Lecture 2
Residue formulae
for Volumes and number of integral points
in convex rational polytopes.
Introduction

As second topic, I shall present here some recent results on the number of
points with integral coordinates in convex rational polytopes. My own inter-
est in this topic comes from my efforts to understand the relations between
symplectic manifolds and group representations, the existence of such rela-
tions being the Credo of quantum mechanics. Quantum mechanics enables
us to associate discrete quantities to some geometric objects. For example,
the volume of a compact symplectic manifold (M,w), with an integral closed
non-degenerate 2-form w, has a discrete analogue which is the dimension of
the vector space given by the quantum model Q(M,w) for M. It is important
to understand the relation between both quantities. The dimension g(k) of
the vector space Q(M, kw) is a polynomial in k, and the volume of the man-
ifold M is the limit of k= 9™ M/2¢(k) when k tends to co. The full expression
for the dimension of Q(M, kw) is the content of the Riemann-Roch theorem,
which expresses this integer ¢(k) as an integral over M. A similar comparison
problem is the following: if P C R" is a convex polytope with integral (or
rational) vertices, can we compare the number |P N Z"| of points in P with
integral coordinates and the volume of P 7 It is clear that the volume of P
is obtained as the limit when k tends to co of k™"|kP N Z"|. Can we give
more precise relations 7

There is a dictionary between polytopes and some classes of compact
symplectic manifolds (toric manifolds). This dictionary inspired the formu-
lation of several results, starting with the fascinating formula of Khovanskii-
Pukhlikov (see Theorem 16). The point of view of these lectures will be al-
gebraic and based on generating functions combined with an algebraic recipe
due to Jeffrey-Kirwan [21] for the inversion of Laplace transforms. We shall
only give some references on the correspondence between polytopes and sym-
plectic geometry in the last section.

I hope to show, in this lecture, that calculating the volume of a convex
rational polytope or calculating number of points with integral coordinates
inside this polytope are similar problems (both difficult). Convex polytopes
arise in many fields of mathematics : symplectic geometry, representation
theory, algebraic geometry. Computing volumes is important. It is also im-
portant to study integral points in rational polytopes: they are the integral
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solutions of systems of linear inequations with integral coefficients. For ex-
ample, solving the equation 5z + 10y +20z = 105 with z, y, z positive integral
numbers is an equation that we see everyday, when buying an item of value
105 cents, with coins of 5 cents, 10 cents and 20 cents (the number of solutions
is 36). Similarly regulating flows in networks is reduced to linear inequalities.
Notice that already the problem of finding if there exists 1 integral point in
a rational polytope is non trivial (a polytope is called rational if its vertices
have rational coordinates). H. Lenstra [23] showed in 1983 that there is,
for a fixed dimension n, a polynomial time algorithm checking if a rational
polytope P in R™ contains an integral point : |[PNZ"| # 0, and A. Barvinok
[4] showed in 1994 that there is, for a fixed dimension n, a polynomial time
algorithm giving the number |P N Z"| of integral points in P.

I shall explain here explicit and very similar formulae for both the volume
and the number of integral points in rational convex polytopes. The formula
for the volume is deduced in a straightforward way from the inversion for-
mula of Jeffrey-Kirwan [21] for the Laplace transform. The formula for the
number of points given in [32] follows from a multidimensional residue the-
orem, deduced from the one dimensional residue theorem with the help of a
result due to A. Szenes [31] on separation of variables . From these formu-
lae, the relations obtained by Khovanskii-Pukhlikov [22] and more generally
by Brion-Vergne [7], Cappell-Shaneson [10], Guillemin [20] between volumes
and the number of integral points will become clear. The residue formulae
for volume and number of points have a theoretical interest: for example, the
periodic-polynomial dependence of the formula in function of the inequalities
defining the polytope is clear from the formulae given. They can also be used
for the computation of these quantities, at least for network polytopes. This
is work in progress with Velleda Baldoni and Jesus de Loera.



Figure 1: Tetrahedron

1 Definition of the Ehrhart polynomial

By definition, a convex polytope in R" is the convex hull of a finite number
of points in R”, or equivalently a compact set of R defined by linear inequa-
tions. Convex polytopes can also be represented as sets of positive solutions
to linear equations: i.e. the first positive quadrant intersected with a linear
space.

Example. The Tetrahedron. The convex hull in R?® of the points
0=(0,0,0), A= (a,0,0), B=(0,b,0), C =(0,0,c) is also described by the
inequations

x>0,y>0,2>20 and f+§’-+-z—§1
a b ¢

or is also clearly isomorphic to the convex polytope in R* described by

£>0,y>0,2>0h>0  and f+%+f+h=1.
a C

A convex polytope is called integral if its vertices have integral coordi-
nates.

A convex polytope is called rational if its vertices have rational coordi-
nates.

Our topic of discussion here is the calculation of the volume of convex
polytopes, together with the calculation of the number of points with integral
coordinates in an integral convex polytope P.
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Volume(kA) = k?/2

Let us start with the example of the standard simplex A in R", with
vertices 0, ey, es, ..., €e,. The polytope kA is defined by the inequations

kA={z1>0,...,2, 20,51+ 22+ -+ + 2o < k}.

It is not difficult to show that the volume of kA is

vol(kA) = %

The number of integral points in kA is given (as we shall see shortly) by

(k+1)(k+2)---(k+n)

Pn(k) = n!
We refer to Section 12 for the relation between points in kA and a basis
of vector spaces V' (k) attached to P.

Thus we see that the discrete analogue to the monomial % giving the

volume of kA for £ = k is the polynomial p,(z) = (Hl)(ztﬁ)'"(ﬁn) which
gives the number of integral points in kA for z = k. This polynomial p,(z)
has same leading term %, but it has the advantage that it takes integral
values on all integers, and any polynomial which takes integral values on all
integers is a linear combination with integral coefficients of such polynomials
Pa(T).

More generally, to any integral convex polytope P is associated a poly-
nomial function: the Ehrhart polynomial ([15],[16],[17]).
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Theorem 1 (The Ehrhart theorem). Let P C R™ be an integral convex
polytope with non empty interior. Then the function on N defined by

ip(k) = cardinal(kPNZ"), k=0,1,2,...

is gien by a polynomial expression in k called the Ehrhart polynomial. The
first two leading terms of this polynomial are VOI(P)fC"-{-% volz (6 P)k™14....
The constant term of the Ehrhart polynomial ip(k) is equal to 1.

Here volz(6 P) is the sum of the volumes of the faces of the boundary § P
of the polytope P. The volume of a face F' of the boundary § P is computed
using a normalized measure built from the Lebesgue measure on the affine
space Ar spanned by the face. The normalization is done in such a way that
the fundamental domain of the lattice Z"® N Ar has volume 1.

The Ehrhart function ip(k) is our second example of a function of k, the
polynomial feature of which does not follow evidently from its definition, the
first example (given in Lecture 1) being the Verlinde sums k — Ver(q, k). Af-
ter some further comments, we shall give here the proof of Ehrhart’s theorem,
following Ehrhart.

The following theorem directly generalizes Bernoulli Theorem on sums of
the m-th powers of the first £ + 1 numbers (see Lecture 1, Section 1).

Theorem 2 Let P C R" be an integral convex polytope with non empty
interior. Let f be a polynomial function on R™ homogeneous of degree m.

Then
k — E )
13

ekPNZ®

is a polynomial function of k. The leading term of this polynomial is k™™ [, f(z)dz.

