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Abstract

Many combinatorial optimization problems can be modeled concisely with a system of poly-
nomial equations. Examples include the detection of k-colorings, stable sets, flows, matchings,
and satisfiability (see [12] and the references therein). It follows that solving general systems
of polynomial equations is at least NP-hard. For this reason, mathematicians have rarely used
nonlinear polynomials for practical computation or to provide complexity bounds (although
they can be very useful otherwise [1, 10, 30, 18]).

In this article, we discuss four iterative algorithms tailored to solve combinatorial systems of
polynomial equations. We explain how these algebraic procedures can be applied to integer hull
approximation and also the recognition of combinatorial properties such as k-colorability, unique
Hamiltonicity, and automorphism rigidity of graphs. We report on computational complexity
bounds, structural results, and computer experiments.

When the field of coefficients is the real numbers our methodology closely resembles other
iterative procedures such as Lovász-Schrijver, Sherali-Adams, the Lasserre hierarchy, and others
that are used in integer programming and optimization over semialgebraic sets [31, 38, 35, 28].
The algorithms we present are also related to the solvability methods of Laurent, Lasserre and
Rostalski [25, 26]. The key difference is that we work over arbitrary fields of coefficients which
allows a wider range of modeling.
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1 Introduction

We discuss four iterative algebraic algorithms and explain how they can be used in recognizing
combinatorial properties (e.g., k-colorability of graphs) and for the approximation of the integer
hull of polyhedra. The general method we propose is as follows. Given a combinatorial question,
we associate to it a system of polynomial equations J such that the combinatorial problem is
infeasible if and only if system J has no solution. These highly structured systems of equations
are then solved using adhoc algebraic tools.

The first algorithm NulLA was investigated in [12, 32] and developed further in [11]. NulLA
generates a finite sequence of large-scale linear algebra problems, each of which is polynomial-
time computable. Hilbert’s Nullstellensatz [8] states that a system of polynomial equations
J = {f1(x) = 0, . . . , fr(x) = 0} with coefficients over a field K has no solution over its algebraic
closure K if and only if there exist polynomial “witnesses” α1, . . . , αr ∈ K[x1, . . . , xn] such
that 1 =

∑

αifi (Note that the Nullstellensatz is an extension of Farkas’ lemma from Linear
Programming to arbitrary polynomial systems of equations). Thus, if the system J encodes a
combinatorial problem and has no solutions, there exists a Nullstellensatz certificate (α1, . . . , αr)
that the associated combinatorial problem is infeasible. The maximum degree D of polynomials
in such a certificate is called the Nullstellensatz degree or NulLA degree. Finding a Nullstellensatz
certificate of degree D is equivalent to solving a linear system whose variables are bounded by
the number of monomials of degree D. For fixed D, the feasibility of this linear system is
polynomial-time verifiable.

In practice, D is unknown (although bounded theoretically in [23] and with much smaller
bounds for combinatorial systems in [12]), and this lack of control in degree growth is NulLA’s
main difficulty. Our new contribution is an algebraic adaptation of NulLA called FPNulLA

which partly remedies this problem. FPNulLA also yields a hierarchy of polynomial-time com-
putable relaxations that terminates with a decision, but unlike NulLA is a primal-dual algorithm.
The key new idea is to keep track of a redundant encoding of J , which is adjusted before increas-
ing the degree D. The method is a simplified version of Border bases in polynomial commutative
algebra [22]. We revisit the NulLA algorithm and present the improved FPNulLA in Section 2.

The third method we consider is the well-known Gröbner bases algorithm, and we show
how to use it to characterize uniqueness of certain graph properties algebraically. The theoretical
findings can then be combined with algorithms FPNulLA and NulLA to give a relaxation scheme
checking for this uniqueness. Finally, the fourth procedure we explore is due to Gouveia, Parrilo
and Thomas [17] and is called the theta body algorithm. This algorithm uses a generalization
of the Lovász theta body for 0/1 polyhedra to generate a sequence of semidefinite programming
relaxations computing the integer hull of the zeroes of a set of real polynomials [31, 30]. Here
one makes strong use of the hypothesis that the polynomials and their solutions are real.

We study three classical graph problems with these tools. First, in Section 3, we explore
k-colorability with NulLA and FPNulLA using a well-known polynomial formulation [2].

Proposition 1.1. Let G = (V, E) be an undirected simple graph on n vertices. Fix a positive
integer k, and let K be a field with characteristic relatively prime to k. The polynomial system
J = {xk

i − 1 = 0, xk−1
i + xk−2

i xj + · · · + xk−1
j = 0 : i ∈ V, (i, j) ∈ E} has a common zero over

K if and only if the graph G is k-colorable.

If a system has a small NulLA degree certificate, then it is easy to find. In this regard, we
characterize in Theorem 3.1 when the (infeasible) combinatorial system for 3-colorability has
NulLA degree one. We then present a number of computational experiments using FPNulLA
that demonstrate the practical power of these ideas.

