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Introduction

These two lectures are dedicated to two topics and their contents are
technically independent. In the first lecture on Bernoulli series and Verlinde
sums, I present some algebraic formulae concerning a (fascinating) subject
on which I am rather ignorant. I believe I am more knowledgeable on the
second topic : volume and number of integral points of rational polytopes.
In both topics, we shall encounter polynomial functions w(k) of k, where k
is a non negative integer, and the fact that these functions are polynomi-
als is not obvious at all from the definition of w(k). There is a common
geometric concept underlying this fact for both topics: compact symplectic
manifolds. If (M, w) is a compact symplectic manifold and if the form w is
integral, then we can associate to M a quantized vector space Q(M,w). The
Riemann-Roch theorem asserts in particular that the dimension of Q(M, kw)
is a polynomial in k with leading term kdim M/2 ol (M), where vol(M) is the
symplectic volume of M.

The underlying manifold M to the first topic is the moduli space of flat
connections on a Riemann surface with holonomy ? around one hole. Ver-
linde sums are the dimension of Q(M, kw) while Bernoulli series compute the
volume of such manifolds.

Underlying manifolds to the second topic are toric manifolds. An integral
polytope determines a toric manifold M of dimension 2dim P together with
a symplectic form w on M. The volume of the polytope P is the volume of
M and the number of integral points in kP is the dimension of Q(M, kw). Tt
is a polynomial in k with leading term k4m P yol(P).

In both cases, inspired by the Riemann-Roch theorem, it is possible to
develop a purely algebraic Riemann-Roch calculus, and to prove directly
a beautiful relation between Bernoulli series and Verlinde sums, as well as
between volumes of polytopes and number of integral points contained in the
interior. The main idea of this purely algebraic relation in the first case is
an idea of A. Szenes while in the second case it goes back to G.Khovanskii
and A.V.Pukhlikov.

We have a sort of Riemann-Roch relation between two functions, one
depending on a continuous parameter ¢, the volume, and the other on a dis-
crete parameter (the integer k), the dimension of a vector space. What about
showing directly the relation between these two quantities by ”computing”
them explicitly? Thus my aim in both lectures is to give a hint of ”explicit
residue formulae” for all these quantities (Bernoulli series, Verlinde sums, vol-
ume of polytopes, number of integral points in polytopes), formulae which
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allows both concrete calculations, and quick proofs of the Riemann-Roch
relations.

Many thanks to Sylvie Paycha, for writing and expanding these notes and
to Velleda Baldoni-Silva for illustrating.



Lecture 1

Residue formulae for Bernoulli polynomials and Verlinde sums.

In this lecture, I will present some simple sum formulae, which relate
Bernoulli series to Verlinde sums. I hope to show in particular that residue
formulae for series or sums are very efficient tools to relate these sums and
calculate them. The one dimensional case is presented here in detail and is
already very amusing (and amazing).

These lectures are mainly based on the following articles by A. Szenes
(all available on Arkiv) :

—[Sz 1]: The combinatorics of the Verlinde formulas. Vector bundles in
algebraic geometry (Durham 1993), 241-253, London Math. Soc. Lecture
Note Ser., 208, Cambridge Univ. Press, Cambridge, 1995.

~[Sz 2]: Iterated residues and multiple Bernoulli polynomials. Internat.
Math. Res. Notices 1998, 18, pp 937-956.

~[Sz 3]: A residue formula for rational trigonometric sums and Verlinde’s
formula (math CO/0109038)

I do not explain here the underlying geometry. These lectures may (also)
serve as an introduction to the algebraic aspects (multi-dimensional residue
formulae) of articles of Jeffrey-Kirwan and Bismut-Labourie on the Verlinde
formulae. References for the geometry underlying this calculation are given
at the end of this lecture.



