearly
independent for any proper subset S of J we must have that A0(L(¾)) \ A(T ) = f0g and
hence C(L(¾)) \ A(T ) = ;. This completes the proof. Q.E.D.

Also the Scarf lemma (1967) can be proved by applying Theorem 3.1.

Theorem 3.4 (Scarf lemma)

Let G be a simplicial subdivision of Sn and let L : G0 7! In be a labeling rule satisfying

L(x) = minfi j xi = 0 and xi+1 > 0g for any vertex x 2 bnd(Sn) with the convention that
i+ 1 = 1 if i = n. Then there exists a completely labeled simplex of G.

Proof.

Let J = In and c
j = ¡aj for all j 2 J . Again, C(J) ½ V ¤ and 0 2 C(K) if and

only if K = J . Hence a balanced simplex is full-dimensional and must carry all labels. It

remains to prove that the boundary conditions of Theorem 3.1 are ful¯lled for every simplex

¾ 2 G(T ) in any proper face Sn(T ). Suppose that A(T )\C(L(¾)) 6= ; for some nonempty
subset T of J and some ¾ 2 G(T ). Then there exist nonnegative ¸i for i 2 T , a real number
º1, and nonnegative ¹j for j 2 S where S = L(¾) such that P

i2T ¸ia
i + º1m =

P
j2S ¹jc

j

and
P
j2S ¹j = 1. Since c

j = ¡aj for all j 2 J , this yields
X

i2T
¸ia

i +
X

j2S
¹ja

j = ¡º1m:

Since m>ai = 0 for all i 2 S [ T , it implies that º1 = 0. It means that the vectors aj ,

j 2 S [ T , are linearly dependent. Hence, S [ T = In = I = J . Let x1, ¢ ¢ ¢, xq+1 be
the vertices of ¾. Suppose that for some j 2 In it holds that x

h
j > 0 for all h = 1, : : :,

q + 1. Then L(xh) 6= j for all h = 1, : : :, q + 1 and so j 62 S. Moreover, j 62 T . This

contradicts the fact that T [ S = In. Consequently, for every j 2 In there is at least one
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h 2 f1; : : : ; h+ 1g satisfying xhj = 0. Since T 6= In there is an i 2 In such that i 62 T and
i+1 2 T . Because ¾ 2 G(T ) there is an h with xhi > 0. Moreover, i 62 S because of the fact
that no vertex xh can carry label i if xhi+1 = 0. Hence, i 62 T [ S, yielding a contradiction.
Therefore, the conditions of Theorem 3.1 are satis¯ed and there exists a balanced simplex

¾ in G which must then be completely labeled. Q.E.D.

Notice that the properness condition in the Scarf lemma can be relaxed slightly. It is

su±cient to require that A(T ) \ C(L(¾)) = ; for every simplex ¾ of G(T ). The Theorems
3.3 and 3.4 show that both the Sperner lemma and the Scarf lemma are special cases of

Main Theorem I. It is well-known that with respect to the boundary conditions the Scarf

lemma can be seen as dual to the Sperner lemma. However, we are not aware of any other

theorem containing both lemmas as special cases. This shows the generality of our result.

The next theorem to be proved by applying Theorem 3.1 was established in Shapley

(1973). In this theorem the vertices of a simplicial subdivision of Sn are labeled with

nonempty subsets of the set In. To prove the Shapley lemma, we need the concept of

balancedness of sets. Let N be the collection of all nonempty subsets of the set In. A

collection fB1; : : : ; Bkg of k elements of N is called balanced if the system of equations

kX

j=1

¸jm
Bj = m

has a nonnegative solution.

Theorem 3.5 (Shapley lemma)

Let G be a simplicial subdivision of Sn and let L:G0 ! N be a labeling rule such that L(x) ½
fi j xi > 0g for any vertex x 2 Sn. Then there exists at least one face ¾(x1; : : : ; xq+1) of a
simplex of G such that the collection fL(x1); : : : ; L(xq+1) g is balanced.

Proof.

Let J = N and take cK = m ¡mK for all K 2 N . Clearly, C(J) ½ V ¤ and 0 2 C(J).

We next prove that the boundary condition of Theorem 3.1 is satis¯ed by every simplex

¾(x1; ¢ ¢ ¢ ; xq+1) of G(T ) for any nonempty subset T of In. Since ¾ 2 G(T ), we must have
xij = 0 for every j 2 T , and hence according to the boundary condition L(xi)\T = ; for all
i = 1,: : :, q+1. Let Bi = L(x

i) for i = 1, : : :, q+1 and S = [q+1i=1Bi. Then also S \ T = ;.
Since the vectors ai, i 2 K, are linearly independent for each proper subset K of In we

have that A0(S) \ A(T ) = f0g. For every i 2 f1; : : : ; q + 1g we have L(xi) ½ S and cBi is

a convex combination of the vectors aj, j 2 Bi. Hence, C(L(¾)) ½ A0(S). Moreover, since

for every i 2 f 1; ¢ ¢ ¢ ; q + 1 g we have cBij > 0 for any j 2 T , it implies that 0 62 C(L(¾)).
Consequently, C(L(¾))

T
A(T ) = ; and hence the boundary condition is satis¯ed. This
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guarantees the existence of a balanced simplex according to Theorem 3.1. Q.E.D.