Second, as an application of Gröbner bases, we investigate (in Section 4) the detection of
Hamiltonian cycles of a digraph G. The following ideals algebraically encode Hamiltonian cycles.

Proposition 1.2. Let G = (V, A) be a simple digraph on n vertices. Assume that char(K) ∤ n
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and that ω ∈ K is a primitive nth root of unity. Consider the following system in K[x1, . . . , xn]:

xn
i − 1 = 0 for i ∈ V and

∏

j∈Adj(i)

(ωxi − xj) = 0 for i ∈ V.

Here, Adj(i) denotes those vertices j which are connected to i by a directed edge going from i to
j. Then G has a Hamiltonian cycle if and only if this system has a solution over K.

We can prove a decomposition theorem for the ideal generated by the above polynomials, and
based on this structure, we give an algebraic characterization of uniquely Hamiltonian graphs
(as was done for k-colorability [19]). Our results also provide a algorithm to decide this property.
These findings are related to a well-known theorem of Smith [41] which states that if a 3-regular
graph has a Hamiltonian cycle then it has at least three. It is still an open question to decide
the complexity of finding a second Hamiltonian cycle knowing that it must exist [3].

Third, we study (in Section 5) the problem of determining the automorphisms of a simple
graph G, and in particular, when graphs are rigid (i.e., Aut(G) = 1). The complexity of this
latter decision problem is still open. Our approach is the point of view of polyhedra, theta
bodies, and semidefinite programming, but again, linearization plays an important role in our
anlysis. As before, the combinatorial object Aut(G) ⊆ Rn×n is viewed as an algebraic variety.

Proposition 1.3. Let G be a graph and AG its adjacency matrix. Then Aut(G) is the real
variety determined by the ideal I(G) generated from the equations:

(PAG − AGP )i,j = 0, 1 ≤ i, j ≤ n;

n
∑

i=1

Pi,j = 1, 1 ≤ j ≤ n;

n
∑

j=1

Pi,j = 1, 1 ≤ i ≤ n; P 2
i,j − Pi,j = 0, 1 ≤ i, j ≤ n.

(1)

From Proposition 1.3, the group Aut(G) consists of the integer vertices of the polytope of
doubly stochastic matrices commuting with AG. By replacing the equations P 2

i,j − Pi,j = 0 in
(1) with the linear inequalities Pij ≥ 0, we obtain a polyhedron PG which is a linear relaxation
of the automorphisms of the graph. We study this polytope and its integer hull. Tinhofer [40]
already examined PG and gave some conditions for it to be integral. Here we uncover more
properties of PG.

First, we prove that it is quasi-integral ; that is, the graph induced by the integer points
in the 1-skeleton of PG is always connected. Second, from the theory presented in [17], one
can use the ideal I(G) to approximate the integer hull of PG by a sequence of convex bodies,
the so-called theta bodies, which are expressible as projections of semidefinite programs. These
authors also give some applications of their techniques for stable sets [31] and max cut [17].
Our contribution is a study of the theta bodies of the variety of automorphisms of a graph. In
particular, we give partial algebraic and combinatorial characterizations of graphs for which the
first theta body is already equal to the polytope (in much the same way that perfect graphs
have theta body one for their Lovász theta body).

In what follows, we assume the reader is familiar with the basic properties of polynomial
ideals and commutative algebra as introduced in the undergraduate-level text [8] (a quick review
can be found in Section 2 of [19]). For an introduction to the theory of solving systems of poly-
nomial equations we refer the reader [9, 13]. We denote by R the polynomial ring K[x1, . . . , xn]
with coefficients over a field K. The monomials of R are the elements xα := xα1

1 · · ·xαn

n , α ∈ Nn.
The degree of a monomial xα is |α| :=

∑n

i=1 αi, and the degree of a polynomial f =
∑

α∈Nn fαxα

is the maximum degree of xα where fα 6= 0 for α ∈ Nn. We write deg(F ) for the maximum
degree of a set of polynomials F ⊆ R.

Given a set F ⊆ R, the variety of F over K, written VK(F ), is the set of common zeros of
polynomials in F that are in Kn; that is, VK(F ) := {v ∈ Kn : f(v) = 0 ∀f ∈ I}. We shall write
K for the algebraic closure of K. Given a set of polynomials F := {f1, . . . , fm} ⊂ R, we define
the ideal I(F ) := 〈f1, . . . , fm〉R := {

∑m
i=1 βifi : β1, . . . , βm ∈ R} . Note that VK(F ) is the same

as VK(I). In all our applications, K will be the finite field F2, R, or their algebraic closures.
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2 A Primal-Dual Algorithm from Hilbert’s Nullstellensatz

In this section, we describe two algorithms based on linear algebra that decide whether a set of
combinatorial polynomials F = {f1, . . . , fm} ⊆ R has a zero. We shall abbreviate the system of
equations {f(x) = 0 : f ∈ F} as F (x) = 0, and for simplicity, we assume that K = K. The first
method discussed is NulLA, which was introduced in [12, 32, 11]. The second is the faster and
more practical algorithm FPNulLA, which is our new contribution to this circle of ideas.

