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We are concerned with a long-standing classical problem in computational
geometry: that of finding a minimum weight triangulation of a point set. A
minimum weight triangulation is a triangulation which minimizes the sum of
the Euclidean lengths of the edges used. Triangulations are very useful objects
in the realm of applied computational geometry. By allowing for decompositions
of space into smaller regions, triangulations are useful for graphical rendering,
numerical estimation of volume integrals, and many other modelling applica-
tions. There are different measures of optimality for triangulations, each giving
properties which may be desirable for certain applications. For example, one
may seek to minimize the largest angle of all triangles used, or to maximize the
smallest area of a triangle. Each notion of “optimal” leads to the development of
different algorithms, some of which are deemed efficient for running in a number
of steps which is relatively small compared to the possibility of examining all or
most of the candidate objects in one’s search for the optimum. For a thorough
treatment of triangulations, consult the upcoming book Triangulations: Appli-
cations, Structures, Algorithms by De Loera, Rambau, and Santos[8].

The problem of efficiently finding a minimum weight triangulation of a point
set has been of interest to mathematicians and computer scientists for some time.
Indeed, of all the problems of unknown computational complexity collected in
Garey and Johnson’s 1979 book on NP-Completeness[12], this problem is one of
the few that remains yet unclassified. Much progress, however, has been made
towards a more complete understanding of the problem. For example, there
are polynomial-time algorithms for determining the minimum weight triangula-
tion of special classes of point sets, such as polygonal domains[13, 15]. Certain
edges and progressively larger subsets of edges have been proven to belong to
the minimum weight triangulation. These include the shortest edge[13], all mu-
tual nearest-neighbor edges[22], and two different sets of edges known as the
β-skeleton[14, 6] and the LMT-skeleton[9, 1]. Additional work has been done to
create and evaluate different methods of finding the exact minimum weight tri-
angulation and also approximating the minimum weight triangulation of point
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sets in R2[2, 17, 16, 19, 18, 20, 10] and higher dimensions[7, 3, 5]. For a survey of
optimization with regard to triangulations, see [4], or the optimization chapter
of the upcoming book [8].

Some work has been done evaluating the impact of adding additional points
to the original point set, and then triangulating this new superset of input
points. These new points are called Steiner points, a term which has typically
meant a collection of points which are added to the original point set for the
sake of computing a triangulation with certain properties. The minimum weight
triangulation of the new larger point set is referred to as the minimum weight
Steiner triangulation. By careful choice of location for these Steiner points,
one may create triangulations that avoid small angles or ones that result in
a reduction of triangulation length when comparing the length of a minimum
weight Steiner triangulation to that of a minimum weight triangulation of the
original point set. Eppstein has shown that a constant factor approximation to
the minimum weight Steiner triangulation can be calculated quickly, and that
the minimum weight triangulation of n points can have length Θ(n) times the
length of the minimum weight Steiner triangulation[11].

In this paper we investigate the topology of the regions for which a single
Steiner point may be added and the total length of a minimum weight Steiner
triangulation is less than the length of a minimum weight triangulation. We call
such a point a Steiner reducing point, and the region of the plane where such
a point may be added we call a Steiner reducing region. In the first section,
we demonstrate some basic examples of point sets that admit Steiner reducing
regions. In the second section, we prove the following theorems, showing that
Steiner reducing regions may have multiple disconnected components.

Theorem 1 There exists a 15-point set that admits a Steiner reducing region
with 20 disconnected components.

Theorem 2 The number of disconnected components of the Steiner reducing
region of an n-point set is O(n), with the constant c ≥ 1.

In the third section of the paper, we prove the following result:

Theorem 3 There exists an 18-point set that admits a connected Steiner re-
ducing region whose first homology group has rank at least 13.

We conjecture but do not prove that the rank of the first homology group of
a connected Steiner reducing region may grow without bound. In the fourth
section, we investigate the behavior of random point sets. In the final section,
we detail some computational progress in determining if a point set has a Steiner
reducing region.
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1 The basics

We begin with a review of terminology. A triangulation of a point set X ∈ R2 is
an inclusion-maximal set T of non-intersecting straight line segments connecting
pairs of points in X . A triangulation may be specified by either a listing of its
edges or by a listing of its triangles. When we speak of the combinatorial type
of a triangulation, we mean the listing of the triangles used, or, equivalently, a
listing of the edges. Note that the combinatorial type of a triangulation does
not provide an explicit geometric description of our point set, but only limited
information about relative orientations of points to one another. For example,
if the triangulation includes triangles 4ABC and 4ABD, then we know from
the combinatorial description that points C and D must be on opposite sides of
segment AB. We define the length or weight of a triangulation of X to be the
sum of the Euclidean lengths of the edges used in the triangulation. A minimum
weight triangulation of a point set X is a triangulation which has length less
than or equal to the length of every other triangulation of X . We note that
such a triangulation is not necessarily unique. We will denote the weight of the
minimum weight triangulation of X by MWT(X ).