The next result due to Garcia (1976) is a special case of Corollary 3.2. In this

theorem no restriction is imposed on the labeling rule.

Theorem 3.6

Let G be a simplicial subdivision of Sn and let L:G0 ! In be a labeling rule. Then there

exists a simplex ¾ 2 G+ such that L(¾) [ Car(¾) = In.

Proof.

Let J = In and let c
j = ¡aj for each j 2 J . According to Corollary 3.2, there exists a

simplex ¾ 2 G(T ) for some proper subset T of In such that A(T ) \ C(L(¾)) 6= ;. Hence,
the system of equations

X

i2T
¹ia

i + ¯m+
X

j2L(¾)
ºja

j = 0

has a solution ¹¤i ¸ 0, i 2 T , ¯¤, and º¤j ¸ 0, j 2 L(¾) satisfying
P
j2L(¾) º

¤
j = 1.

Clearly the system has a solution only if T [ L(¾) = In. Moreover, T = Car(¾). Hence
Car(¾) [ L(¾) = In. Q.E.D.

We remark that the Sperner lemma, the Scarf lemma and the Garcia lemma have

been generalized to the Cartesian product of unit simplices, see Freund (1986) and van

der Laan and Talman (1982, 1987). It should be noticed that these generalizations can

also be derived easily from Theorem 3.1. We want to conclude this section by stating

some results on the n-dimensional unit cube Cn = fx 2 IRn j 0 � xi � 1; i 2 Ing. Let
¡In = f¡i j i 2 Ing. Notice that the cube can be seen as the Cartesian product of n one-
dimensional unit simplices. The following lemmas on the cube are due to Freund (1984,

1986) and van der Laan and Talman (1981). Both lemmas say that under some condition

on the labelling rule there exist in any simplicial subdivision G of Cn a complementary

one-dimensional simplex, i.e. G+ contains an 1-simplex ¾ such that L(¾) = fk; ¡kg for
some k 2 In. The proofs are omitted, but follow again immediately from applying Theorem
3.1.

Lemma 3.7

Let G be a simplicial subdivision of Cn and let L:G0 ! In[¡In be a labeling rule satisfying
for every x 2 G0 that L(x) 6= i when xi = 1 and L(x) 6= ¡i when xi = 0. Then G+ contains
at least one complementary 1-simplex.

Lemma 3.8

Let G be a simplicial subdivision of Cn and let L:G0 ! In [ ¡In be a labeling rule such

8



that for every x 2 G0 \ bnd(Cn) holds that L(x) = i implies xi = 1 and L(x) = ¡i implies
xi = 0. Then G+ contains at least one complementary 1-simplex.

The results discussed above show that Theorem 3.1. contains a wide variety of well-

known combinatorial results as special cases and therefore illustrate the weakness of the

conditions stated in Main Theorem I. In fact, a weak boundary condition together with

0 2 C(J) and C(J) ½ V ¤ is enough. Remark that V = f0g when k = n. So, when P is a
full-dimensional polytope, V ¤ = IRn and the boundary condition together with 0 2 C(J)
is su±cient.

4 A combinatorial theorem on full-dimensional poly-

topes

The second main result of this paper is restricted to a full-dimensional polytope P in IRn.

So, the polytope is given by a system of m ¸ n + 1 inequalities, i.e. k = n and the set

I of m integers can be chosen to be I = Im. To state the theorem, it should be noticed

that it is always possible to take some arbitrarily chosen point x0 2 int(P ) and to scale

the vectors ai, i 2 I in such a way that P can be written as

P = fx 2 IRn j ai>x � 1 + ai>x0; i 2 Ig:

In the following a polytope P in this representation is said to be a polytope in standard

form. Further we de¯ne X = Conv(faj j j 2 Ig). Observe that if F (T ) is a face of P for
some T ½ I, then the set Conv(faj j j 2 Tg) is a face of X, see Grunbaum (1967), pp.