Let us remark that we are not the only proponents of the use of linearization as a way to
solve polynomial systems. Indeed, FPNulLA follows in the spirit of Border bases in commutative
algebra [21, 34, 39] and the use of linear algebra speed-ups in the Gröbner bases algorithms of
Faugere [15]. Variants of NulLa were applied by authors to problems in logic and complexity [6],
cryptography [7], combinatorial optimization [?], and recently in mathematical programming to
derive semidefinite relaxations for combinatorial optimization problems [29, 24, 27, 35, 36]. To
our knowledge, however, we are the first to carry out extensive computational experiments and
to derive explicit combinatorial theorems using these techniques.

We begin by explaining the primal-dual relationship between linear and polynomial algebra.
The polynomial ring R = K[x1, . . . , xn] is an infinite dimensional vector space over K with basis
given by all of the monomials of R. This vector space consists of infinite sequences of elements in
K (indexed by monomials) having only finitely many nonzero entries. An ideal I ⊆ R is a vector
subspace of R, and the quotient ring R/I is a vector space quotient. Given F ⊂ R, we let 〈F 〉K
denote the K-vector space generated by F over K. Let R∗ := K[[x1, . . . , xn]] be the ring of formal
power series in the variables x1, . . . , xn with coefficients in K. We can consider R∗ as the vector
space consisting of all infinite sequences in K indexed by monomials. We now define a bilinear
form ∗ : R × R∗ → K as follows: given f =

∑

α∈Nn fαxα ∈ R and λ =
∑

α∈Nn λαxα ∈ R∗, we
have f ∗ λ :=

∑

α∈Nn fαλα, which is well-defined (only finitely many fα are nonzero).
A relaxation of F (x) = 0 can be defined as the set of linear equations {f ∗ λ = 0 : f ∈ F}.

We abbreviate this system as F ∗ λ = 0. Note that for any polynomial f ∈ R and any point
x ∈ Kn, we have f(x) = f ∗ λ(x) where λ(x) = (xα)α∈Nn . It follows that for any x ∈ Kn, we
have F (x) = 0 if and only if F ∗ λ(x) = 0. The system F ∗ λ = 0 is always feasible, but the
constraint λ0 = 1 also holds for any λ that corresponds to a solution F (x) = 0. Therefore, if
the inhomogeneous linear system {F ∗ λ = 0, λ0 = 1} is infeasible, then so is the system of
polynomials F (x) = 0. Generating the linear system {F ∗λ = 0, λ0 = 1} from F (x) = 0 is often
referred to as linearization. Of course, some solutions of {F ∗λ = 0, λ0 = 1} may not correspond
to solutions of F (x) = 0 (the multiplicative structure of R is lost); however, it is a basic fact
that F (x) = 0 is infeasible if and only if {I(F ) ∗ λ = 0, λ0 = 1} has no solution. We denote
the set of solutions of the linear system F ∗ λ = 0 as F ◦ := {λ ∈ R∗ : F ∗ λ = 0}, called the
annihilator of F , which is a vector subspace of R∗.

The dual of the linear system {F ∗ λ = 0, λ0 = 1} has the following nice interpretation.
Consider the following trivial implication of Hilbert’s Nullstellensatz: If there are constants
µ ∈ Km such that

∑m
i=1 µifi = 1 (i.e., 1 ∈ 〈F 〉K), then the polynomial system F (x) = 0 is

not feasible. Determining whether such a µ exists means solving the linear system of equations
{
∑m

i=1 µifi,0 = 1 and
∑m

i=1 µifi,α = 0 ∀α ∈ Nn, α 6= 0} for µ ∈ Km. We abbreviate this linear
system of equations as µT F = 1. Crucially, µT F = 1 is the dual linear system to {F ∗ λ = 0,
λ0 = 1}. Thus, the infeasibility of {F ∗λ = 0, λ0 = 1} is the same as the feasibility of µT F = 1.

A fundamental observation is that adding redundant polynomial equations to F (x) = 0 gives
a tighter linear relaxation, meaning that for sets F ⊆ F̃ ⊆ I, we have F̃ ◦ ⊆ F ◦ with F ◦ = F̃ ◦ if
and only if 〈F 〉K = 〈F̃ 〉K. In fact, there is a direct relationship between the number of solutions
of a polynomial system and the dimension of the solution space of its linear relaxation [9]:

Theorem 2.1. Let K be an algebraically closed field, and let I ⊆ R be a zero-dimensional ideal.
Then, dim(I◦) is finite and dim(I◦) is the number of solutions of the polynomial system I(x) = 0
including multiplicities. In particular, |VK(I)| ≤ dim(I◦) with equality when I is radical.

Thus, computing dim(I◦) allows us to determine the feasibility of F (x) = 0 over K. Unfor-
tunately, we cannot calculate dim(I◦) directly. Instead, under some conditions (see Theorem
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2.2), we find dim(I◦) by computing the dimension of the projection of F ◦ onto the variables
λxα with deg(xα) ≤ deg(F ).