1 Bernoulli’s theorem

We have all tried to work out formulae for sums of the m-th powers of the
first & + 1 numbers, and to compare them to the corresponding integral

k m __ kmtl
ﬁ)z dr = m+1 "

For m = 0, we have:

00+1°+2% 4+ 4 kO = k41,

For m = 1, we have:

2
o+1+2+3+---+k=k2+k
For m = 2, we have:
Kk k
02 12 22 2 k2=~ o -
+1°4+2°4+3"+ + 3+2+6
For m = 3, we have:
k4 k3 k2
33498438 3K KK
P+ +2°+34... 4k Tty

This polynomial behavior is a general feature of such sums as the following
theorem shows:

Theorem 1 (Jakob BERNOULLI -(1654-1705))
For any positive integer m, the sum Sm (k) = Zszo a™ of the m**-powers
of the first k + 1 integers is given by a polynomial formula in k.

We will prove this theorem and relate the sum Sm(k) to the Bernoulli

polynomials.
Given a real number ¢, the Bernoulli polynomials B (m,t) are defined by

the following relation:

exp(tz) = 2"
—_— = B(m,t)—.
Zexp(z) -1 mzzjo (m, )m!
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This means, we expand z-e%%t)i_)T in a Taylor series at z = 0. The coeffi-

cient of ’:—3 in this Taylor series depends polynomially on ¢, and is defined to
be the Bernoulli polynomial B(m,t). The first ones are

B(0,t) =1,
1
B(Lt)=t— =
(1,%) 5
) 1
B(2,t)=t'—t+5,
1

3
B(3.t) =t — =t + =t
(’) 2 +27

1
B4, t) =t -2 +1* — —
( ) ) + 30’
It follows immediately from the definition of the Bernoulli polynomials

that P
E;B(p, t)=pB(p— 1,t),

1
/ B(p,t)dt =0 ifp>1.
0

(Notice also that (—1)?Bgp = (—1)?B(2p,0) is positive.)
The Bernoulli number By, is defined to be B(m,0). They satisfy the

following relation:

z > zm
= Bm
exp(z) — 1 1;) !
Since ) )
= + ]_,

1—e> e -1
we have 3.0 (B2 + 2 = S oBm (—;),m so that the Bernoulli numbers

are equal to 0 for m odd, except when m = 1 in which case we have By = —%.

Now remark that

1

m(B(m +1,t+1)— B(m+ 1,1))




is the coefficient of 2™*+! in the Taylor series of

(t+1)2 tz tz( z __ 1)
e e” | e*(e o
z(ez—l ez—l)—z ee—1

Thus we obtain:

B(m+1,t4+1) - B(m + Lt) = (m+1)t™.
We write this equality for ¢ = 0,1,... k:

B(m+1,1) ~ B(m+1,0) = (m + 1)0™,

B(m+1,2)—B(m+1,1) = (m+1)1™,

B(m+1,k)—B(m+1,k—1)=(m+1)(/€-—1)"‘,

B(m+1,k+1) - B(m+1,k) = (m + 1)k™.
Adding up this equalities, we obtain

B(m+1,k+1)— B(m+1,0) = (m +1)S,,.(k).
As
e(t+1)z e((=1)(=2))
-1 a1
it follows that B,,(t + 1) = (=1)™ B, (—t).
Thus we obtain Bernoullj Theorem:

z

Proposition 2 The function k — Sm(k) is given by the polynomial formula
1

Sm(k) = m((—l)m+lB(m + 1, '—k) — Bm+1).




2 Bernoulli series and residues.

In order to describe the Bernoulli polynomials in terms of series, it is use-
ful to consider rational functions of the type o(2) = Ez(:) where E(z) is a
polynomial. The sum over all non zero integers n € Z,n # 0:

Bo)(H) = 3 6(2imn)e*™

n#0

converges absolutely at each real number ¢ if p is a sufficiently large integer
since >, £0 nl—a converges for o sufficiently large. It defines a periodic function
of t. It always converges as a generalized function of ¢, which is smooth when
t¢Z. For0<t<l1 and p sufficiently large, the residue formula in the plane
yields:

xt

B(¢)(t) = residuez—o($(z) T e‘”)'

(For —1 <t < 0, the formula is B(¢)(t) = —residuemzo(qﬁ(m)l—f:—t_;).)

