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1 Introduction.

Consider a network G with n nodes and m arcs, with integer-valued capacity and excess functions
c:arcs(G) = Z>o and b : nodes(G) — Z. A flow is a function f : arcs(G) — Zx¢ so that, for
any node z, the sum of flow values in outgoing arcs minus the sum of values in incoming arcs equals
b(z), and 0 < f(i,7) < ¢(i,7). Denote by ¢g(b,c) = dg(b1,---,bn,c1,--.,¢n) the number of flows.
We present an algebraic algorithm whose output allows for instantaneous evaluation of the function
(b,¢) = ¢g(b,c). Tt produces a piecewise polynomial representation of ¢g(b,c). Applications range
from statistics [6] to representation theory [9].

The set of all flows is a convex polytope, the flow polytope, which is defined by the node-arc
incidence matrix Ag of the network G, as follows:

Ag-z=0b, 0<z<c

The rows and columns of A¢g are indexed by the nodes and arcs respectively: each column has precisely
two non-zero entries —1 and +1, encoding the incidence relation in G. The vectors b and ¢ contain the
excesses and capacities. All vertices of the flow polytope are integral because Ag is totally unimodular.
It is convenient to rewrite the above system as follows:

AG 0 X b
= b x’y Z 0‘
I I Y c

The new enlarged matrix is denoted EG and called the extended network matriz. It is also totally
unimodular. We are interested in the number ¢g(b, ¢) of lattice points in the flow polytope. Clearly,
#G (b, c) is zero unless the right hand side [b,c]? lies in the extended network cone of G, which is the
cone pos(zzl\g) spanned by positive linear combinations of the columns of the extended network matrix
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//124 of G. This cone has a natural polyhedral decomposition, called the chamber complex, which is
defined as the common refinement of all triangulations of pos(gg) with rays taken from the columns
Ag. See [1, 4] for details on triangulations and chamber complexes.

The function ¢g (b, ¢) is the vector partition function for the extended network matrix. Our starting
point is the following result that follows from the theory of vector partition functions; see [3] and
specifically [14, Remark 2 on page 305].

Theorem 1.1 The vector partition function ¢g(b,c) is a piecewise polynomial function of degree
m—n+1 in the variables by, ..., by, C1,-..,¢m. The domains of polynomiality are precisely the mazximal
cones in the chamber complex of 2@. Similarly, if G is acyclic and has no specified capacities, then
oG (b) := da(b, 00) is the vector partition function for the network matriz Ag and is represented as a
piecewise polynomial function on the chamber complex of Ag.

Any extended network matrix A\G can be transformed by elementary row operations into an ordi-
nary network matrix Ag for a larger acyclic network G:

Lemma 1.2 Given a network G with n nodes and m arcs, with capacity and excess functions c,b,
there is an acyclic uncapacitated network G withn+m nodes, 2m arcs, and excess functiong (a linear
combination of b,c) such that the flows in both networks are in bijection. The network G is obtained
from G by replacing each arc by two new arcs as illustrated in the figure below.

We shall therefore restrict our discussion to the second case of Theorem 1.1, that is, we assume
that G is acyclic and we consider the function ¢¢(b) which counts the number of non-negative integer
solutions z of the equation Ag -z = b.

In Section 2 we study the case where G is the complete acyclic network K,,. The function ¢k, is
the Kostant partition function which plays an important role in representation theory. We determine
the number of chambers up to n = 7 and we explicitly compute all polynomials representing ¢, (b)
up to n = 6. Section 3 provides a complexity analysis of the chamber complex. Our main algorithm is
presented in Section 4. It is based on methods from algebraic geometry, specifically, we demonstrate
how to effectively compute the Todd cohomology class of a toric manifold defined by a unimodular
matrix. Details of our implementation are discussed in Section 5.

The state of the art on unimodular counting is the paper of Mount [10]. Mount reports impres-
sive computational results on counting contingency tables, the case when G is a complete bipartite
graph. We wish to demonstrate that our Grébner bases algorithm are competitive to the methods
(interpolation, divide-and-conquer) proposed by Mount, and are much easier to implement.



Figure 1: The chamber complex for the tournament K,

2 Kostant’s Partition Function.

Let K, be the complete network with n nodes and arcs (4, j) for 1 < i < j < n. Kirillov [9, question
in page 57] posed the problem of determining the number of chambers and of computing the exact
polynomials representing Kostant’s partition function ¢k, (b). Combinatorial formulas for specific
classes of chambers were found by Postnikov and Stanley (private communication).