2.1 Nullstellensatz Linear Algebra Algorithm (NulLA)

We now present an algorithm, NulLA, for determining whether F (x) = 0 has a solution over
K using linear relaxations. The idea behind NulLA [11] is straightforward: we check whether
F ∗ λ = 0, λ1 = 1 is infeasible or equivalently whether µT F = 1 is feasible (i.e., 1 ∈ 〈F 〉K)
using linear algebra over K; if not, we add polynomials from 〈F 〉R to F and try again. We add
polynomials in the following systematic way: for each polynomial f ∈ F and for each variable
xi, we add xif to F .

In the following, we assume without loss of generality that F is closed under K-linear com-
binations; that is F = 〈F 〉K, and thus, F is a vector space over K. Note that taking the closure
of F under K-linear combinations does not change the set of solutions of F (x) = 0 and does not
change the set of solutions of F ∗λ = 0. For computation, we need a vector space basis of F , but
the choice of basis is not important, and moreover, we find it more natural and expositionally
convenient to use vector spaces. Recall from above that F ∗ λ = 0, λ1 = 1 is infeasible if and
only if 1 ∈ 〈F 〉K, which when F is a vector space, simplifies to 1 ∈ F .

For a vector space F ⊂ R, we define F+ := F +
∑n

i=1 xiF where xiF := {xif : f ∈ F}. Note
that F+ is also a vector subspace of R: it is the linear span of F and xiF for all i = 1, . . . , n. The
NulLA algorithm for vector spaces works as follows (see Algorithm 1): if 1 ∈ F , then F (x) = 0
is infeasible and stop, otherwise set F := F+ and repeat. Note that after k iterations of NulLA,
the set F contains all linear combinations of polynomials of the form xαf where the total degree
|α| ≤ k and where f was one of the initial polynomials in F . There is an upper bound on
the number of times we need to repeat the above step given by the Nullstellensatz bound of the
system F (x) = 0. This is an upper bound on the Nullstellensatz degree of the polynomial system
(see [23] for worse-case bounds; better bounds exist for combinatorial systems [12]). However,
while theoretically the Nullstellensatz bound limits the number of iterations, this bound is in
general too large to be practically useful (see [11] and references therein). In practice, NulLA is
most useful for proving infeasibility (see Section 3).

Algorithm 1 NulLA Algorithm [11]

Input: A finite dimensional vector space F ⊆ R and a Nullstellensatz bound D.
Output: Feasible, if F (x) = 0 is feasible over K, else Infeasible.

for d = 0, 1, 2, . . . ,D do

If 1 ∈ F , then return Infeasible.
F := F+ (F +

∑

n

i=1
xiF ).

end for

return Feasible.

2.2 Fixed Point Nullstellensatz Linear Algebra Algorithm (FPNulLA)

Next, we discuss improving NulLA by adding redundant polynomials to F in such a way so
that deg(F ) does not grow unnecessarily. The improved algorithm is called the Fixed-Point
Nullstellensatz Linear Algebra (FPNulLA) algorithm. The basic idea behind the FPNulLA
algorithm is that, if 1 6∈ F , then instead of replacing F with F+ (and thereby increasing
deg(F )), we check if there are any new polynomials in F+ with degree at most deg(F ) that
were not in F . If this is the case, we add them to F , and then check again whether 1 6∈ F .
More formally, if 1 6∈ F , we replace F with F+ ∩Rd where Rd is the set of all polynomials with
degree at most d = deg(F ). We keep replacing F with F+ ∩ Rd until either 1 ∈ F or we reach
a fixed point, F = F+ ∩ Rd. This process must terminate.

5



FPNulLA improves NulLA by proving that the system F (x) = 0 is feasible well before
reaching the Nullstellensatz’s degree bound as follows. When 1 6∈ F and F = F+ ∩ Rd, then
we can use the following theorem to determine if F (x) = 0 is feasible. First, we introduce some
notation. Let πd : R∗ → Rd be the projection of a power series onto a polynomial of degree at
most d with coefficients in K. Below, we abbreviate dim(πd(F

◦)) as dimd(F
◦).

Theorem 2.2. Let F ⊂ R be a finite dimensional vector space and let d = deg(F ). If F =
F+ ∩ Rd and dimd(F

◦) = dimd−1(F
◦), then dim(I◦) = dimd(F

◦) where I = 〈F 〉R.

There are many equivalent forms of Theorem 2.2 that appear in the literature [33, 37, 26]. For
example, the above result can also be re-stated as follows: If F = F+ ∩ Rd and dim(Rd/F ) =
dim(Rd−1/F ), then dim(R/I) = dim(Rd/F ). This follows since dim(I◦) = dim(R/I), and
dimd(F

◦) = dim(Rd/F ), and dim(Rd−1/F ) = dimd−1(F
◦) (see for example [39]). Note that the

condition F = F+∩Rd is equivalent to dimd(F
◦) = dimd((F

+)◦) or equivalent to dim(Rd/F ) =
dim(Rd/F+) since dim(Rd/F+) = dimd((F

+)◦). So, in practice, checking the conditions of
Theorem 2.2 means computing the dimensions of vector spaces (i.e., ranks of matrices).