Now we move into notation and terms which may not be as standard. We
say that a point set X is Steiner reducible if there exists a point p = (x, y) /∈ X
such that MWT(X ∪ {p}) < MWT(X ). Such a point p is said to reduce the
length of the triangulation, and we refer to p as a Steiner reducing point. For a
given point set, we are concerned with the region of the plane consisting of all
reducing points, which we refer to as the Steiner reducing region.

(insert four point example which reduces exteriorly)

(insert five point example with interior reduction)

(insert example of how subtriangulations of convex or non-convex 4-gon can
give exterior reducing regions for larger point sets)

(insert transition)

Theorem 4 Let X ⊂ R2 be a set of n points that admits a Steiner reducing
point Z ∈ R2 − X . Fix a combinatorial type of triangulation that provides a
minimum weight Steiner triangulation. Let H be the set of points to which Z
is connected in this combinatorial type. Then the subset of the Steiner reducing
region that corresponds to this combinatorial type is convex.

(NEEDS PROOF)
The convexity of these regions will be established by the following lemma,

which we state without proof.

Lemma 5 Let Z = (x, y) be a point in R2 and P = {(xi, yi)}n
i=1 a set of n

distinct points in R2 − {Z}. Then the function f(Z) =
∑n

i=1 dist(Z, (xi, yi)) is
convex.
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This lemma follows rather directly by taking derivatives of f. We note here
a fundamental phenomenon with regard to Steiner reducing regions. All reduc-
tions occur when a new set of edges connecting our Steiner reducing point Z
to a set of input points F ⊆ X replace a set E of edges from the original mini-
mum weight triangulation. Let L =

∑
e∈E length(e). The subset of the Steiner

reducing region corresponding to the combinatorial type implied by F will be
itself a subset of M = {(x, y)|∑f∈F dist

(
(x, y), f

)
< L}. We note that sets of

this type and their properties are described as “n-ellipses” by Sekino in [21].
Notice in particular that if F has one element, then M will be a circle, and for
a two-element set F , M will be an ellipse. For values of n > 2, these n-ellipses
remain convex, though they may be asymmetric.

(cite eppstein’s conj that no convex n-gon may be reduced interiorly)

(show example of almost convex 24-gon with interior reduction)

2 Connectivity of Steiner reducing regions

In this chapter we investigate point sets with multiple disconnected Steiner
reducing regions. Let the point set P consist of a regular pentagon G5 of radius
32 containing a smaller regular 10-gon G10 of radius 8. Explicitly, we require
that each of the regular n-gons be rotated by an angle of π

n from the standard
n-gon construction which uses the point (1, 0). The coordinates of P are:

G5 =
{(

32 cos
2π(2j − 1)

10
, 32 sin

2π(2j − 1)
10

)∣∣∣∣j = 1..5
}

G10 =
{(

8 cos
2π(2k − 1)

20
, 8 sin

2π(2k − 1)
20

)∣∣∣∣k = 1..10
}

We label the points of G5 by A, . . . , E, for values of j = 1..5. We similarly label
the points of G10 by F, . . . , O, for values of k = 1..10. We note that the dihedral
group of order 10, D5, will act on the point set P and create many symmetries
which we shall exploit in the course of our proof. We may claim that certain
cases are unique “up to symmetry” - by this we will mean that we are avoiding
the consideration of duplicate cases that arise by the action of some element of
D5 which leaves the elements of our hypotheses fixed. We will say that edge
ST is symmetric to edge UV if both segments are in the same orbit under the
action of the dihedral group.

(revise following paragraph to give careful definition of visibility)

We will rely heavily on proofs by contradiction when making claims about
the structure of a given triangulation. Once we know (or if we assume) that
a certain edge is included in the triangulation, then visibility constraints will
give a set of possible triangulations that used the specified edge. We will seek to
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find local contradictions to minimality if possible: for example, pairs of triangles
which share an edge that is the long diagonal of the 4-gon formed by their union.
If, however, we assume that a certain edge is not present, then we know that
some edge used in the triangulation must cross that segment. We now establish,
for our particular point set, a subset of the minimum weight triangulation that
will simplify our task of finding the overall minimal triangulation of Q.

Lemma 6 Any minimum weight triangulation of P contains a minimum weight
triangulation of G10.

Lemma 7 Any minimum weight triangulation of P contains the edges in the
set {AF, AG, BH,BI, CJ,CK, DL,DM,EN, EO}, plus one edge each from the
following five pairs of edges: (AH,BG), (BJ,CI), (CL, DK), (DN, EM), and
(AO,EF ).

Theorem 8 The point set P = G5 ∪ G10 described above has 20 disconnected
Steiner reducing regions within its convex hull.

Proof : We consider the effects of adding a new point Z to the point set P. We
note that the existence of the convex hull of G10 in the minimum weight
triangulation of P ∪ {Z} defines regions of visibility which restrict the
feasible combinatorial types of triangulations of that set. We claim
that within the chambers of the line arrangement formed by extending
the segments of G10’s convex hull, we will find our disconnected Steiner
reducing regions. Indeed, due to the symmetry of our point set, we only
need to prove the existence of two such disconnected Steiner reducing
regions.

