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Abstract. Let mwt(X ) denote the sum of the Euclidean edge lengths of
a minimum weight triangulation of a point set X ∈ R2. We investigate a
curious property of some n-point sets X , which allow for an (n + 1)st point
P (called a Steiner point) to give mwt(X ∪ {P}) < mwt(X ). We call the
regions of the plane where such a P reduces the length of the minimum weight
triangulation Steiner reducing regions. We demonstrate by example that these
Steiner reducing regions may have many disconnected components or fail to
be simply connected. By examining randomly generated point sets, we show
that the surprising topology of these Steiner reducing regions is more common
than one might expect.

1. Introduction

We are concerned with a long-standing classical problem in computational ge-
ometry: that of finding a minimum weight triangulation of a point set. We can
describe this task as a game of connect-the-dots. You are given a collection of dots
on a sheet of paper, and you are told to draw as many straight line segments as
possible, with one caveat: no new edge may be drawn which crosses one that you
have already drawn. Once no more edges can be drawn, you should see a collection

Figure 1. Mid-game, we notice that the dashed line can’t be
legally drawn, because it crosses an edge already drawn.

of triangles connecting the dots. Your score for this game is the sum of the lengths
of all the edges you drew, and as in golf, the lowest score wins. Can you develop
a strategy that will lead you quickly to the “best” drawing, one with a lower score
than any other possible drawing? Will your strategy give you perpetual victory over
your opponents if applied to any point set that you are given? These are questions
which have stumped mathematicians and computer scientists alike for over thirty
years. Indeed, of all the problems of unknown computational complexity collected
in [12], this problem is one of the few that remains yet unclassified.

Many thanks to Jesús De Loera for his comments in the creation of this document.
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Figure 2. The left triangulation is longer than the one at right.

Triangulations are very useful objects in the realm of applied computational
geometry. By breaking space into smaller regions, they are useful for graphical ren-
dering, numerical estimation of volume integrals, and many other types of mathe-
matical modelling. For a thorough mathematical treatment of triangulations, con-
sult [8]. Formally, a triangulation of a point set X ∈ R2 is an inclusion-maximal
set T of non-intersecting straight line segments connecting pairs of points in X . A
triangulation is specified by its combinatorial type: a listing of either its edges or
its point-empty triangles. The length or weight of a triangulation of X is the sum
of the Euclidean lengths of the edges used, so a minimum weight triangulation of
X is a triangulation which has length less than or equal to the length of every other
triangulation of X . We note that such a triangulation is not necessarily unique.
We denote the length of a minimum weight triangulation of X by mwt(X ), and we
denote the set of edges used by MWT(X ).

The problem of efficiently finding an optimal triangulation of a point set has
been of interest to mathematicians and computer scientists for some time. Differ-
ent measures of optimality for triangulations have given rise to useful applications
and encouraged algorithm development. These algorithms are are deemed efficient
if they require a number of steps which is relatively small compared to the possi-
bility of examining all or most of the candidate objects involved. For a survey of
optimization with regard to triangulations, see [4] or [8].

Figure 3. The minimum weight triangulation of a quadrilateral
uses the shorter of its two diagonals. For larger point sets, it is
much harder to find the minimum weight triangulation.

Much progress has been made towards special instances of the minimum weight
triangulation problem. For example, there are polynomial-time algorithms for de-
termining the minimum weight triangulation of special classes of point sets, such as
polygonal domains [13, 15]. Certain edges and progressively larger subsets of edges
have been proven to belong to the minimum weight triangulation. These include



TOPOLOGICAL EFFECTS ON MINIMUM WEIGHT STEINER TRIANGULATIONS 3

the shortest edge [13], all mutual nearest-neighbor edges [22], and two different
sets of edges known as the β-skeleton [6, 14] and the LMT-skeleton [1, 9]. Addi-
tional work has been done to create and evaluate different methods of finding the
exact minimum weight triangulation and also approximating the minimum weight
triangulation of point sets in R2 [2, 10, 16, 17, 18, 19, 20] and higher dimensions
[3, 5, 7]. One common method of approximation allows for the addition of a small
number of new points, called Steiner points, to the input set before triangulating.
If the number of Steiner points is small, they do not greatly affect the time or
space required for computation. Indeed, adding a collection of points to our input
set before triangulating can create various desirable properties, such as triangula-
tions that avoid small angles, make certain computations easier, or approximate
triangulations which are difficult to calculate.