In particular, t — B(@)(t) is given by a polynomial formula whenever
0<t<l

From the definition of B(p,t) it follows that

xt

B(p,t) = —p'residue,—o(z™"

)

1—e®

so that setting ¢(z) = z7P, we obtain, for 0 <t < 1, the following formula
for the Bernoulli polynomial B(p,t):

Proposition 3 Let 0 <t < 1. Then, we have:

B , t xt 2imnt
(p' ) _ —residue,—o(z”7? c )= — ; .
p! 20 (2imn)

1—e®

It is important to notice that the expression on the right hand side is
periodic with respect to t, while the left hand side is polynomial. We will
call the right hand side the Bernoulli series. The Bernoulli polynomial and
the Bernoulli series coincide ONLY on the interval 0 < t < 1. If p > 2, the
sum in the right hand side is absolutely convergent and the formula is valid
forall 0 <t <1




In particular, for p = 29 and t = 0, we get:
1

By, = —(29)! E —_—

2g ( g) =~ (22'7rn)29

= 2(=1)7(29)!(2m)~%¢(29)

where ((k) = }~>° 'n~* is the zeta function at point k.
For g =1, as By = 1, we have

6’
1 2
Zﬁz%

n=1

3 Trigonometric sums

We now consider a closely related sum, which will be a special case of Verlinde
sum. Let p be an integer and let

Given a positive integer ¢, let us consider the expression:

Wp,t)k)= > w'Fw)= >

whk=1,w#1 1<n<L(k-1)

e2imnt/k

(1 _ e2i7rn/k)p ’

It is very similar to the formula:

k.pB(p’ t/k) _ Z e2imnt/k
pl pord (2imn/k)e’

In fact, when & tends to oo, it is not difficult to see that E=PW (p,t)(k)
tends to 0 if p is odd, while if p is even, k=PW (p,t)(k) tends to —Egi.

It is not at all obvious from its definition that the function k W(p,t)(k)
is polynomial in k. We will prove it now.

Theorem 4 Assume0 <t <p, andk > 1, then the function k — W (p, t)(k)
is gien by a polynomial formula in k. This polynomial is of degree less or
equal to p — 1 if p is odd, and is of degree p if p is even. When D 1s even,
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the highest degree term of this polynomial is —k”%fl. We have the restdue
formula:

W (p,t)(k) = —k(residue;=o ((1 _ci“”ex)p a _t_kz)da:>).

Proof. Consider the 1-form (—1%);(1—5;1—)% From the conditions 0 <t < p,

and k > 1, this form has no residues at 0 and oo. Poles of the factor (1—_1%

are obtained at z = e2™/* (0 < n < (k—1)). They are simple, when n # 0,
and their residues add up to the sum W(p,t)(k). As the sum of residues of
this 1-form is equal to 0, we obtain from the residue theorem

2t 2k 2
W (p,t)(k) = k(residue,— <(1 A= d;))

A change of variable z = €” in the residue yields:

W (p, t)(k) = —k(residue,—o ( i ft;)p q _t_kz)dm)).

This last expression depends on k via the Laurent expression of —* . Recall

1—e—kz
from the definition of the Bernoulli numbers that

kx 2. (kz)
; By

ekz —1

Hence

W00 =~ 3 BRelpyt) oy

where

tz
R, (p,t) = (—1)"residue;=o (a—fg)—pf”)

so that R, (p,t) vanishes for large r. In fact, as (1—_%32—),, has a pole at 0 of order

p, we see that R,(p,t) vanishes for 7 > p, so that W (p,t)(k) is a polynomial
of degree less or equal than p. More precisely, it is of degree p for even p and
of degree less or equal to p—1 for odd p. For p even, the highest degree term
is —Bp%, while if p is odd, the term of degree p in k is equal to 0 as B, = 0,
while the term of degree (p — 1) is —(p/2 — t)Bp_l(pr_:;T.
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4 A relation between Bernoullj series and trigono-
metric sums.