(describe chamber, find reducing point,)

(find non-reducing polygonal path around reducing point)

(repeat for second example)

3 First homology of Steiner reducing regions

We consider now a point set Q consisting of a regular hexagon G6 containing a
smaller regular 12-gon G12, where specifically,

G6 =
{(

83 cos
2π(2k − 1)

12
, 83 sin

2π(2k − 1)
12

)∣∣∣∣j = 1..6
}

, and

G12 =
{(

20 cos
2π(2k − 1)

24
, 20 sin

2π(2k − 1)
24

)∣∣∣∣k = 1..12
}

.
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We label the points of G6 by A, . . . , F , for values of j = 1..6. We similarly
label the points of G12 by G, . . . , R, for values of k = 1..12. Notice that our
point set is preserved under the standard group action of D6, the dihedral group
of order 12. We will once again utilize the symmetries of our point set to reduce
the number of cases we much consider.

We now establish, for our particular point set, a subset of the minimum
weight triangulation that will simplify our task of finding the overall minimal
triangulation of Q.

Claim 9 The minimum weight triangulation of Q includes a minimum weight
triangulation of the 12-gon formed by the points of G12.

N

G
R

L
M

K
J

Q
O P

I
H

D

E

C

B

A

F

Figure 1: Q with minimally triangulated 12-gon.

Proof : We note that if all edges of the convex hull of G12 are present in
the minimum weight triangulation, then our claim must hold, for the
interior of the 12-gon will be triangulated minimally. Assume that
some edge of the 12-gon is not present. There are two types of edges
in the convex hull of the 12-gon: those symmetric to GH (edges IJ ,
KL, MN , OP , and QR) and those symmetric to HI (edges JK, LM ,
NO, PQ, and RG).

Assume towards a contradiction that edge GH is not in the minimum
weight triangulation. Then there must be some edge that passes be-
tween G and H. There are three such possible edges, up to symmetry:
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AM, BR and AD. Assume AM is in the minimum weight triangu-
lation. Then it must belong to two triangles. Visibility constraints
then require that 4AHM will then be in the minimum weight tri-
angulation, and also one of 4AGM , 4AMN . Now, if 4AGM is in
the triangulation as shown in Figure 2, then AGHM will use diago-
nal AM instead of the shorter GH, a contradiction. Likewise, the use

B

E

C

D

A

F

K HI

PO
N Q

J

M
L

R
G

Figure 2: Edge AM does not belong to the minimum weight triangulation of Q.

of 4AMN forces AHMN to use diagonal AM instead of the shorter
HN . Thus AM does not belong to the minimum weight triangulation.
Now assume that BR is in the minimum weight triangulation. Then
4BGR is forced to belong to the triangulation, as is 4BHR. This
means that BGRH uses BR instead of the shorter GH, a contradic-
tion. (See Figure 3.)

Lastly, assume that AD is in the minimum weight triangulation. This
forces triangles which in turn give two possible quadrilaterals (up to
symmetry) which would be triangulated by AD in the minimum weight
triangulation: AHDG and AHDN. Note that AD is longer than GH
and HN , the other diagonals of those 4-gons. This implies that AD
does not belong to any minimal triangulation.

It follows that edge GH must belong to the minimum weight triangu-
lation of Q, and by symmetry, so must edges IJ , KL, MN , OP , and
QR.

Now we assume, also towards a contradiction, that edge HI is not
in the minimum weight triangulation. Then there must be a segment
that passes between H and I. The only two possible such edges are
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Figure 3: Edge BR does not belong to the minimum weight triangulation of Q.

AL and BQ, which are symmetric to one another. Assume then, that
AL is in the minimum weight triangulation. This forces the inclusion
of 4AIL in the triangulation, as well as forcing 4AHL. Then AILH
uses AL and not the shorter HI. It follows that edges HI, JK, LM ,
NO, PQ, and RG are in the minimum weight triangulation of Q. We
have established that the edges in the convex hull of G12 are also edges
of the minimum weight triangulation of Q.

We now note that the following sets of segments are orbits under the action
of D6, and therefore define equivalence classes based on length.

Γ := {AG, AH, BI, BJ, CK, CL, DM, DN, EO, EP, FQ, FR}
Φ := {AR, AI, BH, BK, CJ, CM, DL, DO, EN, EQ, FP, FG}
Ψ := {AQ, AJ, BG, BL, CI, CN, DK, DP, EM, ER, FO, FH}

All segments in Γ have length
√

202 + 832 − 2 · 20 · 83 cos
(2π

12
− 2π

24
)

=
√

7289 − 3320 cos
( π

12
) ≈ 63.8915,

segments in Φ have length
√

202 + 832 − 2 · 20 · 83 cos
(2π · 5

24
− 2π

12
)

=
√

7289 − 3320 cos
(π

4
) ≈ 70.2951,

and segments in Ψ have length
√

202 + 832 − 2 · 20 · 83 cos
(2π · 7

24
− 2π

12
)

=

√
7289 − 3320 cos

(5π

12
) ≈ 80.1855.
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Claim 10 A minimal triangulation of Q includes all edges in the set Γ and
one edge each from the following six pairs of edges: (AI, BH), (BK,CJ),
(CM, DL), (DO, EN), (EQ,FP ), (FG,AR).