We also note here the important reciprocity law for the Ehrhart polyno-
mial.

Theorem 3 (Reciprocity law). Let P C R" be an integral convex polytope
with non empty interior. Let P° be the interior of P. Define

ipo(k) = cardinal(kP° N Z")
to be the number of integral elements in the interior of kP. Then

ipo(k) = (=1)"ip(—k).
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Figure 2: Reciprocity law for the interval [0,k]

The obvious example of the reciprocity law is when n =1 and P = [0, 1]
is the unit interval. Then ip(k), the number of integral points in [0, k], is
(k+1) and the number ipo(k) is the number of integers strictly greater than
0 and strictly less than k. We have

ipo = (k— 1) = —ip(—k).

Ehrhart’s theorem stating that the number of integral points in the dilated
polytope kP is a polynomial in k, with leading term k" vol(P) is far from
being obvious.

Let us give an example involving dilatation in just one direction, where
we shall see that even the asymptotics between the volume and the number
of integral points is only true under dilations in all directions.

Example: The hanging pyramid.

Let m € Rt. The hanging pyramid P, is the convex hull in R3 of the
vertices so = (0,0,0),5, = (1,0,0), s, = (0,1,0), and s3 = (1,1,m).

Its volume depends on m:

vol(P,,) =m/6.

Assume that m is an integer, then P, is an integral convex polytope, but
there are no integral points in Py, other than its 4 vertices. Whatever the

6



Vol(P,,) = m/6 |P, 1 23| = 4

Figure 3: Hanging pyramid

value of m might be:
P, =4

i
where we have set i(P) := ip(1) taking k¥ = 1. Indeed, as the full pyramid
projects on the square 0 < z < 1, 0 < y < 1, any integral point in P,
is above one of the 4 points (0,0), (0,1), (1,0), (1,1), thus is one of the 4
vertices. The asymptotics in m of the volume and the number of integral
points are therefore very different in this example.

Before going to the proof of Ehrhart’s theorem, let us have a look at the
formulae relating number of points in an integral convex polytope and its
volume in dimension 1 and 2:

In dimension 1: Let us consider the polytope given by the interval
P =10,1]. Then
ip(k)=k+1



which relates to the length by
ip(k) = klength(P) + 1.

In dimension 2: Pick’s theorem tells us that the number of points in a
convex polytope with integral vertices dilated by k is given by:

k
ip(k) = k* vol(P) + §(number of integral points on the boundary of P) +1.

2 Number of integral points in Simplices.

To prove Ehrhart’s theorem on the polynomial behavior of the function ip(k),
it is sufficient to prove it for simplices, by decomposing an integral convex
polytope in unions and differences of integral simplices. Thus we consider
(n+1) points in Z" and the convex polytope given by the convex hull of these
points. Ehrhart gave a formula for the number of integral points contained
in this set.

Let us start with the standard simplex A in R, with vertices 0, e1, €3, .. ., €n.
The polytope kA is defined by the inequations z; > 0,...,2, 20,21 + 22+
.o+, < k. We need to find the number of integer solutions of the inequa-
tions ; > 0,...,&n > 0,21 + T2+ -+ - + T < k. In other words, we have to
find the number p(n, k) of solutions in non negative integers (zo, =1, - -, Tn)
of the equation g + 1 + T2+ -+ 2, = k.

We first prove:

Theorem 4 For any integer k > —n, the number p(n, k) of solutions in non
negative integers (To, 1, ..., Ts) of the equation

To+ T+ Tt -tz =k
18
(k+1)(k+2)---(k+n)

n!

p(n, k) =

Proof. The result is obvious for k = —1,—-2,...,—n, both sides of the
formula being equal to 0. Let us set & > 0 and consider the generating
function:

oC
Zp(t) = Zp(n, ke *, t>0.
k=0



We shall recover p(n, k) as the coefficient of e** in Z,(¢).

We have
Zk(t) — Z 8~t(:co+x1+-~+wn)

(20ye-yTn ) E(Z )1

n o
— I I § :e—tm,
1=0 z;=0

1
(1 _ e—t)n+1 )

7= we get (”1z—)n+—1 =312 (*I™)2* and hence

gy =2 ()

k=0

Differentiating > 7o, 2% =

with (¥+7) = (D02 (ebm)

n!

Corollary 5

k+1)(k+2)---(k
ia(k) = Cardinal(kA nzn) = KD+ ') (k+n)
n!
Notice that ia (k) is indeed a polynomial in k£ with constant term 1 and
leading terms ;%k" 5 g+11)), k"' + ... as announced in Ehrhart’s theorem
since vol(A) = & and the boundary of A is the union of (n + 1) standard

simplices, each of volume (n—_ll-)—,

Let us now generalize this to the case of a general simplex P in R*. We
give a formula due to Ehrhart for the number of points in kP.

Theorem 6 Let P be a simplex in R™ with integral vertices ag, o, . . ., iy
The number of integer points in kP is

anrdlnal (P, ))( ;*")

where for an integer r between O and n
O(P,r) ={u € [0, 1[**, Zui = T,Zuiai € Z"}
i=0 i=0
which is a finite set. Thus ip(k) is a polynomial in k.
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Proof. Let ag,a1,...,a, be the vertices of P which we assume to have
integer coordinates. An element of kP is an element of the convex hull of
the points kog, ks, . . ., kay,. It can be uniquely written as

W = ToQg + T101 + +*+ + TpQp

with zo + T, + -+ - + 2, = k. By taking the integral part k; of z;, the point
w can be written in an unique way as:

w = (upa + U1y + -+ + Unn) + (koo + kray + -+ + knoin)

with k; non negative integers, 0 < u; < 1, and > o ki + S ou =k As
the elements «; are in Z", the point w is in Z" if and only if

UgQlp + U1 + -+ + UpOy, € Z".

Notice that the number 37  u; = k— ;o k; is a non negative integer. This
integer 7 is less or equal to n, as the value (n + 1) for r would compel all ;
to be equal to 1, while we have u; < 1.
Reciprocally, let 0 < 7 < n be an integer. Now, if the non negative
integers k; satisfy
ko+ki+---+k,=k—r

and v € O(P,r), the point
(’LL()&() -+ U100 + -4 ’U,nOln) + (k’oOLO + k1a1 + 4 knan)

lies in kP. We enumerate this way all the points in kP. Since r < n, and
k > 0, the integer k — 7 is greater or equal to —n and it follows from what
we have proven before that the number of solutions of the equation

kot kit otk =k—r

is (*7*"), for any k > 0.
We therefore obtain Ehrhart’s formula:

n

ip(K) = 3 cardinal(Q(P, ) (’“ o ”) |

r=0

This expression is polynomial in k.
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The sets [J(P,r) are not very easy to determine. Furthermore, the de-
composition of P in integral simplices is also not immediate. So the formula
above has mainly a theoretical interest. We shall give later on more specific
result on the Ehrhart polynomial.

Let P be a rational convex polytope: the vertices of P have rational
coordinates, instead of integral coordinates. Ehrhart analyzed more generally
the behavior in k of the function k — ip(k) = cardinal(kP NZ"™) and proved
that this function is given by a“periodic polynomial”, i.e. is a polynomial
function in k with coefficients periodic functions of k. In other words, there
exists an integer d, such that the function & — ip(dk) (k > 0) is polynomial,
as well as all functions ip(dk + j) where j is an integer such that 0 < j <
d. For example, if P := [0, 3], then, with d = 2, ip(2k) = k + 1, while
ip(2k +1) = (k+ 1). These two formulae can be assembled together to give
the periodic polynomial function ip(k) = £ + 1 — (1 — (=1)*).