Define:

k-1

1
Vigk) = Z 49(sin(mn/k))2a’

n=1

As we will see later on, V(q,k) is a special case of a Verlinde sum.
We have V(q, k) = (=1)"W(2q, ¢)(k). Indeed

e2i7mq/k
(D)W (2, q)(k) = (-1 5 A= iy
1sns(e-1) €
B k-1 1
= — (1- e2i7rn/lc)q(1 — e—2i7m/k)9
B k-1 1
= " 2 °
“— 49(sin(7n/k))%

Thus, from Theorem 4, we obtain that k V(g, k) is a polynomial in k,
of degree 2¢. Notice that V (g, k) is a sum of positive real numbers so that
V(q, k) is positive.

The polynomial k s V(g, k) is of degree 2g and its highest degree term
is

(—1)r+t Do o,
(2g)!

(In our conventions for Bernoulli numbers, (—1)7*1By, is positive.)

There is a more precise relation between the polynomial function ¢
B(2q,t) and the polynomial function k r V(g,k). Consider the Taylor
series at the origin of the function of z

i __ (z/2)™
Alg,z) = (sinh(z/2))2%

2
q o5 q q 4
=1-2 S S
127+ ({0 T 590t +
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Substitute z = % in A(q, z), and consider A(q, 0) as aseries of differential

operators in powers of 0 := 56;. The action of A(g, d) on a polynomial function
of t is well defined.

Theorem 5

V(g k) = (DO (A0, 0/8) - B, Ol

On this expression, we see again that the highest degree term of the
polynomial function k — V(g, k) is (—1)‘1“32(,’;—2%.

(Remark. In the context of the Verlinde formula, this theorem 1is closely
related to the Riemann-Roch theorem on the manifold My := M(SU(2),g) of
flat connections on vector bundles of rank 2 on a Riemann surface of genus g.
This manifold is provided with a line bundle L. The above expression arises

when calculating the integral [y, ch(LF2)A(M,), (where ch is the Chern

character and A(M,) is the A genus). This evaluates the dimension of so-
called conformal blocks: the dimension of the space of holomorphic sections
of the holomorphic line bundle L£F~2 over M,. We shall come back to this
analogy later.)

Proof. How to prove this theorem: Consider the residue formula for the
Bernoulli polynomial

e:ct

B(2q,t) = —(2q!)residuexzo(x‘2" =&

).

We can apply the series A(q,8/k) to this expression. Under the residue,
any analytic function is automatically replaced by its Taylor series. Thus we
obtain

k% .
(_1)q+1ﬁA(q7 8/k)B(2q) t) =

xt
_1\¢ 2q . ) —2q €
(—1)%k residue;—o (A(q, z/k)z = ex))

~ . 1 ezt
= resiaucz—=0 (1 — em/k)q(l _ e-—m/k)q (1 _ 61) .
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Thus at ¢ = 0, we obtain

2

k<9 ..
(_1)q+1§aA(Q> 8/k)B(QQ7 t)lt:O

= residue ! !
a TN =M1 = ee/Mya (1 = er) )
The change of variables z — —kz leads to

2q

(—1)q+1’2“—(ﬂﬁ(q, 8/K)B(2q, 1)y

= —k(residue,_, < iz ez)q(ll —e7)a (1 —]é-’“)))

= —k(—1)%(residue,_, <(1 _eq;)zq a —t—’”)))

We recognize here the residue expression given in Theorem 4 for (- 1)?W (q, 2q) (k) =
V(g, k). Thus we obtain

2q .
(—1)‘1“’;—(_],14@, 8/k)B(24,¢)

k—1

=V(Q7k)=z .