We computed all the polynomials representing ¢, (b) for n < 6. There is too much data to display
here but the reader can play with these polynomials on-line and obtain specific values of Kostant
partitition function. Please visit www.math.ucdavis.edu/~ deloera/kostant.html. As an illustration we
present the solution for the n = 4. The network cone spanned by the columns of the node-arc incidence
matrix of K, is a three-dimensional triangular cone. The chamber complex is a subdivision of this
cone into seven triangular cones. See Figure 1 for a 2-dimensional slice of the chamber complex. The
formulas below are given only in terms of by, b, b3, in view of by = —b; — by — b3. By the symmetry
of the example it is enough to give the four polynomials for the indicated chambers in Figure 1 (the
number of a chamber in the figure and the polynomial match).

1. If min{b3, —b2,b1 + bg} >0 then ¢K4(b) = (b1 +bo + 3)(b1 + by + 2)(b1 +bs + 1)/6
2. If min{b1,b2,b3} >0 then ¢k, () = (b1 +1)(b1 +2)(b1 +3b2+3)/6

3. If min{b1,b2,b1 + b3, b2 + b3, —bs} > 0 then ¢k, (b)) = 1+%b1 +2/3bs + ba + 3/2 by bs + bs2 +
1/6 61 +1/2b1%bs —1/6 bs® —1/2by b3® 4+ 1/2 b1 bg — 1/2 bs?

4. If min{bl, by + b3, —b1 — b3} >0 then ¢K4 (b) = (bl + 2)(()1 + 1)(2b1 +3bs +3+ 3b3)
3 Complexity of Chambers

Let I'(K,,) be the chamber complex of the positive cone spanned by the columns of the node-arc incide
matrix of the acycli complete graph. We have the following result:

Theorem 3.1 e I'(K,) has chambers with at least 21n/2] facets. The integer coordinates of rays
grow exponentially in n.



e The asymptotic number of chambers for T'(K,) is is 20(n*logn) - The exqact number of chambers
in T(K,) for n <7 is given by the following table. There exist virtual chambers starting with
Ky ( see [4] for the meaning of virtual chambers).

n | Number of chambers
3 2

4 7

5 48

6 820

7 44288

The first part of the proof relies on two correspondences: Cuts of the digraph K, are geometrically
hyperplanes spanned by subsets of the column vectors of the node-arc incidence matrix. In addition,
the simplices supported on vertices of the vector configuration can be read off from trees in the
complete graph.

It is well-known that the problem of enumerating flows for is #P-hard. We were also interested
on the complexity of finding a chamber containing an specific righthand side b. We have seen that

this is hard in the non-unimodular case:

Proposition 3.2 Let A be an integral d X n matriz. Let b be a vector in pos(A) and a list F of
d-dimensional simplicial cones with rays in the columns of A such that all elements of F' contain the
vector b. Deciding whether F' includes all simplices that contain b (i.e. whether F determines the
chamber that contains b) is N P-hard.

4 Unimodular Counting Using Grobner bases.

We describe now an algebraic algorithm for solving the following counting problem associated with any
unimodular n X d-matrix A: Determine the number ¢ 4(b) of non-negative integer solutions u € N™
of the linear equations A -u = b. We assume that the matrix A has rank d and all d x d-minors are
—1, 0 or +1. We further assume that pos(A) is a pointed cone. Under these hypotheses, the vector
partition function ¢4 exists and is represented by a polynomial of degree n — d on each maximal cone
in the chamber complex of A.

Our running example is the following unimodular 3 x 5-matrix:

10011
A = 0101 0]. (1)
0010 1

Up to row operations, this is the network matrix for the acyclic complete graph K4 minus the edge
(1,4). The chamber complex is a subdivision of the positive orthant in R? into five triangular cones.



The vector partition function equals

bc+b+c+1 ifa>b+cand b,c>0

%a2+%a+1 if min{b,c} >a >0,
dala,bc) = ab— 16>+ Ib+a+1 ifc>a>b>0

ac— 3’ +3c+a+1 if b>a>c

ab+ac—1(a®+b*+c®)+1(at+b+c)+1 if b+c>a > maz{b,c}
For our exposition it is more convenient to express the vector partition function as ¥4 : N — N
where ¥ 4(v) is the number of solutions u € N™ to the equation Au = Av. Clearly, ¥4 and ¢a
are related by a simple transformation. For instance, in our example we have ¥4(a,b,c,d,e) =
dala+d+eb+d,c+e).