For a given rational polytope P, it is not easy to determine the smallest

value p of the integer d with the property that functions k — ip(dk + j) are

polynomials in k. OF course, when P _has integral vertices, we just proved
that p = 1. Sirﬁgrly, if ¢ is an integer such that, for all vertices s of P,
(}? € 7", then p divides g. It may happen that p is strictly smaller than q.
Example. Stanley’s pyramid. Consider the following example given
by Stanley [27]: let P be the convex polytope in R3 with vertices O = (0, 0, 0),
A = (1,0,0),B = (0,1,0), D = (1,1,0) and C = (3,0,3). Then P is not

2
integral, however

k+1)(k+2)(k+3)
3l

ip(k) = (

is a polynomial function.

3 Some examples of Ehrhart polynomial’s

I first give some easy examples, where the brutal formula above can be cal-
culated.

Example 1. Let P be the standard simplex with ag = 0, a; = e1,...,a, =
€n.

Then O(P,0) = {0}, the other sets [J(P,r) are empty. We have the
formula that we used: "
: +n
ip(k) = ( n )
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A B

Figure 4: Stanley’s pyramid

Example 2. Let P be the triangle in R? with vertices ap = 0, oy = e,
Qg = 262.

Then (P, 0) = {0}, O(P,1) = {1, 1} has 1 element and the others are
empty. We have the formula.

ip(k) = <k;2> + (’“;1) = (k+1)*

(The volume of P is 1).

Example 3. Let P be the simplex in R?® with vertices ap = 0, o1 = ey,
g = 2eq, a3 = 3es.

Then O(P,0) = {0}, O(P,1) has 4 elements and (P, 2) has 1 element
so that we have the formula:

ip(k) = <k§3)+4<’“§2) +(’“:,';1)

= (k+1)°%
(The volume of P is 1.)
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lk(Pm) n ZSI =

mE 4k + (12— m)k + 1

Figure 5: Hanging pyramid

Example 4. Let P the simplex in R* with vertices ap = 0, a; = e,
0 = 2ey, a3 = ez, aq = 4ey.

Then (P, 0) = {0} has 1 element, (O(P, 1) has 12 elements, (P, 2) has
11 elements. We obtain

ip(k) = (k+ 1)(k+ (K + &

(The volume of P is 1.)

Example 5: The Hanging pyramid P,,. Let P,, be the simplex with
vertices ap = (0,0,0),a; = (1,0,0),as = (0,1,0), as = (1,1,m).

The set (P, 0) has 1 element, ((P, 1) has 0 elements and C(P, 2) has
(m — 1) elements. We obtain

1
k+ =),
+2)

i () = G+ 105+ 2)(k+3) + (m ~ D2k = ()6 + 1)
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=%k3+k2+(12—m)g+1.

Notice on this last formula that we indeed have ip,, (1) = Z+1+22Z2+1 =
4. But we see here that the coefficient of k in the Ehrhart polynomial is a
negative number, when m is large enough. In particular, the coefficients
of Ehrhart polynomials are not necessarily positive.

Finally, we include here a formula due to Mordell [26] for the number of
points in the polytope P(a,b,c) defined by the vertices 0, A = ae1, B = be,
C = ces where a, b, ¢ are integers that are relatively prime. The volume of
P(a,b,c) is abc/6.

The number of integral points ip(pe(1) with intw
P(a.b,c) is not a rational function of a, b, c. Here is the Elirhart polynomial

for the number of points with integral coordinates contained in kP(a,b, c):

1 1
iP(ape) (k) = gabck3 + (Z(bc + ca + ab+ 1))k*+

1 1 bc ca ab 1
(Z(a+b+c+3)+ﬁ(_(;+—b_+—t';—+
—(s(bc,a) + s(ca, b) + s(ab, c))k + 1.

Here s(p, q) is the Dedekind sum, defined by

s =3 ( d)((%))

q
) =

)k

abe

k3

=1
with ((z)) = 0 if = is an integer and ((z)) = = — [z] — % otherwise

4 The magic square polytope Magic(n) and
the Chan-Robbins-Yuen polytope

Let us now consider a special polytope given by the convex set Magic(n)
formed by the doubly stochastic (n x n) matrices. These are matrices (zij)
with non negative entries and such that, on each line and each column, the
coefficients add up to 1. Thus Magic(n) is defined as the intersection of the
positive quadrant in R™ . cut by the 2n linear equations ) _; z;; = 1 for all

14

Whes

+he ,
pﬁ e

7

v




1<j<mnand Zj z;; = 1forall 1 <4 <mn. Clearly the sum of coefficients in
all lines is equal to the sum of coefficients on all columns and its value is n.
Thus this polytope is of dimension n?— (2n—~1) = (n— 1)2. Tt is not difficuls
([18]) to see that Magic(n) is also the convex hull of the n! permutation
matrices so that its vertices are the n! permutation matrices. In particular
Magic(n) is an integral convex polytope.

Example. The set Magic(5) is the set of matrices

Ti1 Ti2 Z13 T4 Tis
T21 T2 T3 Tas s
T31 T32 T3z T3q I35
T41 T4z T4z Tga Tg5
Is1 Ts2 X5z Tsa Tss

with z;; > 0 and
Tu+Zig+ T3+ Ty +195 =1,

Z21 + Tog + Tz + Tog + Tos = 1,

T11 + To1 + Z31 + Ty + 251 = 1,

T12 + Tog + T3z + Tag + Tnp = 1,

As follows from the general theory of the Ehrhart polynomial, the number
of integral elements in kMagic(n) is a polynomial of the form

Mk 41

where m,, is the volume of Magic(n). Finding iMagic(n) (k) boils down to
counting magic squares: square (n x n) matrices filled up with non negative
integers and such that the lines and the columns add up to k.

Here is an example of an element of 8Magic(3).

BN DO W

3
4
1

Ot N =

We have
iMagic(l) (k) = 17
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iMagic(Z)(k) =k+1,

. k+4 k+3 k+2
ZMagic((i)(k:)=< 4 )+( 4 )+( 4 ),

Notice that:
iMagic(n) (0) - ]-’

iMagic(n)(l) =nl

(number of permutation matrices.)

The Ehrhart polynomial iyagic(n)(k) is known only when n < 9. A com-
putation due to Chan-Robbins (co/9806076) gives a formula for iMagic(n) (K)
when n < 8. The recent calculation by Beck and Pixton (co /0202267) of the
Ehrhart polynomial for n = 9 requires 325 days of computer time on a 1GHz
PC running under Linux. The leading term of the Ehrhart polynomial (the
volume) requires 15 seconds for n =7, 54 minutes for n = 8, 317 hours for
n=29.

We now consider the Chan-Robbins-Yuen polytope CRYp, namely the
subset of the set of (n x n) doubly stochastic matrices consisting of those
with just one non zero line above the diagonal permitted. For example, CRYj5
is the set of matrices

11 T12 0 0 0
Toy Too Toz 0 0
T3 Tz2 T3z Taa O
Ta1 T42 T43 Tag T45
Ts1 Ts2 Tsz Tsa Tss

with z;; > 0 and

injzl, forall 1<j <5,

and
S zy=1, forall 1<i <5
J

The dimension of this convex polytope is n(n —1)/2. The corresponding
Ehrhart polynomial is not known but the leading term is known (Chan-
Robbins-Yuen [13] and Zeilberger [33]). It is given by
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T2 | kb
(H (@ + 1)l (n(n —1)/2)1

1=

We shall see why this calculation is possible in Section 10.