(1 — einn/k)q(l — e—2i7rn/k')q'

n=1

It is amusing to give a false proof of this theorem, by interverting differ-
entiation and summations: A

Indeed if we apply formally /Al(q, d/k) to the sum — > 20 (;2;“:3;9— express-
ing the Bernoulli polynomial 2%3(2(1, t), we would obtain:

k% .
(—1)“*”-274(«;, 8/k)B(2q,1)]:—0

= (~1)%% Z A(q, 2imn/k)

n#0

(2imn)2a

1
- n; (1 _ e2i7rn/k)q(1 _ e—2i7m/k)q'
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This last expression is highly divergent, for at least two reasons: first, for
n # 0 multiple of k, the term to add to the sum is equal to oo, second, all the
terms in the arithmetic progression n+kj give the same summand. However,
it gives a hint of why this operator A(q,0/k) occurs in the comparison. The
» renormalized” sum consists in restricting the sum to 0 < n < k, a set of
representatives of the non zero elements of Z/kZ.

The function V (g, k) has some remarkable integral property (which fol-
lows from the representation theory of SL(2, C)). Indeed, the function

Ver(g, k) = (2(k+ )V (g, k+2) =27+ 9")_ o +11>7r/k>2q

n=

takes positive integral values on integers k. Notice that for k = 0, we have
Ver(q,0) = 1.
We have 1
Ver(1,k) == E(k +1)(k +2)(k+3),

Ver(2, k) = '1%6("’ )2k + 3)(k + 1) (k2 + 4k + 15),

1
Ver(3, k) = 75—66(’“ +2)3(k + 1)(k + 3)(2k* + 16K + 71k + 156k + 315),

You can indeed verify on a few numbers k the amazing fact that these
functions take integral values on integers.

5 Preliminaries on semi-simple Lie algebras

What we did in the previous sections correspond to the Lie group SL(2,C)
with Lie algebra sl(2) and compact form SU(2). Before introducing more
general Verlinde sums, we need to recall some basic facts on the representa-
tion theory of semi-simple Lie algebras.
A Lie algebra g over a field C is called semi-simple if its Cartan-Killing
form (-, -):
gxg—=C

(X,Y) = tr(ad(X)ad(Y))
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is non degenerate. Any semi-simple Lie algebra is the direct product of simple
Lie algebras (a Lie algebra g is called simple if it is semi-simple and has no
proper ideals). An example of simple Lie algebra is the algebra sl (n) of all
n X n matrices with trace equal to 0. Then, up to normalization, the Killing
form is (X,Y) = tr(XY) where tr is the ordinary trace.

In particular si(2) := {<x1 "2

I3 —x
bra.

In order to describe the finite dimensional representations of g, we need
to introduce a few preliminary definitions.

A Cartan subalgebra of a semi-simple Lie algebra g is a subalgebra b of
¢ such that:

i) b is abelian and every element X € B is such that the transformation
ad(X) is diagonalizable,

ii) b is its own normalizer in g i.e. {Xeg[X,hCh}=h.

Such an algebra § is a maximal abelian subalgebra of g and is unique up
to conjugacy. The dimension r of h is called the rank of g. In the case of
sl(n), the algebra b is the set of diagonal matrices (with zero trace). The
rank of sl(n) is n — 1.

For sl(2), we write an element ¢ of h as

_f(t1 O
- ( ; —tJ .
The restriction of () toh x B is non-degenerate. We can then identify
h and h*.

A root is an element o € h*, a # 0, such that the corresponding root
space

Z1,%2, 23 € C} is a simple Lie alge-
) g

go :={X €g,[H X]= a(H)X VH € b}

1s non zero.

Let A:={a € b*,a is a root}.

A positive system of roots is a set A* C A such that

ATN (=A%) = ¢,

A*tU(~A*) = A, and such that for any o, B € AT, a+B€ A= a+f8¢c
AT,

A simple system of roots is a set S C A*, S = {a,...,a,} such that
given o € AT, there are uniquely defined non negative integers m;,i =
1,...,7 such that a=mia; + -+ m,aq,.
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Let S = {al,...,a,.} be a simple system of roots; we set H; to be
the unique element of h such that MNH;) = (—a%aT)O\’ o), for any A € b*.
This element is well defined, since (-, )y« is non degenerate. Thus we have
Oéi(Hi) = 2.