47-49. Given a nonempty label set J and a collection of vectors cj 2 IRn, j 2 J we de¯ne
for y 2 X the set E(y) ½ J £ I by

E(y) = f(S; T ) ½ J £ I j 9¹j ¸ 0; j 2 S and ¹i; i 2 T; such that
P
j2S ¹jc

j +
P
i2T ºia

i = y and
P
j2S ¹j +

P
i2T ºi = 1g:

We now present the second main result, which says that for any nonempty set J of labels

and correspondig vectors cj; j 2 J , any simplicial subdivision G of P , any labeling rule L
and any element y0 2 X, there is a simplex ¾ in G+ such that y0 lies in the convex hull of
the vectors cj ; j 2 L(¾) and ai; i 2 Car(¾).

Theorem 4.1 (Main Theorem II)

Let P be a polytope in standard form and for a nonempty ¯nite set J, let fcj j j 2 Jg be a
collection of vectors in IRn. Let G be a simplicial subdivision of the n-dimensional polytope
P and let L:G0 ! J be a labeling rule. Then for each y0 2 int(X), there exists a simplex
¾ 2 G+ such that (L(¾); Car(¾)) 2 E(y0).

9



Proof.

Let x be any point in P and let ¾(x1; : : : ; xq+1) be the unique simplex in G+ containing
x in its relative interior. Then there exist unique positive numbers °1, : : :, °q+1 satisfyingPq+1
i=1 °i = 1 such that x =

Pq+1
i=1 °ix

i. For given y0 2 int(X), de¯ne the correspondence

»:P ! IRn by

»(x) = Conv(fy0 ¡ cj j j = L(xi) if °i = max
h
°h g):

Now, consider the polytope

Q = fx 2 IRn j ai>x � 2 + ai>x0; i 2 Ig;

containing P in its interior. For a point x 2 Q n P , let ¸x be the unique number in (0; 1)
such that x0+ ¸x(x¡ x0) 2 bnd(P ) and de¯ne p(x) = x0+ ¸x(x¡ x0). Now we de¯ne the
correspondence Ã:Q ! IRn by

Ã(x) =

8
>><
>>:

»(x); if x 2 int(P )
Conv(»(x) [ fy0 ¡ ai j i 2 Car(x)g); if x 2 bnd(P )
Conv(fy0 ¡ ai j i 2 Car(p(x))g); if x 2 Q n P:

The correspondence Ã is upper semi-continuous, nonempty-valued, convex-valued and

compact-valued. For a compact convex set Y containing [x2QÃ(x), let Á:Y ! Q be a

correspondence, de¯ned by

Á(y) = fx 2 Q j z>y � x>y for all z 2 Qg:

The correspondence Á is upper semi-continuous, nonempty-valued, convex-valued and

compact-valued. Hence Ã £ Á:Y £ Q ! Y £ Q, de¯ned by (Á £ Ã)(y; x) = Á(y) £ Ã(x),
is upper semi-continuous, nonempty-valued, convex-valued, and compact-valued. So, ac-

cording to Kakutani's ¯xed point theorem there exists a pair of vectors (y¤; x¤) 2 Y £ Q
such that y¤ 2 Ã(x¤) and x¤ 2 Á(y¤). The latter implies that

z>y¤ � x¤>y¤ for all z 2 Q:

Consequently, x¤ is a solution of the linear programming problem

maximize z>y¤ subject to ai>z � 2 + ai>x0; i 2 I:

We now show that x¤ 2 P . Therefore, let T ¤ = fi 2 I j ai>x¤ = 2 + ai>x0g.
According to the duality theory in linear programming there exist real numbers ¸¤i ¸ 0 for

i 2 T ¤, such that y¤ = P
i2T ¤ ¸

¤
i a
i.
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First, suppose T ¤ 6= ;. Then x¤ 2 bnd(Q) and thus Ã(x¤) = Conv(fy0 ¡ ai j i 2
Car(p(x¤)). Since x¤ 2 bnd(Q) we have that ¸¤x = 1

2
and it follows that Car(p(x¤)) = T ¤.

So, there exist nonnegative numbers ¹¤i , i 2 T ¤, summing to one such that
X

i2T ¤
¹¤i (y

0 ¡ ai) = y¤ =
X

i2T ¤
¸¤ia

i:

Hence y0 =
P
i2T ¤(¹

¤
i + ¸

¤
i )a

i with
P
i2T ¤(¹

¤
i + ¸

¤
i ) ¸ 1, contradicting y0 2 int(X). So, we

must have that T ¤ = ; and thus y¤ = P
i2; ¸

¤
i a
i = 0.