5 Brion’s formulae

The volume of a convex polytope and the Ehrhart polynomial are both dif-
ficult to compute. <Jhere are very few cases for which they are explicitly

known. One can however hope to find some relations between them.

A relation together with a way to compute the volume and the num-
ber of integral convex polytopes follows from Brion’s formulae ([5], see also
[2],[3],[6]) . This formula has been used by Barvinok ([4]) to give an algorithm
to compute in polynomial time (when the dimension is fixed) the number of
integral points in a rational convex polytope.

I shall give Brion’s formulae here since they are very beautiful. However,
we shall indicate later a method of generating function and separation of
variables, which leads to a direct comparison between volumes and number
of points via residue formulae. Furthermore, the residue formulae seem to
yield a moremef\ﬁgggt computational tool than Brion’s formulae, at least for
transportation polytopes.

Michel Brion provided a formula for integral of exponential functions
over convex polytopes or for sums of exponentials over integral points. They
generalize the following formulae:

e For any a,b

b
/ exydx=_£+ibz
a Yy Yy

which follows by integration.

e For a,b integers

b
" e ey
§ : Yo _
e’ = + .
l—ev 1—e¥
u=a,u€Z
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4

Figure 6: Non generic pyramid versus generic pyramids

This last result follows from writing integers between a and b as differences
of integers strictly greater than b and integers greater or equal than a and
summing arithmetic progressions.

The first integral formula generalizes from the interval polytope [a, b] to
a general convex polytope P C R". Let P be a convex polytope in R”, and
let V(P) be the finite set of its vertices. We assume (this is the generic case)
that at each vertex s € V(P) start n edges af, a3, ...,a;, of the polytope P:
vectors af are elements of R" such that near s the convex polytope P is the
set of points of the forms s+ 31, t;af, with t; > 0 (t; small). In other words,
the tangent cone at s to P is the affine cone s + S Rtas.

We identify the exterior product A"R™ with R, and |ajAajA- - -Aat] is, by
definition, the absolute value of the determinant of the n xn matrix with a7
as column vectors. Elements af are defined here only up to proportionality.

Then, we have:

Ia‘; N A ai"e(s,'.w

(at,y) - (ahy)

(—1)"/Pe<x’y>da:= Z

sEV(P)

Notice that this formula does not depend of the choice of the length of
the edges a$ passing through the vertex s.
With n = 1, setting P = [a, ], then there are 2 vertices a and b. We can
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choose af = b — a,a} = a — b, and the above formula yields back

/”exyz_(l(b—a>|eav+|<a—b>|eay e

(b—a)y (a=by " y "y
In particular, Brion’s formula gives a formula for vol(P) knowing the
vertices s and the edges through s.

g A~ Aagl(s,y)"
<a.{a y) e (afn y)

vol(P) = (1) )
seV(P)
for any generic y.
Brion established similar formulae for sums of exponentials. To simplify
the statement of Brion’s formula, we assume that the convex polytope P is
an integral convex polytope. Furthermore, we assume that at each vertex,
we can choose integral vectors af € Z" such that |as A - - - A a;| =1, and such
that, as before, the tangent cone at s to P is the affine cone s + > o Rtas.
We call such a convex polytope a Delzant polytope. &Z— lsp . fcd re
An integral convex polytope is rarely a Delzant polytope: Soo ’I’h
Example. Let T'(r) be the triangle in R? with vertices A — (0,0), B = T)OQ‘)WQ /
(1,r), C = (1,0). It is a Delzant polytope, if and only if |r| = 1.
Let us however state Brion’s formula in this case:

Theorem 7 Let P be a Delzant polytope in R™. Then we have
(s,y)
e

&) —
Z € Z (1_e(a§,y))...(1 — elenw))’

gePNzn sEV(P)

Example
Brion’s formula to integrate an exponential over the standard simplex A
dilated by k in R? is

1 ek ekyz

Y192 * (=y1)(y2 — y1) * (—y2)(y1 — o)’

while the formula to sum up an exponential on all the integral points (p;, py)
in kA is

/ ey1w1+y2x2dz1dx2 —
kA

ekyl ekyZ

Z eV1P1+y2ps _ 1 n . |
(p1,p2)ekA (I —en)(1—ew) " (1—ew)(I—evawr) " (1—ev2)(1 - ev—u2)
1,p2
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Y
A

0 k

Figure 7: Simplex and Edges through vertices

6 Partition polytopes.

We now introduce more general families of convex polytopes than just the
dilated polytopes kP.
Let P and Q be two convex polytopes in R™. The Minkowski sum is
defined as
P+Q={z+y,z€Pycq}

The following theorem, proved in [25], is a generalization of Ehrhart’s
theorem.

Theorem 8 o Let P, P, ..., P be convex polytopes in R™. Then the
function

v(ty, .., t,) = volume(t, P + toPy 4+ -+t Pr)
is a polynomial function of (1,2, . - ) € (Ry)™.

o Assume P1, P, ..., P, are integral convex polytopes. Then the function
on (Z*)" given by

i(kl, kg, cony k‘r) = cardinal((klPl + -+ kTPT) N Zn)

is a polynomial function of (k1, k2, ..., k).
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We shall study more general families of convex polytopes.
Let
® = [, 0,...,ay]

be a sequence of N vectors in R” (elements o; may not be all distinct). We
assume that all vectors «; lie strictly on the same side of a hyperplane, so
that ® generates an acute cone C(®) = {Zfil tic;|t; > 0} in R" (an acute
cone is a cone which does not contain any straight line).

Let {w;,ws,...,wy} be the canonical basis of RY. We define a linear
map from RY to R™ by:

N
A@(-’El,xz,---,xN) = E Q.
i=1

We may write the linear map A := A as a (nx N) matrix A with column
vectors the vectors ;.
For a € C(®) define

Ps(a) = Agl(a) NRY,

which is the intersection of an affine space with the standard quadrant.

In other words Pg(a) consists of all solutions of the equation Azx = a,
where = is a N-vector with non negative coordinates. The set Ps(a) is a
convex polytope.

Example. Transportation polytopes

Let R®™ with basis e;, ..., ep, f1, ..., f» and let ® be the set of n? vectors

®=[(e;+f;),1<4,5 <n].

Then

Alzig) =Yzl + fy).
The convex polytope Py(aje; +ages+- - - +ane, +b1fi+bafo+--+b,f,) can
be identified to the set of (n x n) matrices (z;;) with non negative coefficients
and with given sums of coefficients in each row and given sums of coefficients
of each column. Indeed the vector equation ) z;;(e; + fi) = (a1e1 + ageq +
“otanen +bifi+byfo+- -+ b, fr) is equivalent to the series of 2n-equations:

n
E Tij = G4,
j=1
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n
E ZL‘ij = bj.
i=1

Of course, to get a solution, we need that Y i a; = 2;‘:1 b;.

When a; = as = -+ = @, = by = by = - -+ = b, = 1, We recover the poly-
tope Magic(n). For general (a;,b;) (such that 3°a; = 3" b;), this polytope is
called a transportation polytope, and is very important in studying flow in
networks.