Proof : Other potential edges in a triangulation of Q are: AC (or one of the
symmetric edges BD, CE, DF , AE, BF ) and AQ (or one of the
symmetric edges from set Ψ). If we can show that none of these two
equivalence classes of edges are used, then our above claim about the
structure of the minimal triangulation will be true. Our proofs will
continue to be structured to look for contradictions of the form of a
quadrilateral which uses the long diagonal instead of the short diagonal.

Assume that edge AC is in a minimum weight triangulation of point
set Q. Then AC forms a triangle also with one of I, J . WLOG, assume
4ACI is in this triangulation of Q. (Note that 4ACI is symmetric to
4ACJ .) Then ABCI is triangulated with AC instead of the shorter
diagonal BI, a contradiction. It follows that neither AC nor any edges
symmetric to AC belong to the minimum weight triangulation of Q.

Similarly, assume AQ is in a minimum weight triangulation of Q. This
edge must belong to two triangles. The only two possible such triangles
are 4AQR and 4AFQ. (Note the use of 4AEQ would imply the
use of edge AE, which is symmetric to AC and therefore not in any
minimum weight triangulation by the above argument.) This means
AFQR uses diagonal AQ and not the shorter FR. It follows that
neither AQ nor any edges symmetric to AQ belong to the minimum
weight triangulation of Q.

We have therefore established that one minimum weight triangulation
of Q uses the following edge set between the convex hulls of G6 and
G12:

Ω := Γ ∪ {AI,BK,CM, DO, EQ,FG}.

We now seek to establish several convex regions, the union of which will be
a connected planar region that is not simply connected. There are five regions,
up to symmetry, which we must consider. These regions are bounded by lines
extended from the edges of the interior 12-gon. The chambers of this line ar-
rangement define regions of visibility for our new point Z that is to be added.
We have established that the 12-gon which is the convex hull of G12 is included
in all minimum weight triangulations of Q.

(CONJ: A similar proof will show that the convex hull of G12 will belong to
the minimum weight Steiner triangulation of Q, provided the Steiner point we
add is not on an edge of the 12-gon.)

Since edge-crossing is disallowed by the definition of a triangulation, our
Steiner point Z can only be connected to points that do not require those
segments to intersect conv(G12). We say that a point of G12 that does not
require the ray to Z to intersect the 12-gon is said to be visible to Z.
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Figure 4: Q triangulated minimally with the edges in Ω.

When we refer to triangles in our triangulation, we mean triangles that
contain no point from our original set. We will sometimes speak of “visibility
constraints” or claim that certain results are forced “by visibility.” This should
be taken to mean that all other choices of triangles would either contain points
from our set or would intersect some edge which must belong to the triangula-
tion. As shown in Figure 5 below, if AC belongs to our triangulation, the we
say that visibility constraints imply that either 4ACI or 4ACJ must belong
to our triangulation. Moreover, those two cases are the same, up to symmetry:
reflecting along the line BE will fix AC and map 4ACI to 4ACJ.

We define region 1 to be the bounded chamber formed by lines HI,GH, KL,
and JK. Let

a = HI ∩ JK ≈ (0, 22.30710),
b = GH ∩ JK ≈ (7.07107, 26.38958),
c = GH ∩ (y = 30.675) ≈ (4.59688, 30.675),
d = (y = 30.675) ∩ JK ≈ (−4.59688, 30.675), and
e = HI ∩K ≈ (−7.07107, 26.38958).

We claim that the interior of the convex hull of {a, b, c, d, e} is a reducing
region when a new point Z is connected to points in A := {A,B, C, H, I, J,K}.
The edges ZA,ZB, ZC, ZH, ZI, ZJ, ZK will replace edges AI, BI, BJ,BK from
the original triangulation, which have a summed length of 268.374. Let dA(Z)
be the sum over points P ∈ A of the distance from P to Z. Then we have
dA(a) = 254.103, dA(b) = 264.081, dA(c) = 268.349, dA(d) = 268.349, and
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Figure 5: Triangle 4ACH is disallowed by visibility, since point I is in its
interior.

dA(e) = 264.081. Since all five of the above values are less than 268.374, any
point added within the convex hull of {a, b, c, d, e} will indeed reduce the length
of the minimum weight triangulation.

We define region 2 to be the bounded chamber formed by lines GH, IJ,GR,
and JK. Let

f = JK ∩ (y = −0.58307x + 41.77457) ≈ (16.77621, 31.99285),
g = GR ∩ (y = −0.58307x + 41.77457) ≈ (19.31852, 30.51051),
h = GH ∩ JK ≈ (7.07107, 26.38958),
i = GH ∩ IJ ≈ (11.15355, 19.31852), and
j = GR ∩ IJ ≈ (19.31852, 19.31852).

We claim that the convex hull of {f, g, h, i, j} is a reducing region when
a new point Z is connected to points in B := {A,B, G, H, I, J}. The edges
ZA, ZB,ZG,ZH,ZI, ZJ will replace edges AH, AI,BI from the original tri-
angulation, which have a summed length of 198.079. Let dB(Z) be the sum over
points P ∈ B of the distance from P to Z.
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Then we have

dB(f) = 197.124,

dB(g) = 197.097,

dB(h) = 183.697,

dB(i) = 173.916, and
dB(j) = 183.697.