We first characterize the chamber complex in algebraic terms. Let S = k[z1,...,2,] be the
polynomial ring over a field k£ which contains the rational numbers. The indeterminates of S index
the columns of the matrix A = (a;;). Let Ja denote the ideal in S generated by the binomials
xytxg? - g%n — 1 for i = 1,2,...,d. For any positive weight vector w € R", let in,,(J4) denote
the ideal generated by the w-initial forms of the binomials in J4. If w is generic, then in,(J4) is a
monomial ideal. It was shown in [15], Corollary 8.9 that the matrix A is unimodular if and only if all
initial monomial ideals in,,(J4) are square-free. Two weight vectors w and w' in R" lie in the same
cone of the Gr”obner fan if in, (Ja) = iny (J4). By the results in [15, §8] this happens if and only if,
for every linearly independent subset o = {a;,, ..., a;, } of column vectors of A, the vector Aw lies in
the cone spanned by o if and only if the vector Aw' lies in the cone spanned by o. This implies the
following result:

Proposition 4.1 The chamber complex of A equals the Grébner fan of J4.

Algebraic algorithms for computing Grébner fans are described in [15, §3]. The state of the art on
this subject is the work of Huber and Thomas [8]. We now explain how to compute the polynomial
representing 14 on any given chamber. Suppose that w is a positive integer vector in the interior of
that chamber. Then M = in,(J4) is a square-free monomial ideal. It was shown in [16, Corollary
7.4] that M encodes the face poset of the simple polytope

P, = {uGR" : uZOandAu:Aw}.

For any (n — d)-element subset I of {1,...,n}, the equations u; =0, ¢ € I define a facet of P, if and
only if (z; : j ¢ I) is a minimal prime of M. Writing X,, for the normal fan of the simple polytope
P,, this can be restated as follows:

Proposition 4.2 The Stanley-Reisner ideal of the fan X, equals M = in,(J4).

In our running example, with w = (1,1,1,1, 1), the polytope P, is a pentagon and the fan ¥, has
five rays in the plane. This is encoded by the ideal
M = (A,B,C) N (A,B,E)n (B,D,E) n (C,D,E) n (A,C,D). (3)

Returning to the general case, our goal is to count the lattice points in the polytope P,. We use
known methods from toric geometry for this computation. An introduction can be found in Section



5.3 in Fulton’s book [11]. For the state of the art, including computational complexity issues consult
the survey article [2].

Let X, denote the projective toric variety defined by the fan ¥,,. The variety X,, is smooth, for
all w, since A is unimodular. Let L4 denote the ideal in S = k[z1,...,x,] generated by the linear
forms byxy + -+ + byx, where (by,...,b,) runs over all vectors in the kernel of the matrix A. The
cohomology ring of X,, with coefficients in our field & is the artinian graded k-algebra

n—d
H*(Xu;k) = EH"(Xu,k) = S/(M+La). (4)

r=0
Arithmetic operations in this algebra are performed using normal form reduction relative to any
Grdébner basis of the ideal M + L 4. Since X, is an irreducible complex manifold of dimension n—d, the
top cohomology group H?"~24(X,,, k) is a one-dimensional vector space. There is a canonical choice
of a basis vector for that one-dimensional k-vector space, namely the (image of the) any square-free

monomial [], ;z; which indexes a vertex of P,, that is, (z; : j ¢ I) is a minimal prime of M. Since

icl
X, is smooth, any two such monomials are congruent to each other modulo M + L4. The resulting

socle element of H*(X,,; k) represents the cohomology class which is Poincaré dual to a point on X,,.
The following rule uniquely defines a k-linear functional called the integral:
H*(Xy; k) =k, p — p.
Xw
Writing top(p) for the degree n — d component of p, we require that top(p) — ([ p) - [1;c; z: lies in
M + Ly, where I is any index set as above.

il

Algorithm 1. (Computing the integral of a cohomology class of X,,)
Input: A polynomial p(xy,...,z,) with coefficients in a field £ D Q
Output: The integral [ x, P of the corresponding cohomology class on X,,.

1. Compute any Grobner basis G for the ideal M + Ly.
2. Let m denote the unique standard monomial of n — d.

3. Find any minimal prime (z; : j ¢ I) of M, and compute the normal form of [], ; z; modulo

iel
the Grobner basis G. It looks like v - m, where 7 is a non-zero element of k.