We can now present the FPNulLA algorithm. The FPNulLA algorithm is closely related
to Algorithm 4.3 of [33] although it is much simpler. In fact, also Border and Buchberger
algorithms for computing a basis of an ideal are very similar to FPNulLA. The main difference
is that FPNulLA does not require a term ordering, special order ideals, nor does it keep track
of the explicit vector space bases and ranks computed in each iteration. We refer the reader to
Stetter [39] for a detailed comparison between Border and Buchberger methods.

Algorithm 2 FPNulLA Algorithm

Input: A vector space F ⊂ R (typically generated by a finite set of equations).
Output: The number of solutions of F (x) = 0 over K up to multiplicities.

Let d = deg(F ).
loop

if 1 ∈ F then Return 0.
while F 6= F+ ∩ Rd do

Set F := F+ ∩ Rd.
if 1 ∈ F then return 0.

end while

if dimd(F
◦) = dimd−1(F

◦) then return dimd(F
◦).

F := F+ (F +
∑

n

i=1
xiF ).

d := d + 1 (Note d = deg(F ) at each iteration).
end loop

The proof of the main result and the termination of the algorithm are omitted here. Our
result (and its proof) can be seen as an adaptation and simplification of Theorem 4.2 and
Algorithm 4.3 result in [33]. The main difference being, in Mourrain’s terminology, that we
stick to a particular order ideal and do not need to keep track explicitly of a basis for the set B
in its arguments, only vector space dimensions. From a complexity point of view, it is relevant
to know the following:

Corollary 2.3. Let D be a fixed nonnegative integer. Let F = {f1, . . . , fm} be n-variate poly-
nomials in R. Then

1. The D-th iteration of NulLA algorithm can be computed in polynomial time in the input
size of F and the number of variables.

2. Denote by FPD the vector space generated by F after incrementing the counter index
variable d to be d = D. If we assume K is a finite field, then a vector space basis for FPD

is generated in the FPNulLA algorithm in polynomial time in the input data and the size
of the field.
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Finally let us comment that FPNulLA only decides when a solution (e.g., such as a 3-coloring)
exists, but it does not tell us how to find one! Through further calculations, one can find such
solutions explicitly; however, such a discussion is beyond the scope of this paper, and we refer
the reader to [9]. Now, we begin our combinatorial applications of NulLA and FPNulLA.

3 Recognizing non-3-colorable graphs

Given a fixed degree, one would like to characterize those graphs which can be proved to have
a certain property at that Nullstellensatz degree. These are graphs that can be recognized in
polynomial time. In this section, we state a combinatorial characterization of those graphs that
have NulLA degree of one. In [32] it was shown that the NulLA degree for a polynomial encoding
over F2 of the 3-colorability of a graph with n vertices with no 3-coloring is between one and
2n. Moreover, if a non-3-colorable graph contains an odd-wheel or a 4-clique, its NulLA degree
is exactly one. We also present evidence that this degree is a good measure of the difficulty of
(3-coloring) infeasibility testing.

Figure 1: (i) partial 3-cycle, (ii) chordless 4-cycle, and (iii) the Grötzsch graph.

Let A be the set of all possible directed edges (or arcs) in an undirected graph G. We are
interested in two types of substructures of the graph G (see Figure 1). An oriented partial-3-
cycle is a set of two arcs of a 3-cycle, and an oriented chordless 4-cycle is a set of four arcs
{(i, j), (j, l), (l, k), (k, i)}, denoted (i, j, k, l), with (j, k), (i, l) 6∈ A. The parity conditions in the
following theorem are reminiscent of those encountered in proofs of Sperner’s Lemma [?].

Theorem 3.1. A graph G has non-3-colorability NulLA degree one if and only if there exists a
set C of oriented partial 3-cycles and oriented chordless 4-cycles such that

1. |C(i,j)| + |C(j,i)| ≡ 0 (mod 2) for all (i, j) ∈ E and

2.
∑

(i,j)∈A,i<j |C(i,j)| ≡ 1 (mod 2),

where |C(i,j)| denotes the number of cycles in C in which the arc (i, j) ∈ A appears. Moreover,
such graphs can be recognized in polynomial time.

Condition 1 in Theorem 3.1 means that every undirected edge of G is covered by an even
number of directed edges from cycles in C (ignoring orientation). On the other hand, Condition
2 says that given any orientation of G (an assignment of directions to its edges), the total number
of times the arcs in that orientation appear in the cycles of C is odd. The particular orientation
{(i, j) ∈ A : i < j} we use in the theorem is irrelevant.