Since all five of the above values are less than 198.079, any point added
within the convex hull of {f, g, h, i, j} will indeed reduce the length of the min-
imum weight triangulation.

We define region 3 to be the bounded chamber formed by lines GH, KL,GR,
and JK. Let

k = KL ∩ (y = −0.24958x + 41.81550) ≈ (1.60397, 41.41519),
l = GR ∩ (y = −0.24958x + 41.81550) ≈ (19.31852, 36.99399),

m = GH ∩ JK ≈ (7.07107, 26.38958),
n = GH ∩KL ≈ (0.00000, 38.63703), and
o = GR ∩ JK ≈ (19.31852, 33.46065).

We claim that the convex hull of {k, l, m, n, o} is a reducing region when a
new point Z is connected to points in C := {A,B, G, H, I, J,K}. That set of
edges will replace the following edges from the original triangulation: AH, AI, BI,BJ.
The summed length of those four edges is 261.971. Let dC(Z) be the sum over
points P ∈ C of the distance from P to Z.

Then we have

dC(k) = 259.236,

dC(l) = 251.262,

dC(m) = 208.192,

dC(n) = 251.505, and
dC(o) = 241.551.

Since all five of the above values are less than 261.971, any point added
within the convex hull of {k, l, m, n, o} will indeed reduce the length of the min-
imum weight triangulation.

We define region 4 to be the bounded chamber formed by lines KL, GH and
convex hull edges AB, BC. Let

p = GH ∩ (y = 44.6) ≈ (−3.12136, 44.6),
q = KL ∩ (y = 44.6) ≈ (3.12136, 44.6), and
r = GH ∩KL ≈ (0.00000, 38.63703).
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We claim that the convex hull of {p, q, r} is a reducing region when a
new point Z is connected to points in D := {A,B, C, G,H, I, J,K, L}. That
set of edges will replace the following edges from the original triangulation:
AH, AI, BI,BJ,BK, CK. The summed length of those six edges is 396.158.
Let dD(Z) be the sum over points P ∈ D of the distance from P to Z.

Then we have

dD(p) = 389.779,

dD(q) = 389.779, and
dD(r) = 362.079.

Since all three of the above values are less than 396.158, any point added
within the convex hull of {p, q, r} will indeed reduce the length of the minimum
weight triangulation.
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I

Figure 6: Regions 1 through 5 and their locations within Q.

We define region 5 to be the bounded chamber formed by lines JK,GR and
convex hull edge AB. Let

s = GR ∩ (y = −0.56463x + 50.38075) ≈ (19.31852, 39.47297),
t = JK ∩ (y = −0.56463x + 50.38075) ≈ (24.58335, 36.50030), and
u = JK ∩GR ≈ (19.31852, 33.46065).

We claim that the convex hull of {s, t, u} is a reducing region when a new
point Z is connected to points in E := {A,B, G,H, I, J,K,R}. That set of edges
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will replace the following edges from the original triangulation: AG,AH, AI, BI, BJ.
The summed length of those five edges is 325.863. Let dE(Z) be the sum over
points P ∈ E of the distance from P to Z.

Then we have

dE(s) = 303.332,

dE(t) = 303.605, and
dE(u) = 280.188.

Since all three of the above values are less than 325.863, any point added
within the convex hull of {s, t, u} will indeed reduce the length of the minimum
weight triangulation.
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Figure 7: The Steiner reducing region of Q.

We have now established a reducing region that is connected but not simply
connected. We now proceed to prove the existence of 13 holes within this
reducing region. We will do so by finding points in the interior of the holes
that do not reduce, combined with polygonal reducing paths around the holes.

Claim 11 The point X = (0.00000, 35.08709) will not reduce.

Proof : We first must establish the minimum weight triangulation of Q ∪
{X}, and then we will calculate the length of that triangulation. We
claim that the minimum weight triangulation connects X to points
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A,B, C, H, I, J,K.

Note that the use of edge AC would imply that 4ABC and 4ACX
are both in the minimum weight triangulation, with the latter triangle
forced by visibility. Edge BX is shorter than edge AC, a contradiction
to minimality. Thus edge AC will not be used in this minimum weight
triangulation.

We claim that edge IJ must be in the minimum weight triangulation.
Otherwise, an edge from X must cross it, and there is one type of such
edge up to symmetry, edge PX. The inclusion of this edge forces trian-
gle 4PIX to be in the triangulation, as well as one of 4PJX,4POX.
In the case where 4PJX is used, we have PJXI using PX instead
of the shorter IJ . In the case where 4POX is used, we have POXI
using PX instead of the shorter IO. Thus it follows that edge IJ must
be included in the new minimum weight triangulation.

The edge IJ can connect to two possible points, up to symmetry: X
and A. If IJ connects to A, then AJ is forced by visibility to connect
to X. This implies that the shorter edge XI should have been used
instead of AJ . Thus the triangle 4IJX is in the minimum weight
triangulation.