Return for a moment to the minimum weight triangulation game we described
earlier. Imagine now that before you begin to connect the dots, you are given the
chance to change your point set. You may not delete any of the given points, but
you may now add as many points as you wish before playing the game with the
new, possibly larger set of points. Can it possibly benefit your “golf” score to add
more points to the mix? Shockingly, yes! We say that a point set X is Steiner
reducible if there exists a point P = (x, y) ∈ R2 −X such that

MWT
(X ∪ {P}) < MWT(X ).

Such a point P is said to reduce the length of the triangulation, and we refer to
P as a Steiner reducing point. For a given point set, we are concerned with the
region of the plane consisting of all reducing points, which we refer to as the Steiner
reducing region. We note that in this paper we are considering the effects of adding
one Steiner point to our original input set. Eppstein has shown in [11] that the
simultaneous addition of n Steiner points can reduce the length of the minimum
weight triangulation by a factor of Ω(n). It is not known if there exist point sets
Y for which one Steiner point cannot reduce MWT(Y), but the addition of k ≥ 2
Steiner points P1, . . . , Pk will give the reduction

MWT(Y ∪ {Pi}k
i=1) < MWT(Y).

It is surprising that our new point set contains one or more points than the
original set, but can be triangulated with a shorter total edge length! So, given

Figure 4. A fifth point added to this quadrilateral reduces the
length of the minimum weight triangulation of the new larger point
set!

a point set, in what regions of the plane can one add a Steiner reducing point to
reduce the length of the minimum weight triangulation? The results are somewhat
unexpected. A set as small as five points can have a Steiner reducing region with
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two disconnected components, and as the number of points increases, so does the
complexity of the topology. Here are our main results:

? There exists an 18-point set that admits a connected Steiner reducing region whose
first homology group has rank at least 13.

? There exists a 15-point set that admits a Steiner reducing region with 20 discon-
nected components.

We also demonstrate that the existence of Steiner reducing regions is relatively
common in random point sets. This is intriguing, since it is easy to artificially
create many disconnected components in the Steiner reducing region by scattering
small examples of point sets with Steiner reducing regions at large distance from
one another. The performance of random point sets seems to indicate that multi-
ple Steiner reducing regions can live peacefully in close proximity to one another
without forcing the points of the set to be clustered far apart from one another.
The random point sets tested also indicate that it is much more likely for a Steiner
reduction to occur exterior to the convex hull of our input set.

We note here that if a point set admits an exterior Steiner reducing region, then
this region will intersect an edge of the convex hull. So in a search for the existence
of exterior Steiner reducing regions, it will suffice to check if a Steiner point added
to any of the convex hull edges will cause a reduction. Consider the Steiner reducing
region for the 4-point set in Figure 4:

Figure 5. An approximation of the Steiner reducing region. [Note
to self: this was freehand - need better approx for final draft.]

Notice that the Steiner reducing region for the point set in Figure 5 is neither
open nor closed - it includes part of the long quadrilateral edge and the rest of the
region is bounded by a curve of the form

ϕ =
{

Z

∣∣∣∣
4∑

i=1

dist(Z, Wi) = L

}
,

where the right-hand side of the curve-defining equation represents the lengths of
the edges being replaced and the left-hand side represents the new edges used in the
triangulation. This curve is a cousin to the circle and the ellipse, for it represents
the locus of all points whose summed distance to four fixed points is constant. We
note that sets of this type and their properties are described as “n-ellipses” by
Sekino in [21]. The curve ϕ is the boundary of a 4-ellipse. We emphasize here
the fundamental connection between Steiner reducing regions and n-ellipses. For
a general input set X , a reduction occurs when new replaces old: the new set of
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edges connects our Steiner reducing point Z to a subset of input points F ⊆ X , and
the old set E of replaced edges formed a minimal triangulation of the possibly non-
convex polygon formed by the points of F . Let L =

∑
e∈E length(e). The subset of

the Steiner reducing region corresponding to the combinatorial type implied by F
will be itself a subset of the k-ellipse M = {(x, y)|∑f∈F dist

(
(x, y), f

)
< L}, where

k = |F|. Notice in particular that if F has one element, then M will be a circle,
and for a set F with two elements, M will be an ellipse. For values of n > 2, Sekino
showed that these n-ellipses remain convex, though they may be asymmetric.

2. First homology of Steiner reducing regions

· · ·
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