There are two possible orientations for every partial 3-cycle and every chordless 4-cycle, but
the conditions in Theorem 3.1 are invariant under changing the orientation of any element in
the set C. We can thus treat each partial 3-cycle and 4-cycle as unique. Also, note that C gives
an edge-covering by 3-cycles and 4-cycles of a non-3-colorable subgraph of G if we include the
missing edges of the partial 3-cycles.
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Example 3.2. Consider the Grötzsch graph in Figure 1, which has no 3-coloring and no 3-
cycles. The following set of oriented chordless 4-cycles gives a certificate of non-3-colorability
by Theorem 3.1: C := {(1, 2, 3, 7), (2, 3, 4, 8), (3, 4, 5, 9), (4, 5, 1, 10), (1, 10, 11, 7), (2, 6, 11, 8),
(3, 7, 11, 9), (4, 8, 11, 10), (5, 9, 11, 6)}. Figure 1 (iii) illustrates the edge directions for the 4-
cycles of C. Each edge of the graph is contained in exactly two 4-cycles, so C satisfies Condition
1 of Theorem 3.1. Moreover, one can check that

∑

(i,j)∈A, i<j |C(i,j)| ≡ 1 (mod 2), and so
Condition 2 is satisfied. It follows that the graph has no proper 3-coloring.

We next summarize our experimental results for graph 3-coloring, illustrating the practical
performance of the NulLA and FPNulLA algorithms. For more detailed results along these
lines, see [11, 32]. Experimentally, for graph 3-coloring, NulLA and FPNulLA are well-suited
to proving infeasibility. The polynomial encoding used here is over F2 (see Proposition 1.1) and
thus the linear algebra operations are very fast. However, even though theoretically NulLA and
FPNulLA can determine feasibility, in the experiments described below NulLA and FPNulLA
were not able to prove feasibility in practice.

We are interested in the percentage of randomly generated graphs whose polynomial system
encoding has a NulLA degree of one or a FPNulLA degree of one. The G(n, p) model [16] is used
for generating random graphs with n vertices and edges appearing with probability p. Without
loss of generality, the color of one of the vertices of each randomly generated graph was fixed
giving a slightly smaller polynomial encoding.

Our experimental results are presented in Figure 2, which plots the percentage of 1000
random graphs in G(100, p) that were proven infeasible with a NulLA degree of one, with a
FPNulLA degree of one, or with an exact method versus the p value. The exact method used
was to model graph 3-coloring as a Boolean satisfiability problem [42] and then use the program
zchaff [43] to determine satisfiability.
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Figure 2: Non-3-colorable graphs with NulLA or FPNulLA degree of 1

It is well-known that there is a distinctive phase transition from feasibility to infeasibility for
graph 3-coloring, and it is at this phase transition that graphs exists for which it is difficult on
average to prove infeasibility or feasibility [20]. Observe that the infeasibility curve for NulLA
resembles that of the exact infeasibility curve and that the infeasibility curve for FPNulLA
also resembles the infeasibility curve (but clearly dominates the one for NulLA). These results
support the statement that the NulLA degree or FPNulLA degree is a reasonable measure of
the hardness of proving infeasibility since those graphs requiring a higher degree than one are
located near the phase transition.
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4 Recognizing Uniquely Hamiltonian Graphs

Throughout this section we work over an arbitrary algebraically closed field K, although in some
cases, we will need to restrict its characteristic. Let us denote by HG the Hamiltonian ideal
generated by the polynomials from Proposition 1.2. For a connected digraph G with n vertices,
it has a Hamiltonian cycle if and only if the equations defined by HG have a solution over K (or,
in other words, if and only if V (HG) 6= ∅). In a precise sense to be made clear below, the ideal
HG encodes all Hamiltonian cycles of G. However, we need to be somewhat careful about how
to count cycles (see Lemma 4.6). In practice ω can be treated as a variable and not as a fixed
primitive nth root of unity. For example, if the equation ωn − 1 = 0, and the set of equations
yk(ωk − 1) = 0, for all k dividing n, is added to the defining system, then ω simply becomes
a variable which can only take on the value of a primitive nth root of unity, even if n is not a
prime number. Another set of equations ensuring that ω only takes on the value of a primitive
nth root of unity is the following: ωk(n−1) + ωk(n−2) + · · · + ωk + 1 , for 1 ≤ k ≤ n . We can
also use the cyclotomic polynomial Φn(x) [14], which is the polynomial whose zeroes are the
primitive nth roots of unity.

In this section, we utilize the theory of Gröbner bases to show that HG has a special (alge-
braic) decomposition structure in terms of the different Hamiltonian cycles. In the particular
case when G has a unique Hamiltonian cycle, we get a specific algebraic criterion which can be
algorithmically verified. These results are Hamiltonian analogues to the algebraic k-colorability
characterizations of [19]. We first turn our attention more generally to cycle ideals of a simple
directed graph G. These will be the basic elements in our decomposition of the Hamiltonian
ideal HG, as they algebraically encode single Hamiltonian cycles C.