We denote by bgr the real vector space of b spanned by the elements H;
of the complex Cartan subalgebra f. An element A € h* is called an integral
weight if A(H;) is an integer for all 1 < i <r. It is called dominant if N(H;)
is real and non negative for all 1 <1 <r.

We denote by P C by the lattice of integral weights. We denote by @
its dual lattice in hg: the lattice @ is exactly the set of elements ¢ € bR,
where all integral weights take integral values. A weight A is called regular,
if (\,a) #0forallac A. We denote by Prey C by the set of regular integral
weights.

The set

I = {maq + - +meay,m; non negative integers}

induces a partial ordering on the weights: A < X’ whenever N-=xel.
Given a finite-dimensional representation U of g in a complex vector space
V, a weight \ of U is an element A € h* such that

Vii={veV,UH)v=XH)vVHE€ h}

is not reduced to zero. We have V = Yy Va. All weights of a finite
dimensional representation are integral weights.

If V is an irreducible finite-dimensional representation of g, then V has a
unique highest weight A (all other weights N of the representation V satisfy
N < A). This weight A is an integral and dominant weight. Reciprocally,
consider the dominant cone

D := {) € by, A(H;) non negative integer for 1 <@ < r}

of all dominant integral weights. Given A € D, there is exactly one equiva-
lence class of finite dimensional irreducible representations of g admitting A
as its highest weight. Let Uy be a representative of this class. In other words,
the representations Ux, A € D, exhaust all the irreducible representations of
finite dimensions of g up to equivalence.
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6 Witten series.

One interesting generalization of the Bernoulli series are the Witten series
B(p, 9)(t). Here t is an element of hr, and

e(2imAt)

B t) =
(P 9)(2) ; TLns Zin(a W)
This series converges for p sufficiently large. For any p, it is well defined
as a generalized function of t. The function of ¢ € br defined by this series
is periodic with respect to the lattice Q. On hr/Q (represented by a domain
in hr), the expression B(p, g)(t) above is polynomial in sectors delimited by
hyperplanes. On each sector, these series can be in fact expressed in terms
of the Bernoulli polynomials in one variable.
In the case of sl(2) one recovers:

B(p.t1) = =B(p,sl2))(t) =~y ——

th 0
tebr= ((; —tl)
with ¢; E]O, 1[

Similarly to the case of si(2), a residue formula due to A. Szenes ([Sz1])
can be given for these infinite sums, a formula which allows to calculate them
effectively and to prove their polynomial behavior in sectors.

Consider the example of s/(3): we get

Blg,sl@)(t,t)= 3

n17#0,n27#0,n1+n27#0

Here

62i1r(t1 n1+(t1+t2 )'n,g)

(2imny1)9(2imng)9(2im (ng + ng))d’

Here the point (¢1,2,) € R? represents the diagonal matrice in by

t1 0O 0
123 0
0 0 —(t1+ta)

Changing n; to n 4+ m, and ngz to —m this is also equal to

eZiw(tln—tzm)

(—1)¢ e — -,
n#O,m7;.n+m¢0 (2imn)?(2imm)a(2ir (n + m))
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The residue formula depends on the position of (1, to) in sectors (as 'né ‘thte

one dimensional case, the residue formula for the similar sum ), o Girny
was only valid for 0 < t < 1). It reads

(—1)*B(g, su(3))(t1,t2) =

. ' e{tl}z_{tZ}y 1
_reSIduez:O[remduey:o .’quq(ﬂ: T y)q (1 — 6x)<1 — e__y)]
e{tl +to}z+{t2}y 1

+residue,—o[residuey=o e 19 (L= )1 — ey)]'

Here {t} denote ¢ — [t] where [t] is the integral part of t.
For example, we have B(2,su(3))(0,0) = — 55515
Very naively, looking at the sum of residues at the points z = 2imn,y =
92imm, the first iterated residue —residue —o[residuey—o-] should already lead
to
e2i1r(t1n—tz'm)

Z (2imn)4(2imm)4(2im)(n + m)?

n#0,m#0,n+m+#0

and the second residue should lead to the sum
e2iﬂ(tl+t2)n+(t2)(n+m)

Z (2imn)?(2imm)?(2im)(n + m)

n#0,m#0,n+m#0

which is equal, as seen from the first formula for B(g, sl(3))(t1,t2), after
changing n; and na.