If ® is a sequence of vectors in Z", then Ps(a) is a rational convex poly-
tope.
Example : Let
A = (6,10,15),

then
A(xy, T, 73) = 671 + 10z + 1523.

The polytope Ps(k) is the convex hull of its 3 vertices

k k k

(_70v 0)7 (071_0)())9 (0; 0115

6 )

If A is surjective, then the polytopes Py(a) are of dimension N —n, for a
in the interior of C(®). The polytopes Ps(a) are contained in affine spaces
parallel to E := Ker A. If we denote by fi, fa, ..., fv the restrictions of the
linear forms z,23,...,ZN ON RY to the subspace E, then for u € RV, the
polytope Pg(Au) is isomorphic to the polytope in £ = Ker A described by
the inequations

Qu) := {y € E, {fi,y) +ui = O}.

Indeed, if y € Q(u), the point u + y lies in P(Au). Some of the inequalities
above might be irrelevant. If Au = Av, polytopes Q(u) and Q(v) are just
translations of each other in the space Ker A by the vector u —v.

Consider the polytope Pp(A(u+ hwy)) = Pe(Au + hoy). Then the poly-
tope Q(u + hawy) is isomorphic to the polytope Ps(Au + hoy) and is defined
by the same inequations as the polytope Q(u) except that one of the in-
equalities (fi,y) + u; > 0 has been replaced for i = k by the inequality
{fo,y) + (ug +h) 2 0. In particular all polytopes Ps(a + h), when a is
generic and h varies in a small neighborhood of 0 have parallel faces.

Example
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We draw the pictures of the polytopes Q(Au) and their small deformations

for the matrix:
1 001
A= (O 11 1)

The space Ker A is isomorphic to R? with basis b = (w3 — wy), by =
(wg —wy — wy). We write y € Ker A as y = y1b; + y2bs. To describe the
family Q(u), we may vary u in a supplementary subspace to Ker A. We
choose u = uw, + uqw,.

The 4 equations describing Q(u) are

—Y2 + Uy Z 0)

—(y1+y2) +uy >0,
N Z 07
y2 > 0.

There are 6 cases leading to different polytopes, depending on the stratifica-
tion of the cone C(®) in chambers (a topic that we shall discuss after this
example).

e u; = uy = 0. Then

Q(0,0) = {0}
o uy=0,us >0

Then Q(0, us) is the interval [0, uy)b;.
e u; >0,u=0

Then Q(uy,0) is the interval [0, uy]b,.

® Uy > U7,

Then Q(u1, uz) has 4 vertices

0, A =wby, B = ughy, C = (us — u1)bs + u1by and is a trapeze.
® Uy —=Ua=1U

Then Q(ui,us) is a triangle with vertices 0, A = uby, B = ub;.
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Uy — U2
t AA-———— — —
AN
Uz — U1 AN
AN
3 C
A
U2
Uy
0 B, 0 B .
U2 U2
Uy > U1 Uy > U
Figure 8: Variation of the Partition polytopes: Q(u)
® Uy < U

Then Q(u,us) is a triangle with vertices 0, A = usby, B = usgb;.

Notice that in the last two cases, the equation —ys +u3 > 0 is irrelevant
and does not produce a face of Q(u).

Conversely , any convex polytope described by inequations can be realized
canonically as a member of a family of partition polytopes, which contains
also its small deformations obtained by moving faces parallel to themselves.

Let us, following Gelfand-Kapranov-Zelevinski [19], decompose the cone
C(®) as a union of “chambers”. By definition, a chamber is a connected
component of the open subset of C(®) obtained by removing the boundaries
of all the cones C(c) spanned by subsets o of ® forming a basis of V*. In

the case of the matrix
A= 1 001
“\W0 111
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€1 — e ) €2

N =

62 ’ 63

N

Figure 9: Chambers for A,

then a; = e; = a3, ay = e, and @4 = e + ez. The cone C(®) is the
first quadrant, but to define chambers, we have to remove the half lines
R*e;,Rtey, R*(e; + e3). This leads to the two chambers {z; > 0,2, >
0,2, > IEz} or {5(]1 > 0,29 > 0,1 < 1132}.

Inside a chamber, the combinatorial nature of the polytope Py(a) remains
the same. But, as we have already seen in the last example, the combinatorial
nature of the polytope Pp (a) varies when a crosses the wall of a chamber.
If {P,P,,-- ,P.} is a set of convex polytopes in R”, then the family of
polytopes obtained by taking their Minkowski sums

{t1P1+"'+trPr}

with ¢; > 0 can be embedded as a subset of a family of partition polytopes
Pg(a) where a varies in the closure of a chamber C of (D).
Here is the drawing of chambers for the matrix

10
A=10 1
00

— o O
—_ =0
=

1
1
0
For a general matrix A, it is difficult to describe chambers of the cone

C(®). The program PUNTOS available on the homepage of Jesus de Loera
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(www.math.ucdavis.edu /deloera) gives an algorithm to compute them, based
on Gelfand-Kapranov-Zelevinski theory.

7 Generating functions

The method we used to compute the volume as well as number of points of
a rational convex polytopes is based on generating functions.

We are in the setting of partition polytopes, with a surjective map A :
RN _ R™ We denote by (wy,ws, ..., wy) the basis of RY, by o = A(wy)
and by ® := [, 02, . .- ,an]. We assume that all vectors oy lies strictly on
an open half space delimited by an hyperplane. Then the dual cone to the
cone C(®) generated by @ is an open cone: it consists of all vectors z € R"
such that (z,az) >0, forall 1 <k < N.

For a € C(®), let

i(a) = cardinal(Ps(a) N ZN)

and
v(a) = vol(Pe(a)).

To compute (a) and v(a) we shall use generating functions.

Proposition 9 Let z in the dual cone to C(®), then

1
v(a)e”*Fda = =——,
/c«p) [Taca(e z)
1
. —{a,z) __
Z Ua)e T Toca(l — e~ @)’

acC(®)nZ"

Proof.
Let 2 in the dual cone to C(®) and let us compute

F(z) = / e~ A@2) d.,
=Y
We first write A(z) = Zf\; L 7;0;. The integral reads

P = [ e dadey - dow
RY
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i=1

N

i1 (ai,z)‘

1=

On the other hand, we can use Fubini formula. We first integrate over
the z such that A(z) = a, then we integrate on a. Thus

F(z)z/ / e~ U@2 4z | da
a€C(P) {mE]RfI A(z)=a}

The set {z € RY|A(z) = a} is our partition polytope Ps(a) and the
integral over this set of e~(4®)2) ig ¢=(@2) yol(Py(a)). We thus obtain the
first formula of the proposition.

The second formula arises in the same way by calculating in two different
ways the sum 37~ e~ (A@)2),

The problem of computing v(a) and i(a) now boils down to computing
the inverse on the right hand side of the two equations of Proposition 9.
A similar problem was considered by Jeffrey and Kirwan [21], who, in the

= H/R+ e‘xi(ai,z>daji whﬁ,] eag'ﬁ b()\i)\\; S

context of arrangements of hyperplanes, found an efficient calculus for the
inversion of Laplace transforms.