Edge XI can connect to A, B, or H. If we connect it to A, then we
have XAI in the minimum weight triangulation, and edge XA must
connect to B. (It cannot connect to C by an earlier comment above.)
If XA connects to B, then the shorter edge BI should have been used
instead of XA. Thus XAI is not in the minimum weight triangulation.
If we connect B to XI, then BI must connect to A or H. Connecting
BI to A implies the use of 4AHI, which puts us in an interesting po-
sition. Now, trapezoid ABIH can be triangulated with either BH or
the equal-length AI. If we flip edge AI to BH, then we are back in the
above situation of using 4BHI, which gave us a contradiction. Thus
we cannot connect XI to B, so we must attach it to H and include
4HIX in the minimum weight triangulation.

Edge HX can connect to B or to A. If it connects to A, then edge XA
must connect to B, but we note that AX > BH, so we should have
used BH instead of AX. Thus triangle 4AHX does not belong to the
minimum weight triangulation, but 4BHX will be in the minimum
weight triangulation. Moreover, edge BH belonged to an original min-
imum weight triangulation.

Edge BX can connect to C, J, or K. If we connect to C and form
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triangle 4BXC, then edge XC can connect to J,K, or D. If XC con-
nects to J , then we should have used the shorter BJ instead of XC. If
XC connects to K, then we should have used the shorter BK instead
of XC. If we connect XC to D, this forces 4XDK, which implies we
should have used the shorter CK as opposed to XD. So we should
not use triangle 4BCX. If we connect BX to J , then we find our-
selves considering connecting edge BJ to one of points C or K, which
is a case symmetric to our consideration of connecting edge BI to A
or H. Recall from arguments above that both of those choices led to
contradictions. Thus we are forced to include triangle 4BXK in our
minimum weight triangulation. Note this also implies that triangle
4JKX is in our triangulation.

Now we notice that edges BK and BH are both included in a minimum
weight triangulation of our original point set. Therefore our previous
work tells us how to triangulate the rest of the point set. We may
now consider the length of this new triangulation. We compare the
length of the new edges within the non-convex pentagon BHIJK to
the length of the edges that originally triangulated BHIJK. The new
edges are XB,XH,XI, XJ, and XK, and these have a summed length
of 154.2164. They replace edges BI and BJ , which have a summed
length of 127.78. Therefore the addition of point X does not reduce
the length of the minimum weight triangulation, as desired.

We now note that there will actually be a small neighborhood around point
X in which no point will reduce.

Lemma 12 If a point p = (x, y) in the interior of a visibility region does not
reduce the length of the minimum weight triangulation, then there will be a small
open neighborhood around that point in which no point will reduce the length of
the minimum weight triangulation.

Proof : Since p is in the interior of the visibility region, there must be a ball
B(p, δ) of radius δ around p, such that all points inside of B(p, δ)
can be connected to the same set of points to which p may be legally
connected. An arbitrary point q within B(p, δ) may or may not give
rise to the same combinatorial type of minimum weight triangulation as
the addition of p would imply. We know that distance is a continuous
function, as is the sum of multiple distance functions. It follows that
the length of the minimum weight triangulation cannot change too
drastically within B(p, δ). Specifically, there must exist an ε ≤ δ such
that no point within B(p, ε) will reduce the length of the triangulation.

The following corollary follows directly from the above lemma, and the fact
that X is contained entirely inside a visibility region.
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Corollary 13 There is a non-reducing neighborhood around point X.

We now work to establish a reducing polygonal path around this hole. We
rely on lemma (CONVEXITY LEMMA) to build this path. If we can find two
points which reduce, then the segment between them will also reduce.

Claim 14 The boundary of the triangle formed by points α = (−6.1021, 28.79429), β =
(0, 40.61712), and γ = (6.1021, 28.79429) will reduce.

Proof : We must show that the points on segments αβ, αγ, and βγ all reduce.
We note that segment αγ is symmetric to segment βγ, so we only have
to work to show that two segments reduce.

For a point on the segment αγ, we claim that connecting that point
to the points of F = {B,C, H, I, J,K, L} will give a reduction in
the length of the triangulation. Let dF (Z) be the sum over points
P ∈ F of the distance from P to Z. We have dF (α) = 214.5609
and dF (γ) = 258.501. We note that connecting our new point (α
or γ) to the points of F replaces the edges CK, BK,BJ,BI and
forces edge AI to flip to BH,an edge of equal length. We are re-
placing edges from our original triangulation that have summed length
(3 ·63.8915)+70.2951 = 261.9696. Therefore both α and γ reduce with
this combinatorial type of triangulation, and so must all points on the
edge αγ between them. By symmetry, all points on the edge βγ will
also reduce.

For a point on the segment αβ, we claim that connecting to the points
of A = {A,B, C,H, I, J,K} will give a reduction in the length of the
triangulation. This will replace edges AI, BI,BJ,BK from the original
triangulation, which together have summed length (2 · 63.8915) + (2 ·
70.2951) = 268.3732. Once again, we let dA(Z) be the sum over points
P ∈ A of the distance from P to Z. We see that dA(α) = 266.5075,
and by symmetry, dA(β) = 266.5075. Note that this is because

dist(A,α) = dist(C, β),
dist(B, α) = dist(B, β),
dist(C,α) = dist(A, β),
dist(H,α) = dist(K, β),
dist(I, α) = dist(J, β),
dist(J, α) = dist(I, β), and
dist(K,α) = dist(H, β).