When G has the property that each pair of vertices connected by an edge is also connected
by an edge in the opposite direction, then we call G undirected. Let C be a cycle of length k > 2
in G, expressed as a sequence of directed edges, C = {(v1, v2), (v2, v3), . . . , (vk, v1)}. We call C
an undirected cycle if consecutive vertices in the cycle are connected by edges in both directions;
otherwise, C is called directed. In particular, each cycle in an undirected graph is undirected.

Definition 4.1 (Cycle encodings). The cycle encoding of an undirected cycle C is the following
set of k polynomials in K[xv1

, . . . , xvk
]:

gi =











xvi
+ (ω2+i

−ω2−i)
(ω3−ω) xvk−1

+ (ω1−i
−ω3+i)

(ω3−ω) xvk
i = 1, . . . , k − 2,

(xvk−1
− ωxvk

)(xvk−1
− ω−1xvk

) i = k − 1,

xk
vk

− 1 i = k,

(2)

in which ω is a fixed primitive kth root of unity and K has characteristic not dividing k. The
cycle encoding of a directed cycle C is the following set of k polynomials:

gi =

{

xvk−i
− ωk−ixvk

i = 1, . . . , k − 1,

xk
vk

− 1 i = k.
(3)

Definition 4.2. Correspondingly, we define the cycle ideal associated to C to be IG,C = 〈gi :
i = 1, . . . , k〉 ⊆ K[xv1

, . . . , xvk
], where the gis are the cycle encoding of C given by (2) or (3).

The polynomials gi are computationally useful generators for cycle ideals. (Once again, see
Section 2 in [19] for the relevant background on Gröbner bases and term orders.)

Lemma 4.3. The cycle encoding polynomials F = {g1, . . . , gk} are a reduced Gröbner basis for
the cycle ideal IG,C with respect to any term order ≺ with xvk

≺ · · · ≺ xv1
.

Remark 4.4. In particular, since reduced Gröbner bases (with respect to a fixed term order) are
unique, it follows that cycle encodings can be seen as canonical ways of generating cycle ideals
(and thus of representing cycles by Lemma 4.5).

The naming of these objects is motivated by the following result; in words, it says that the
cycle C is encoded as a complete intersection by the ideal IG,C .
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Lemma 4.5. The following hold for the ideal IG,C.

1. IG,C is radical,

2. |V (IG,C)| = k if C is directed, and |V (IG,C)| = 2k if C is undirected.

Before stating our decomposition theorem, we need to explain how the Hamiltonian ideal
encodes all Hamiltonian cycles of the graph G. For each cycle C, we assign a multiplicity m(C),
which is 2k for undirected cycles and k otherwise. These multiplicities naturally correspond to
the symmetries of cycles.

Lemma 4.6. Let G be a connected directed graph on n vertices. Then, V (HG) =
⋃

C V (IG,C),
where the union is over all Hamiltonian cycles C in G. In particular, |V (HG)| =

∑

C m(C).

Combining all of these ideas, we can prove the following result.

Theorem 4.7. Let G be a connected directed graph with n vertices. Then, HG =
⋂

C IG,C,
where C ranges over all Hamiltonian cycles of the graph G.

Corollary 4.8. The graph G is uniquely Hamiltonian if and only if the Hamiltonian ideal HG

is of the form IG,C for some length n cycle C.

This corollary provides an algorithm to check whether a graph is uniquely Hamiltonian. We
simply compute a unique reduced Gröbner basis of HG and then check that it has the same
form as that of an ideal IG,C . More importantly, this algebraic characterization can be used in
conjunction with NulLA and FPNulLA to detect whether a graph is not uniquely Hamiltonian.
One simply searches for a Nullstellensatz certificate using the polynomial generators of the
full-cycle ideal IG,C .

5 The Integer Hull of Aut(G)

We also give a description of the convex hull of the automorphisms of a graph Aut(G). See [4, 5]
for background material. Here, the elements of the group Aut(G) are naturally represented as
|V (G)|× |V (G)| permutation matrices; they are the integer vertices of the rational polytope PG

from the introduction. We are primarily interested in the integer vertices of the polytope PG,
and we investigate IPG, the integer hull of PG. In the fortunate case that PG is already integral
(PG = IPG), we say that the graph G is compact, a term coined by Tinhofer [40]. This occurs
for example in the special case that G is an independent set on n vertices, PG is the well-studied
Birkhoff polytope, the convex hull of all doubly-stochastic matrices. One can therefore view PG

as a generalization of the Birkhoff polytope to general graphs (and Aut(G) to groups other than
Sn). The polytope PG was first introduced by Tinhofer [40], Unfortunately, the polytope PG

is not always integral. For instance, PG is not integral when G is the Petersen graph. We can
prove:

Theorem 5.1. The induced subgraph of the integer points of the 1-skeleton of PG is connected,
thus PG is quasi-integral.