8 Inversion of Laplace transforms and residue
formulae

We explain our method ([32]) in the very simple case where n = 1.
Let n =1, and let G be the space of functions of the form

s =22,

where P is a polynomial such that f (2) tends to 0 when z tends to the oo.
Then there exists a polynomial function v(h) such that

f(z) = /h>0v(h)e"‘zdh e why

—X
ey =1
R
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for z > 0.
I claim that v is given by the residue formula

v(h) = residue.—o(f(z)e"®)

which is obvious to check. Indeed, f(z) is of the form EM %2 and we may

p=1 zP?
directly check the formula for & = [, %dh.
The dependance of v(h) in h is via the Taylor series of e at £ = 0. The
function f(z) has a pole at z = 0 of order M, thus we need to take the Taylor
development of €"® only up to order M. In particular, it is clear that v(h) is

a polynomial in h of degree less or equal to M — 1.

Let us turn to the calculation of i(a).
Let M be the space of functions of the form

P(z
F(z):= ————(1 —(z))M

where P(z) is a polynomial in z. We assume that F(z) tends to 0 when z
tends to co. Expand the function F(2) as a Taylor series at the origin. Then
there exists a polynomial function (k) such that

F(z) =) (k)"

k=0

for |z| < 1.
I claim that 4 is given by the residue formula

i(k) = —residuezle(z)z_k%z.

Indeed, integrating on a small circle near z = 0 the Taylor expansion of F),
we obtain

_ _ _dz

i(k) = residue,—oF(2)z —
From our assumption, it follows that the 1-form F(z)z”"—df has no residue at
0o. Thus we obtain, from the residue theorem on P, (C), that for any k > 0,

i(k) = -—residuezle(z)z_k%
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Writing 2z = e™®, we also obtain
i(k) = residue,—o( F(e™%)ek?),
which is strikingly similar to the formula
v(h) = residue,—o( f(x)e"?).

The function F(e~*) has a pole of order M at z = 0. So it is clear that
i(k) is a polynomial in k of degree less or equal to M — 1.

A similar multidimensional residue formula is used in the final formulae
of Theorems 15 and 17. The same idea of moving a residue from a contour
near z = 0 to a contour near z = 1 is involved in the proof of this formula.
The cohomology of the complement of an union of hyperplanes is the crucial
tool we need (or better an algebraic version of this cohomology).

In avery simple exampte, consider functio of the forms F (21, z5) =

s Hete M, N, Q are positive. Expand \ o hys b

F(z1,2) = Z v(ky, k)2 282 dﬂfwmjf@’q-y W;QN\)WJ

£120£220 —+o u)h%x’ %Uj
in Taylor series. Then there exists 2 polynomial functions v;(ai,az) and PO"M{M
va(aq, ag) such that vi(a,a) = ve(a, a) and such that o é :

v(k1, ko) = vi(k1, k)

if k1 > ko, while
U(kl, k2) = v2(k1, k2)
if ky < k,.
Indeed, we have, from the Cauchy theorem,

1 1 _ _ d21 ng
ki ka) = (5=)° e
'U( 1, 2) (2271,) /lzl|:el,|z2|=62 (1 _ Zl)M(l — zZ)N(l — 2122)Qz1 29 21 29

whatever small non zero real numbers €, e, we choose. It is tempting, as in
the one dimensional case, to use the other pole 2; = z; = 1 to compute this
integral. When choosing exponential coordinates e=%!, e~®2 near this pole,
we are led to consider the 2-form
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1
(1 — e =)M(1 — g22)N(1 — e—(x1+xz))Qe

In a neighborhood of (0,0), the function

1
(1 — e 21)M(1 —e~=2)N(1 — g~ (z1+22))Q

k121 k222 g0 dcs.

J(:L‘l, x2) =

has now poles on the hyperplanes z; = 0, z2 = 0 and z; + 7o = 0. Thus its
restriction to a cycle C(ey, €2) = {(21, 2)| |z1] = €1, 72| = €2} is holomorphic
provided € # €;. Now the cycles C(ey, €2) for €, > €; or €2 > €, cannot be
deformed to each other without coming across a pole of J(z1, z3).

It is not difficult to show that we have

1
vl(al, a2) = (—)2/ J(xl, $2)6a1z1+a2m2d$1d$2
2 C(er,€2)
with €3 > €; > 0, while
1
’Ug(al, CL2) = (—-)2/ J(.’El, $2)€a1x1+a2z2d$1d5172,
2im Cle1,€2)

with €; > €3 > 0.
In other words, the analogue of the residue formula for

i(k) = residue,—o( F(e™®)e"®),

for the Taylor series of F' in one variable is replaced by the two formulae
(both obviously polynomial in ki, ks.)

v1(ky, ko) = residue,,—oresidues, —o(F'(e™*, e~T2)ghorthanny

vy (ky, ko) = residue,, —oresidueg,—o(F'(e™, e~ 72)ghrzithar)

9 Arrangements of hyperplanes and the total
residue.

Let V* be a real vector space of dimension n with a set A of non zeros
vectors. We assume A symmetric A = —A. To each o € A we associate a
hyperplane a =0 in V.
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Let Ra be the ring of rational functions on V¢ with poles on the hyper-
planes o = 0. If F' € Ra, we have, for z € V¢

P(z)
HaEA (a’ z>na

for some polynomial P and non negative integers n,,.

In dimension 1, with linear form a(z) = z, our space Ra is just the
space of Laurent polynomials C[z,27!]. The power z* is the derivative of
the function =52*+! except when k = —1. Thus there is just a particular
function -i- which has no primitive. We can write:

F(z)=

Clz, 1] = cé ©8,C[z, .

Let us come back to a general hyperplane arrangement and let us give a
description of Rs which generalizes this decomposition of C[z, z7 1.

Let o be a subset of A, such that elements of ¢ form a basis of V*. We
will say that o is a basic subset of A. Setting

o= {0y, 0y, ...,q},

we define the ”simple fraction”

fol2) = .

\ef (ainz><aizaz> o '<O‘inaz>

and the'space Sa generated by simple fractions:

Sa =Y Cf,,
where o runs over all basic subsets of A.
Choose a basis {e',e?,...,e"} of V. The partial derivative ; act on R,.
We denote .
ORa = OiRa.

i=1

The following theorem is proved in [9].

Theorem 10 We have:
RpA = SA ® ORA.
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The space Sa will be very important in our formulae. It is spanned by
the functions f,, however the following examples show that the elements fo
are not generally linearly independent.

Example. We consider V of dimension 2 with basis e',e?. Let A be the
the linear forms %27, £29, £(21 + 22) on V := {z = z1e! + ze? }.

There are 3 basis of V* formed with elements of A, namely o1 = {21, 22},
oy = {2z1,(21 + 22)}, and 03 = {2, (21 + 22)}. There is a linear relation
between the 3 corresponding simple fractions:

1 1 1

= + .
2129 Z1 (Zl + Zz) 22(21 + 22)

Example. We consider the vector space R" and the set of n(n+1) linear

forms:
An = {:‘:(Zl — Zj>i<j7 :tzl, :l:Zg, Ceey :}:Zn}

The following proposition can be proved by induction on n.

Proposition 11 A basis {f,} of the space Sa, is obtained as follows: set
1

(Zw(1) — 20@) (Zu@ — 2u@) ** * (Zu@-1) = Zu(m) Zu(n)

fu(z) =

where w is a permutation on {1,.. .,n}.

Then Sa, has a basis indexed by elements w of the permutation group
¥, and hence dim Sj4, = n!.