It follows that both α and β reduce with this combinatorial type of
triangulation, and so must all points on the edge αβ between them.

Thus the boundary of triangle 4αβγ will reduce as desired.

Claim 15 The point Y = (18.47521, 32.00000) will not reduce.

17



Proof : We first must establish the minimum weight triangulation of Q∪{Y },
and then we will compare the length of that triangulation to the length
of our original triangulation.

We must connect segment AB to a third point, one of C, F, or Y . If we
connect to C, then we are subsequently forced to use triangle 4ACY.
This makes the triangulation use edge AC instead of the shorter BY,
a contradiction. If we connect to F we get the same type of problem:
we are forced to use BF instead of the shorter AY. Thus our minimum
weight triangulation must use triangle 4ABY.

Edge AY can connect to F, G,H, I, or J. If triangle 4AFY is included
in the triangulation, then edge FY must connect to G or H. In either
situation, diagonal Y F is longer than each of AG,AH, so4AFY is not
included in the triangulation. If we connect AY to H, then AH must
connect to either F or G. If we connect to F and 4AFH is included in
the triangulation, then 4FGH will also be included. That will imply
that edge FH is used instead of the shorter AG, a contradiction. If
instead we connect AH to G, we will get a contradiction from using
AH instead of the shorter GY. Thus we cannot connect AY to H in the
minimum weight triangulation. We now try to connect AY to I. This
will force 4AHI to be included in the minimum weight triangulation,
which gives a contradiction from using AI instead of the shorter HY.
If we connect AY to J, then we force 4AIJ to be included in the
minimum weight triangulation , which gives a contradiction for using
AJ instead of the shorter Y I. It follows that we must connect AY to
G and use 4AGY in our triangulation.

Edge GY is only visible to B and H. If we connect GY to B, this will
force 4BGH to belong to our triangulation, which in turn forces the
longer BG to be used instead of the shorter HY. Therefore we connect
GY to H and include 4GHY in our triangulation.

We continue around the interior 12-gon and consider edge HI. This
edge is visible to points B and Y. If we connect it to B, then we have
a contradiction for using BH instead of IY. Thus we must connect it
to Y and include 4HIY in our minimum weight triangulation.

Now consider edge IJ, which is visible to B, C, and Y. If we connect IJ
to B, we get a contradiction for using BI instead of the shorter edge
JY. If we connect IJ to C, then we must connect IC to either B or Y.
Both of those situations contradict minimality by using IC instead of
the shorter respective diagonal. It follows that we must connect IJ to
Y, and use 4Y IJ in our minimum weight triangulation.

Finally, we aim to find the second triangle to which edge Y J belongs.
The only two points visible to this edge are B and C. If we connect
to C, we will have a contradiction for using CY instead of the shorter
diagonal BJ. Thus we include 4BJY in our minimum weight trian-
gulation.
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Of all the edges we have currently established to be in the minimum
weight triangulation, we notice in particular edges BJ and AG. These
two edges belonged to our original minimum weight triangulation, so
the remaining region to be triangulated is now bounded by edges which
were present in our original triangulation. We know how to triangulate
that region. Let us now compare the length of the new edges we use to
the length of the edges they replaced. We have connected the point Y
to the points of B = {A,B, G, H, I, J}. We note that dB(Y ) = 198.912,
which is greater than the summed lengths of edges BI,AH, and AI :
198.079. It follows that point Y does not reduce.

Claim 16 The boundary of the triangle formed by points κ = (20.40390, 26.69670), λ =
(13.15766, 31.08258), and µ = (20.40390, 35.27778) will reduce.

Proof : As above, we must show that the points on segments κλ, κµ, and λµ
all reduce. It will suffice to show that, pairwise, the endpoints of those
segments will reduce with the same combinatorial type.

For a point on the segment κλ, we claim that connecting that point
to the points of B = {A,B, G, H, I, J} will give a reduction in the
length of the triangulation. As before, let dB(Z) be the sum over
points P ∈ B of the distance from P to Z. Then we have dB(κ) =
192.795 and dB(λ) = 192.570. We note that connecting our new point
(κ or λ) to the points of B replaces the edges AH,AI,BI. We are
thus replacing edges from our original triangulation that have summed
length (2 ·63.8915)+70.2951 = 198.079. Therefore both κ and λ reduce
with this combinatorial type of triangulation, and so must all points
on the edge κλ between them.

For a point on the segment κµ, we claim that connecting that point
to the points of G = {A,B, G,H, I, J,R} will give a reduction in the
length of the triangulation. We let dG(Z) be the sum over points
P ∈ G of the distance from P to Z. Then we have dG(κ) = 224.4615
and dG(µ) = 248.5943. We note that connecting our new point (κ
or µ) to the points of G replaces the edges AG,AH,AI,BI. We are
thus replacing edges from our original triangulation that have summed
length (3·63.8915)+·70.2951 = 261.971. Therefore both κ and µ reduce
with this combinatorial type of triangulation, and so must all points
on the edge κµ between them.