Second, suppose x¤ lies in the interior of Q but not in P . Then, it follows from

y¤ 2 Ã(x¤) that y¤ =
P
i2Car(p(x¤)) ¹

¤
i (y

0 ¡ ai) = 0 for some nonnegative numbers ¹¤i
with

P
i2Car(p(x¤)) ¹

¤
i = 1. So, y

0 =
P
i2Car(p(x¤)) ¹

¤
i a
i, contradicting that y0 2 int(X) and

F (Car(p(x¤))) is a face of P . So, x¤ 2 P .
To complete the proof, we consider the next two cases. First, suppose x¤ 2 int(P )

and thus y¤ 2 »(x¤). Then there is a unique simplex ¾ with Car(¾) = ; containing x¤ in
its interior. Let w1, : : :, wt+1 be the vertices of ¾. Then by de¯nition of »(x¤) there exist

nonnegative numbers ¹¤j , j 2 L(¾), with sum equal to one such that
P
j2L(¾) ¹

¤
j(y

0 ¡ cj) =
y¤ = 0. So, y0 2 Conv(fcj j j 2 L(¾)g) and thus (L(¾); Car(¾)) 2 E(y0). Second, suppose
x¤ 2 bnd(P ). Then y¤ 2 Conv(»(x¤) [ fy0 ¡ ai j i 2 Car(x¤)g). Then there is a unique
simplex ¾ with Car(¾) = Car(x¤) containing x¤ in its interior. Let w1, : : :, wt+1 be the

vertices of ¾. Then we have

X

j2L(¾)
¹¤j(y

0 ¡ cj) +
X

i2Car(¾)
º¤i (y

0 ¡ ai) = y¤ = 0

for some nonnegative numbers ¹¤j , j 2 L(¾), º¤i , i 2 Car(¾), with
X

j2L(¾)
¹¤j +

X

i2Car(¾)
º¤i = 1:

Hence, (L(¾); Car(¾)) 2 E(y0). Q.E.D.

We show the generality of the theorem by discussing three results of Freund (1989)

on an arbitrarily given full-dimensional polytope de¯ned by

P = fx 2 IRn j ai>x � 1; i 2 Ig

with jIj ¸ n + 1. Since by de¯nition P is bounded, the point 0 lies in the convex hull of

the vectors ai, i 2 I. Also, V = f0g. Recall that the n-dimensional set X denotes the

convex hull of the vectors ai, i 2 I, with Conv(fai j i 2 Tg) a face of X when F (T ) is a

face of P . For y 2 X, we de¯ne D(y) = fT ½ I j y 2 Conv(faj j j 2 Tg)g, i.e. D(y) is the
collection of all sets T ½ I satisfying that y 2 Conv(faj j j 2 Tg). Let G be a simplicial
subdivision of P . A simplicial subdivision G of P is called bridgeless if for each ¾ 2 G, the
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intersection of all faces of P that meet ¾ is nonempty. In the following results the set J of

labels is taken to be equal to the set I. For given simplicial subdivision G, a labeling rule
L:G0 ! I is called dual proper if L(x) 2 Car(x) for all x 2 bnd(P ).

The ¯rst theorem to be stated is a generalization of Theorem 3.6 from the simplex to

a full-dimensional polytope. The proof is omitted, because it follows easily from applying

Theorem 4.1 by taking J = I and cj = aj for all j 2 J . It should be noticed that Theorem
17 of Yamamoto (1988) is a special case of the theorem.

Theorem 4.2

Let G be a simplicial subdivision of P and let L:G0 ! I be a labeling rule. Then for each

y 2 int(X), there exists a simplex ¾ in G+ such that Car(¾) [ L(¾) 2 D(y).

The next result generalizes Theorem 3.4 to the full-dimensional polytope and follows

easily again from Theorem 4.1 by taking J = I and cj = ¡aj for all j 2 J . It should be
noticed that the boundary condition on the labelling rule in Theorem 3.4 guarantees that

each label in the labelset In is carried by at least one of the vertices in G0, implying that
each label occurs at least once. Otherwise, not all labels need to occur and then of course

the theorem does not need to hold. In the next theorem the bridgeless condition together

with the properness of the labelling rule guarantees the occurrence of enough di®erent

labels to obtain the result.

Theorem 4.3

Let G be a bridgeless simplicial subdivision of P and let L:G0 ! I be a dual proper labeling

rule. Then for each y 2 int(X) there exists a simplex ¾ in G+ such that L(¾) 2 D(y).

The last theorem extends Theorem 3.3 to the full-dimensional polytope and follows again

easily from Theorem 4.1 by taking J = I and cj = ¡aj for all j 2 J . Observe from the

de¯nition of E(y) that in this case E(y) is the collection of all subsets S£T of I £ I, such
that y is in the convex hull of the vectors aj , j 2 S [ T .

Theorem 4.4

Let G be a simplicial subdivision of P and let L:G0 ! I be a labeling rule. Then for each

y 2 int(X), there exists a simplex ¾ in G+ such that (L(¾); Car(¾)) 2 E(y).
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