Let us come back to the general case.
As
Ra = Sa ® ORA

there is a projection:
Tres : Ra — Sa

called the total residue. Notice that the total residue of F vanishes whenever
Fis a sum of derivatives. For instance, the residue of the following function

z3 1 1

(Zl - 22)(21 - 23)(22 - 23)212’223 - (21 - Zz)(zz - 23)23 * (21 - 23)(23 - 22)22

vanishes. Indeed, we can verify that this function is equal to:
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(Zl - 2Z3) (Zl — 222)
+ 03 .
z3(21 — z3)(22 — z3) z2(21 — 2z2)(23 — 23)
The total residue vanishes on homogeneous functions of Rx which are
of degree m, whenever m # —n. Thus we can extend the total residue to

—0s

functions F(2) = n—%, where P is a holomorphic function defined near
[ = ’
0.

The most important tool in computations is the following linear form on
the space Sa.
For each chamber C there exists a linear functional denoted by

¢ ((C,4))

on Sy, defined by
((C,|detolfy)) =1

D guir b, € C Clo)
/ \) ’

l't'J{/‘:i nLeY ﬁotherwise.
b/ Via projections of Ra on Sy, we identify linear forms on S to linear
forms on R vanishing on derivatives.
Determining the chambers C and the linear form ((C, #)) 1s difficult in~

((C,|detolf,)) =0

A/|(;1

yo v [ general. The linear form ((C, #)) can be realized as an integration on a cycle
(})\f({ wo/“in the space V¢ \ Upen{a = 0} depending of the chamber C. o
{j\\f&/o’ It can be easy to describe the linear form ((C, #)) for some very special

/

cases such as

A=A, = {£(e; — ¢5),i < 7, +ey, tey, ..., te,}

and
®:= Al = {(e; - ej),i < j, €1,€2,...,€n}.

The space Ra consists of rational functions of (21,22, .., 23) having poles
on the hyperplanes z; = zjor z; =0.
The cone C(®) is described as follows:

C((I)) = {a161+a262+' . -+anen| a; > 0, a;+aq Z 0, <o, artagt- - +ag, Z 0}
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Figure 10: Chambers for As

The number of chambers of the cone C(®) is not known (see de Loera-
Sturmfels [14] for the description of chambers for small n). But in any
dimension, one of the chambers of the cone C(®) above is

Crice = {ale1 +age? + -+ anenlar > 0,a2>0,...,an > 0}.

Furthermore, in this case the linear form attached to this chamber can
be written in terms of iterated residues:

({Crices #)) = residue,, =0 - - .residue,, —o(¢(21, 22, - - - Zn))-

The linear forms attached to any chamber C are not too difficult to com-
pute, as we know an explicit basis of the space Sa,-
Example. Let us consider the matrix:

100 1 0 1
A=|010 -1 1 0
001 0 -1 -1

The system ® spanned by this matrix is the system AF. There are 7
chambers.
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Our space Ra consists of functions f(z1, 22, 23) with poles on zi =0 or
on z; = z;. Thus when taking a contour

Cler, e2,€3) := {|21] = €1, | 20| = €3, | 23] = 3},

provided that all ¢; are different, the function f(z1, 22, 23) is well defined on
C(e1, €2,€3). However, the function f(21, 22, 23) having poles on 2 = zj, we
see that the relative order on €1, €2, €3 Will lead to different cycles.

Let us give two examples for two different chambers.

e Let C; be the the chamber spanned by e1, €5, e3. (This is what we called
the nice chamber). Then

20

((Cr, 9)) = (i)3/ P(21, 22, 23)d21dzad 23
Cle1,€2,€3)

where €; > €3 > €3 > 0.

e Let C; be the the chamber spanned by e; — eg, €1, e3.
Then

2m

1
(Car ) = (=) / O(21, 72, 25)dz1dzadz,
C(el,ez,e,g)

1
—( f)3 / b(21, 22, 23)d21dzyd 23
0 C(e] €h,¢h)

Where61>62>63>0and6’2>6’1>eg>0

10 Jeffrey-Kirwan formula for the volume.

Let @ C V* be a sequence of vectors belonging to A and all on the same side
of some given hyperplane. We assume that ® spans V*.
Let us give a formula for the volume of the polytope Pg(a). A quick proof

is given in [1]. . ’ “

Th 2 (Jeffrey-Kirwan formula) L oV a1
eorem 12 (Jeffrey-Kirwan formula RUE

Let C be a chamber of C(®). Then foracC Undetand &y £

(use Q\;f‘

e Knapsads

(al,2) .. (aN,z)>>

vol(Pg(a)) = ((C, Tres
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which is a polynomial in a on the chamber C.

From this formula, following Aomoto’s proof of the calculation of Selberg-like
integrals and the indication of Zeilberger [33], we show in [1] that it is possible
to recover the conjectured formula for the volume of the Chan-Robbins-Yuen
polytope.
Theorem 13 (Zeilberger).

Let N :=n(n —1)/2. Then
N

212y 2n [Licj (2 — %)

1
vol(CRY,,) = ]—V—'residuezlzo .- residue,, —o

n—2

1

=-—TITc
N! ol

where the C; = (—1:2;')7, are the Catalan numbers.

In the general case of a convex polytope realized as Pp(a), the algorithm
to compute its volume is the following. We choose A* any subset of A
containing ®, and contained in a half-space. We compute (or better, we
know as in the case of the system A,) a basis fo of the space Sa, indexed
by a finite set F' of subsets of A*. Then, given a generic point a € V*, we
compute if a belongs to the cone C(0), only for those o belonging to F.
If C is the chamber containing a, this determines entirely the form ((C, as
{(C,|det o|f,)) = O or 1 according to the fact that a € C(o) or not. Then we
can realize the form ((C as an iterated residue with respect to special orders,
entirely determined by our chamber C.

11 Residue formula for the number of inte-
gral points in rational polytopes.

Let ® be a sequence of Z" all on the same side of a given hyperplane and

spanning R". Then for a € Z" N C(®), the polytope Pp(a) is a rational
polytope. Let me now state the relation between the partition function
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and the number of points in the rational polytope Pg(a) and indicate some
properties of the function i(a). Let us introduce a notation:

0(®) = > [0, 1]a

acd

Notice that the box CI(®) grows larger as the set ® gets larger. Further-
more, as ¢ spans V*, then for any chamber C of C(®), the open set C — 0(o)
contains the closure of the open set C.

The following qualitative theorem generalizes Theorem 8.

Theorem 14 Let ® be a sequence of vectors in Z™ all in the same side of an
hyperplane and spanning R™. For z in the dual cone to C(®), the following
equality holds:

1
. —(a,z) __
> ila)e o (1 = e—(@a)

acC(®)nzn

where i(a) is the cardinal of the set of solutions in non negative integers ny
of the equation
a=ma' +nya?+ - +nyal.

Then, for each chamber C of the cone C(®), there ezists a periodic-
polynomial function ic on R™ such that i(a) = ic(a) for anya € (C— O(®))n
z".

The closure C of the chamber C is a subset of ¢ — 0(®). The periodic-
polynomial behavior of the function i(a) on the set C is due to Sturmfels
[29].

In fact, we (i.e. Szenes and myself) proved in [32] an “explicit formula”
for the function i(a) . This formula is proven in a rather straightforward way
by a separation of variable argument due to A. Szenes [31] and the residue
theorem in one variable. We state it first in the unimodular case.