For a point on the segment λµ, we claim that a reduction in the length
of the triangulation can be obtained by connecting to the points of
H = {A,B, G,H, I, J,K}. We let dH(Z) be the sum over points P ∈ H
of the distance from P to Z. Then we have dH(λ) = 224.924 and
dH(µ) = 248.6243. We note that connecting our new point (λ or µ) to
the points of H replaces the edges AH,AI,BI, BJ . We are thus re-
placing edges from our original triangulation that have summed length
(3 · 63.8915) + 70.2951 = 261.971. Therefore both λ and µ reduce with
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this combinatorial type of triangulation, and so must all points on the
edge λµ between them.

Thus the boundary of triangle 4κλµ will reduce as desired.

The symmetry of our point set now grants us 12 distinct holes. We now aim
for the lucky 13th hole in the center of our configuration.

Claim 17 A point added in the center of the 12-gon will not reduce.

Proof : Let Z = (0, 0) be the point in the center of the 12-gon. We now make
some claims about which edges will not be included in the triangula-
tion.

First, we assume towards a contradiction that edge GL is in the mini-
mum weight triangulation. This implies that one of 4GHL or 4GIL
is included in the minimum triangulation. If 4GHL is included,
then edge HL belongs to another triangle - one of 4HIL,4HJL, or
4HKL. The combination of 4GHL and 4HIL gives GHIL trian-
gulated by HL, which is longer than GI. The combination of 4GHL
and 4HJL gives GHJL triangulated by HL, which is longer than
GJ. If 4HKL is used, then one of 4HIK or 4HJK is used. These
cases are equivalent up to symmetry, so assume 4HIK is used. No-
tice that HL + HK + IK < GI + IL + IK in the triangulation of
hexagon GHIJKL. It follows that edge GL must not belong to the
minimum weight triangulation, nor may any edge symmetric to GL,
such as HM, IN, JO, KP, etc.

Now we assume towards a second contradiction that edge GJ is in
the minimum weight triangulation. Then one of GI,HJ is also in the
minimum weight triangulation, but these cases are symmetric. With-
out loss of generality, we will say that GI (and therefore 4GIJ) is
in the minimum weight triangulation. Now we look at possible trian-
gles that use edge GJ : 4GJK,4GJL,4GJZ,4GJQ, and 4GJR,
and we detail the contradictions these triangles create. Quadrilateral
GIJK is triangulated by GJ instead of the shorter IK. The combi-
nation of 4GIJ and 4GJZ uses GJ instead of the shorter IZ. Next,
we note that 4GJL forces 4GLZ, and then quadrilateral GJLZ uses
GL instead of the shorter JZ. Similarly, 4GJQ forces 4JQZ, and
then quadrilateral GJQZ uses JQ instead of the shorter GZ. Lastly,
if we use 4GJR, then pentagon GHIJR should be triangulated by
HJ and HR instead of the longer pair GI and GJ. It follows that edge
GJ is not used in the minimum weight triangulation, nor is any edge
symmetric to GJ.

We note that edges GZ,HZ, IZ, etc. have the same length as edges
GI, HJ, IK, etc. No shorter edges exist in the interior of the 12-gon.
Thus if a triangulation exists which uses only edges of that length, its
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triangulation length must be minimal. For this example, many such
triangulations exist. Two such triangulations are:

Λ : = {GI, IK,KM, MO, OQ, GQ, GZ, IZ,KZ, MZ,OZ, QZ} and
Υ : = {GZ, HZ, IZ, JZ, KZ, LZ,MZ, NZ, OZ, PZ, QZ,RZ}.

Claim 18 The boundary of the 12-gon formed by symmetric copies of ρσ, where
ρ = (0, 30) and σ = (14.56088, 25.22019) will reduce.

Proof : It will suffice to show that edge ρσ reduces, then the reduction of the
12-gon will follow by symmetry. It may be necessary to employ a third
point τ = (7.28044, 27.61009), the midpoint of ρσ. The hope is that ρ
and τ will both reduce using the connectivity of region 1, and that σ
and τ will both reduce using the connectivity of region 2.

Recall that points in region 1 reduced by connecting toA = {A,B,C, H, I, J,K}.
We have dA(ρ) = 264.8235 and dA(τ) = 266.2503. The length of edges
we replace is 268.374, so the segment ρτ reduces.

Now recall that points in region 2 reduced by connecting to B :=
{A,B, G, H, I, J}. We have dB(τ) = 186.0355. and dB(σ) = 182.5459.
The length of edges we replace when using this combinatorial type is
198.079, so segment τσ reduces.

It follows that segment ρσ reduces, and therefore there is a reducing
12-sided closed path around the interior 12 points of our original point
set Q.

4 Searching for Steiner reducing regions

5 Performance of Randomly Generated Sets

We conjecture that the expected number of disconnected Steiner reducing re-
gions for a uniformly random point set will also be O(n). Initial experiments
indicate that random sets of points are much more likely to have Steiner re-
ducing regions which are exterior to the convex hull than ones which lie inside
the hull. Experimental evidence also seems to indicate that even randomly
generated point sets will occasionally admit interior Steiner reducing regions.
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