But, in fact the two iterated residues are not equal, and Szenes formula
shows that the correct answer is the sum of both iterated residues. Further-
more we must be careful with the order in which we take residues.

( Remark: Let G be the compact simply connected group whose Lie algebra
is a compact form of g. Up to some normalization, for p = 2g—1, the Witten
series compute the symplectic volume of the manifold M(G, g,t) of moduli
space of flat connections on G-vector bundles on a Riemann surface of genus
g with one hole (the variable t € hr parametrize the holonomy of the flat
connection around the hole). We describe this manifold in Section 8, and
give some references for its geometric meaning.)
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7 Verlinde sums

One interesting generalization of the sum

k—1 1
Vig, k) = ; 49(sin(mn/k))%

considered in Section 4 is the Verlinde sum, that we are going to describe.
Let g be a simple Lie algebra of rank r. Let S be a simple system of
roots, A™ the corresponding positive system of roots and D the associated
cone of dominant integral weights. Let p = % Zae A+ O
Let 6 be the highest root. Let us also introduce the set (called an alcove):
(A, 0)

= — <
Ay {)\eD,2<9’0> <k}

(the definition of A4, does not depend of the choice of the scalar product.)
Let h be the dual Coxeter number A = 2% + 1. When g = si(n), then
h =n.

Consider the scalar product < "y > such that < 0,0 >= 2.
Let g be an integer. The Verlinde sum is

1

Ver(q, g)(k) = c&(k + h)™
c uGZA;c [loca+(1- e >)q(1 - e_“TfQ)q
1 2q
= cg(k+h)™ NEZTT
’ :L‘: [loca+ (2sin(==g1322))

Here ¢ is an explicit constant depending on G. It is such that Ver(1,g)(0) =
1.

When g = s1(2), Ver(g, g)(k) is the polynomial Ver(q, k) we considered at
the beginning of this lecture. Similarly to this case, there is a residue formula
(due to Szenes) for the Verlinde sum, which allows to show its polynomial
behavior in k and to compare it to the Witten series.

For g = sl(3), the above sum is

Ver(q, si(3))(k) = 3%(k + 3)%
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n1>0,n2>0,n1+n2<k

It is known (and amazing) that the function k —Ver(q, g)(k) takes inte-
gral values on integers: it is the dimension of a vector space arising in con-
formal field theory, namely the space of conformal blocks (a vector space of
holomorphic sections of the space of holomorphic sections of the holomorphic
line bundle £ over the manifold M(G, g) = M(G, g, 0)) of a Riemann surface
of genus ¢ + 1 with central charge k. This was conjectured by Verlinde and
proven by Beauville-Laszlo, G.Faltings , S. Kumar, M.S. Narasimhan and A.
Ramanathan, in various degrees of generality.

There is a relation between the Witten series and the Verlinde sum: The
Verlinde sum is obtained from the Witten series by applying a series of differ-
ential operators A(g, 8/(k+h)) to the Witten series. The form of the wanted
operator A(g,8/(k + h)) can be guessed from the same intuitive argument
of “differentiating” under the sum sign. The correct argument follows imme-
diately from the explicit residue formula. It allows to compute the integral

A

Sy ch(LF)A(M(G, g))) (ch is the Chern character and A(M(G,g)) is

the A genus), at least when k is sufficiently large.

Tt is known that there exists an integer d such that the function k
Ver(q, g)(dk) is polynomial in k. What is not known is the value of the
smallest possible d. It is known that d =1 for g = sl(n).