Let now A be a set of vectors in Z" and ® — [a1,...,an] a sequence
of elements of the set A. We assume that ® spans Z™. We consider the
unimodular case where |deto| = 1 for any subset o of ® consisting of n

linearly independent vectors. In this case the convex polytopes Pg(a) have
integral vertices, whenever a is in Z". We get almost the same formulae for
the volume or for the number ie(a) of integral points in Py (a).
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Theorem 15 Let C be a chamber. For a € (C—0(®)) NZ":

) e(a’z>
Z‘b(a) = <<C? Tres (1 IR e——(al,z)) ce (1 — e—‘<0<1\h2))>>.

Both formulae for the volume v(a) (Theorem 12) and the number of points
i(a) (Theorem 15) in terms of the linear form ({C attached to C can be proven
in a completely parallel way by reducing to the 1 dimensional case (treated
in Section 8). The basic formula to reduce to the 1 dimensional case is an
analogue of the two formulae below:

11 1
nz(z +2) 2z 22(21 + 22)

1 1 1

A=) (1= 2)(1 — 2122) A= aP(-z)  (-w)(l—z)01-2z)

Using the formula of Theorem 15 (together with a change of variable in
residues [1]), with V. Baldoni, we have implemented a simple Maple program
for calculations of 5 x 5 number of integral points in transportation polytopes.
Previous algorithm were based on Brion’s formula ([14)).

As an easy consequence of the two parallel formulae (Theorem 12 and
Theorem 15), we recover the Riemann-Roch formula of Khovanskii and Pukhlikov
[22]. Let us explain how.

Let o € V*. We denote by d(c) the differential operator acting on func-
tions on functions on V* by

m@mm=%mmumhq

Consider the function Toddn (21, 22, - - - Zy) = Hfil T and its Taylor
series at the origin:

N
1
Toddy(2) = 1+§;zi+--- .

Let ® = [a1,00,.. ., | our unimodular set of vectors. We now substitute

2 = 0(y;) in this series. We obtain a serles of constant coefficients differential
operators that we denote by

o(a
Todd(®,8) := [ | 1———(5)9_07)

acd
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We can apply this series of differential operators to a polynomial function
on V*.

Theorem 16 ( Khovanskii-Pukhlikov)
Let ® be an unimodular system of vectors in Z™. Let C be a chamber of
C(®). Then, for a € CNZ", we have the equality

i(a) = Todd(®, 8)v(h)|p=q-

Proof. We argue in exactly the same way as in Lecture 1. To apply the
series of differential operators Todd(®, 9) to the function v(k) given by the

residue formula

(al,z)u-(aN,z)))

we can commute the residue and the series (the residue operates automati-
cally by truncation of series). Thus we obtain

v(h) == ({C, Tres

Todd(q) 0)v(h)
(o, z elh2)
CTresH — W} al,z)~--<a1\r,z)>>

e(h’z>
)
(1 — e"(ou,Z)) A (]_ —_ e—(aN,z)) '

= ((C, Tres
We recognize here the residue formula for i(a).

In the general case of a system ® spanning Z", but not necessarily uni-
modular, the formula for i(a) is periodic polynomial over the sectors C —-0(®).
Here is the formula:

Theorem 17 Let C be a chamber of C(®). Fora € (C — 0(®)) N Z":

ela.z+iy)

ig(a) = Z ((C, Tfes[(l _ e__(al,z+i,y)) (1= 6_<aN’z+i7>)]>>'

~ER™ /27T

The infinite sum 3. g» Janz» Means the sum over a finite set F' of represen-
tatives of 7, for which the function

e(a,z+i'}'>

(1 — e—(a1,2+i’Y)) . (1 — e—(a”,z-f—i'y))

Z
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has a non zero total residue. (For v generic, it is holomorphic at zero, thus
its total residue is zero. It is easy to prove that indeed the set F' described
above is finite ).

This result implies the quasi polynomial behavior of i(a) on the sector
C — O(®), which contains C. In particular, this formula along rays yields
back Ehrhart’s theorem (Section 1).

As in the case of Khovanskii-Pukhlikhov, this residue formula implies
the formula of Cappell-Shaneson [11] and Brion-Vergne [7] for the partition
function as derivatives of the volumes of near-bye polytopes. ,

~—

12 Polytopes and symplectic geometry. A
very few references.

Let P be a convex integral polytope in R™. Let T be the torus 53 x.51X- - - X S1,
i.e. the product of n groups of circular rotations {€}. Under some conditions
(the polytope has to be a Delzant polytope, see Section 5), there exists a
compact symplectic manifold Mp of dimension 27, an action of the group T
on Mp and a map from Mp to P, such that the preimage of the point p € P
is an orbit of T. In other words, the polytope P is exactly the parameter
space for the orbits of the action of commuting rotations on Mp. The map
f is the moment map. We can thus think of the manifold Mp as a sort of
inflation of the polytope P. We refer to the lecture of Michele Audin in the
proceedings of the 5th EWM meeting held in Luminy for more details.

The inflated symplectic manifold corresponding to the interval [-1,1] is
the sphere S C R® with radius 1. We project S on R via the height z. The
image of S is the interval [—1,1]. The action of the rotation group T =5"
is by rotation around the axe Oz.

The inflated symplectic manifold corresponding to the standard simplex
A C R™ is the projective space P,(C). We realize P,(C) as the space

{1200y )| 21 oo+ [zl o+ zn P = 1}/ (2 = €°2)

with identification of all proportional points z and €z in the sphere §*"**
in C**!, so that P,(C) is of dimension 2n. Rotations are given by

i0, b ) _(ib i62 i0
(e, e, ... e ") (21,22, - - - Zny Zn1) = (€71 21,€7 720, € " 2y Zntl)-

The moment map is
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Figure 11: Moment map
F(zh R2y ey Zny zTH-l) = (|Z1|27 |Z2|2’ R ’Zn'z)‘

It is clear that the image of points in Po(C) are in A, indeed 7, = |21 >
0. zn=|z|*>0,and z; + 29+ -+, = 1 — |Zn+1/2 > 0. Furthermore
two points having the same image are conjugated by (e, €2, ., eifn),

The set of integral points in kA,, provides a basis for the vector space V' (k)
of homogeneous polynomials of degree k in (n + 1) variables (in other terms,
V(k) is the space HO(P,(C), O(k))), the point (py, p,, - - - yPrn) With p; > 0
and py +pz + -+ - + p, < k indexing the monomial 228 -zﬁ“zﬁi}zz;lm).

Here are a few references for relations between the set of integral points
in polytopes and toric varieties.

e M. BRION. Points entiers dans les polytopes converes. Exposé 780.
Seminaire Bourbaki, 1993-94. Asterisque 227 (1995).

e W. FULTON. Introduction to Toric Varieties. Annals of Mathematics
Studies, 131. Princeton University Press, Princeton, NJ, 1993.
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e V. QUILLEMIN. Moment maps and combinatorial invariants of Hamil-
tonian T'-spaces. Birkhauser-Boston-Basel-Berlin. 1994. Progress in
Mathematics vol. 122.

The following review articles explain the general context of quantification
of symplectic manifolds and give further references.

e R. SJAMAAR. Symplectic reduction and Riemann-Roch formulas for
multiplicities. Bull. A. M. S. 1996, 38, pp 327-338

e M. VERGNE. Convez polytopes and quantization of symplectic mani-
folds. Proc. Nat. Acad. Sci. USA 93 (1996) 25, 14238-14242.

e M. VERGNE. Quantification géométrique et réduction symplectique.
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