Of course, we would like to find a tighter description of IPG in terms of inequalities. We
concentrate now on a hierarchy of semidefinite relaxations of conv(VR(I(G))) that is afforded
by an algebraic point of view. When these relaxations are tight, we obtain a description of PG

that allows us to optimize and determine feasibility efficiently via linear programming.
We begin with some preliminary definitions from [17] and motivated by Lovász & Schrijver

[31]. Let I ⊂ R[x1, . . . , xn] be a real radical ideal (
∑m

i=1 f2
i ∈ I =⇒

∑m

i=1 fi ∈ I). A polynomial
f is said to be nonnegative mod I (written f ≥ 0 (mod I)) if f(p) ≥ 0 for all p ∈ VR(I). Similarly,
a polynomial f is said to be a sum of squares mod I if there exist h1, . . . , hm ∈ R[x1, . . . , xn]
such that f−

∑m

i=1 h2
i ∈ I. If the degrees of the h1, . . . , hm are bounded by some positive integer

k, we say f is k-sos mod I. Then the kth theta body of I, denoted THk(I), is the subset of Rn

that is nonnegative on every function in I that is k-sos mod I. We say that a real variety VR(I)
is theta k-exact if conv(VR(I)) = THk(I). Theta bodies can be expressed as feasible regions
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of semidefinite programs (i.e., spectrahedra). For more on this, see [17]. It follows that theta
bodies provide a hierarchy of semidefinite relaxations of conv(VR(I)):

TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv(VR(I)).

Therefore, when I = I(G) for some graph G and I is theta k-exact, optimization over
automorphisms of G can be performed using semidefinite programming. It is interesting to find
graphs G such that I(G) is theta k-exact for some k. In this section we pay particular attention
to finding graphs G such that I(G) is 1-exact, which we refer to as exact from now on. The key
to finding such graphs G comes from the following combinatorial characterization found in [17].

Theorem 5.2. Let VR(I) ⊂ Rn be a finite real variety. Then VR(I) is exact if and only if there
is a finite linear inequality description of conv(VR(I)) such that for every inequality g(x) ≥ 0,
there is a hyperplane g(x) = α such that every point in VR(I) lies either on the hyperplane
g(x) = 0 or the hyperplane g(x) = α.

Using this theorem and Sullivant’s result [?], we can show that any compact graph is exact
and that the class of exact graphs properly extends the class of compact graphs. The following
theorem extends a result of Tinhofer [40] that says that the union of isomorphic compact graphs
is compact.

Theorem 5.3. If G is a compact graph, then G is also exact. Let G1, . . . , Gm be k-regular
compact graphs, and let G =

⋃m
i=1 Gi. Then G is compact if and only if G1

∼= · · · ∼= Gm.
Moreover, G is always exact. Thus, the class of exact graphs strictly contains the class of
compact graphs.

As we shall see next exactness can be verified using toric ideals. Let A be a permutation
group. Consider A as a subset of Zd (d = |A|). Let C[x] := C[xσ1

, xσ2
, . . . , xσd

] be the polynomial
ring in d variables indexed by permutations σi ∈ Sn corresponding to the permutations in
A. Finally, let C[t] := C[t11, t12, . . . , t1n, t21, . . . , t2n, . . . , tnn]. The semigroup homomorphism
π : Nn×n → Zn×n defined by π(σi) = Pσi

induces an algebra homomorphism π : C[x] →
C[t], xσi

= tPσi whose kernel IG is an ideal. It is well known that G is exact if and only if for
every reverse lexicographic term ordering ≺ on C[x], the Gröbner bases initial ideal in≺(IG) is
generated by square-free monomials (see, for instance, [?]). Now we show a family of groups
that are exact: Let A ≤ Sn be represented by n × n permutation matrices. We say that
A is permutation summable if for any permutations P1, . . . , Pm ∈ A satisfying the inequality
∑m

i=1 Pi − I ≥ 0, we have that
∑m

i=1 Pi − I is also a sum of permutation matrices in A. For
example, Birkhoff’s Theorem implies Sn is permutation summable. Note in this case PSn

is the
Birkhoff polytope which is known to be exact. Nevertheless, we can prove the following:

Theorem 5.4. Let A ≤ Sn be a permutation group.
(1) If A is permutation summable, then A is exact.
(2) Suppose IA, the toric ideal associated to A has quadratically generated Gröbner basis

with respect to any of the reverse lexicographic orderings ≺, then A is permutation summable.

There are many groups that are permutation summable. Moreover, if An1
, . . . , Anm

are
permutation summable groups with Ani

a subgroup of Sni
, then A = An1

× · · · × Anm
is

permutation summable (simply apply the permutation summable condition on each group Gi

and take direct sums). For our purposes, we would like to find permutation summable groups
that arise as the automorphism groups of certain classes of graphs. An example of such a class
is the class of graphs whose automorphism groups have no non-trivial elements that fix any
vertices. We say a graph G is said to be strongly fixed-point free if for every P ∈ Aut(G) \ {1},
we have Pv 6= v for any v ∈ V (G). We can prove that if G is strongly fixed-point free, then
Aut(G) is permutation summable and thus exact. We can see that the group generated by any n
cycle in Sn is permutation summable. Another example of strongly fixed-point free permutation
group is any dihedral group of order 4n that is a subgroup of S2n is permutation summable as
well.
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