The following conjecture on d is natural in view of Kumar-Narasimhan
work on the Picard group of M(g, G,0) (Math. Ann. 308 (1997) 155-173):

d =1 for C,

d = 2 for B,(r > 3),D,(r > 4),G2

d=26 for F4,E6
d =12 for Er
d = 60 for Ej

where C,, By, D, are respectively the series of simple Lie algebras and
Fy, Eg, Eq, Eg are the exceptional Lie algebras. (Kumar-Narasimhan proved
that d was smaller or equal to these values).
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8 Geometry beyond. A very few references

The underlying geometric object to the theory of Witten series and Verlinde
sums is the manifold M(G, g,t). Here G is a compact (simply connected)
Lie group with Lie algebra g, g is a positive integer and ¢ is an element
of the Cartan subalgebra hg of the complex semi-simple Lie algebra g¢. If
u1,ug € G, we denote by [uy, ug) = uyuguyluy?

The manifold M(G, g,t) is defined to be:

g

M(G,g,t) = {(u1,v1,...,uy,v,)| ui,v; € G suchthat H[ui,vi] = e*™YT.
i=1

Here T' denotes the maximal compact torus of G with Lie algebra ihg.

The notation /T means that we identify (2g)-tuples (uy, vy, ... , Ug, Ug) and
(u, 1, ..., up,v}) if there exists b € T such that u; = tu;t™! and v} = tu;t L.

¢ The main reference on the geometric properties of the manifold M(G, g, t)
is:
M.Atiyah and R.Bott: The Yang-Mills equation on a Riemann surface.
Phil. Trans. R. Soc. A 1982 308.

 The computation of the volume of M(G, g,t) when G = SU (2) is due
to M. Thaddeus, who related volumes and Bernoulli numbers.

M. Thaddeus: Conformal field theory and the cohomology of the mod-
uli space of stable bundles. J. Differential Geom. 1992 pp 131-149.

In the general case, the volume of M (G, g,t) is determined in the form
of Witten series in:

E. Witten: On quantum gauge theories in two dimensions. Comm.
Math. Phys. 1991, 141, pp 153-209.

e A simple description of the manifold M (G, g,t) together with the com-
putation of its symplectic form is in

—A. Alekseev, A. Malkin, E. Meinrenken: Lie group valued moment
maps. J. Differential geom 1998, 48, pp 445-495

A quick computation of Witten formulas for its symplectic volume is
in:

~A. Alekseev, E. Meinrenken and C. Woodward: Duistermaat-Heckman
distributions for group valued moment maps.
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e The Verlinde formula was conjectured by:

E. Verlinde : Fusion rules and modular transformations in 2D-conformal
field theory. Nuclear Physics B 1988 300, pp 360-376.

e It was proved using fusion rules, by

_ A. Beauville and Y. Laszlo (for SL(n)): Conformal blocks and gener-
alized theta functions. Comm. Math. Phys. 1994 164, pp 385-419.

— Q. Faltings: A proof of the Verlinde formula. J. of Alg. Geome-
try1994, 3, pp 347-374.

— S. Kumar, M.S. Narasimhan and A. Ramanathan: Infinite Grass-
mannian and moduli spaces of G-bundles. Math. Annal. 1994, 300, pp
41-75.

e Results on computation of intersection numbers (and thus the Riemann-
Roch formula) are obtained via multi-dimensional residues in:

—Lisa Jeffrey and Frances Kirwan (for SL(n)): Intersection theory on
moduli spaces of moduli spaces of holomorphic vector bundles of ar-
bitrary rank on a Riemann surface. Ann. of Math. 1998, 148, pp
109-196.

e A proof of the Verlinde formula for general compact simply connected
groups and any number of holes (but with restrictions on k) is obtained
via the Riemann-Roch theorem and multi-dimensional residue calculus
is obtained in:

_Jean-Michel Bismut and Francois Labourie. Symplectic geometry and
the Verlinde formulas. Surveys in differential geometry: differential
geometry inspired by string theory pp 97-311, Surv. Differ. Geom., 5,
Int. Press, Boston, MA , 1999.

e Another approach, which handles the general case, is due

— A. Alekseev, E. Meinrenken and C. Woodward: Formulas of Verlinde
type for non simply connected groups. (SG/0005047).
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