4. Compute the normal form of p modulo the Grébner basis G, and let § € @ be the coefficient of
m in that normal form.

5. Output the scalar 6/y € k.

To compute number of lattice points in P,,, we note that there is a special element in the cohomol-
ogy ring H*(Xy; k), denoted td(x1,...,z,) and called the Todd class of the toric variety X,,. The
Todd class is represented (non-uniquely) by a (non-homogeneous) polynomial with rational coefficients
in the variables z1, ..., z,. The polynomial td(x1,...,z,) does exactly what we want:

da(wy,...,wy) = #(Py NZ") = / td(:cl,...,:cn)-exp(Zwia:i) (6)

w



Here the ezponential of a linear form in (4) is defined by the terminating series

n n—d
1
exp ( E wiT;) = E = (w11 + wama + - - + wpzy)". (7
i=1 r=0 r

Pommersheim [12] gives an algorithm for computing the Todd class, which works efficiently even for
non-unimodular A. For our applications, however, we prefer to use the basic formula given in the first
line on page 110 in Fulton’s book [11]:

n n
z; 1 1, 1,
td(z1,...,25) ];[1 T eap(—aD i];[l( + 5+ 508~ e ) ®)
In this expansion we list only terms of degree < n — d, so that (8) becomes a polynomial in z1,...,z,

with Q-coefficients. We conclude with our main result.

Theorem 4.3 The following algorithm computes the polynomial which represents 14 on a chamber
containing a given non-negative vector w € R™:

1. Determine linear equalities defining the given chamber.

2. Let M be the ideal generated by the leading monomials of the Grobner basis for J4 with respect
to w and compute the ideal representing the kernel L4 of A. Use these two ideals to construct
the cohomology ring.

3. Apply Algorithm 1 to the product of the polynomials in (7) and (8).
A main advantage of this algorithm over other methods is that we can do the computation para-

metrically, over the field ¥ = Q(wy, ..., wy). Our output is the actually polynomial for )4 not just
some numerical evaluation of it.

For our running example we take the polynomial ring S = k[A, B,C, D, E] over the field k

Q(a,b,c,d,e). We fix the reverse lexicographic Grobner basis for the ideal M + L4, where La
(A+B—-D,A+ C — E) and M = iny(Ja) is the monomial ideal in (3). The Todd class (8) is
computed from the formula

(1+A/2+A/12)(1+B/2+ B/12)(1+C/2+ C/12)(1+ D/2+ D/12)(1+ E/2 + E/12)
The normal form of this expression with respect to our Grobner basis equals
td(A,B,C,D,E) = DE+C/2+D+E/2+]1. (8"
Likewise, the exponential of the general divisor (7) on our toric surface,
14+ (@A+bB+cC+dD +eE)+ %(aA+bB+cC+dD+eE),
has the following normal form with respect to our Grébner basis:
1+ (a=b+e)E+(b+c—a)C+ (b+d)D + (ab+be +ac+cd+de— (a® —b* —c*)/2) DE

Multiply this expression with (8’), reduce it to normal form, and extract the coefficient of the standard
monomial DE. The result is the desired polynomial which represents 14 (a, b, ¢,d,€) on the chamber
(2). Now set d =e = 0.



5 Implementation in Macaulay 2

We implemented our algorithm in the computer algebra system Macaulay 2 developed by Grayson
and Stillman [7]. Our preliminary computational experience indicates that the Grébner basis compu-
tation of the Todd class will eventually outperform the interpolation techniques proposed by Mount
[10]. In our test implementation (still in progress), we did not use parallel computation but a rather
straightforward and crude computer algebra code. The Macaulay 2 program for creating the polyno-
mial for a single chamber is very compact. Below we attach the entire program for one chamber in
the 4 by 4 contingency table case (complex bipartite network Ky 4).

For 4x4 contingency tables, Mount reported a 3 hour calculation spent in each chamber using
a divide and conquer technique where he broke the original problem into smaller problems. These
subproblems were arranged to be solved only once (dynamic programming). The process used a
parallel distributed system for the partial subproblems. We ran all our examples in a Pentium-
IIT CPU with 700Mhz and 256 MB ram computer. When recomputing several of Mount’s 3694
polynomials, we observed running times ranging from one hour to one day. Computing a specific
numerical instance (fixed rows sums and column sums) took 11 seconds on the average. In the case
of the acyclic complete network K each polynomial takes only a minute of to be produced. The
generation of different chambers was performed using topcom and puntos [13, 5].

A = {{1,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0},
{0,1,0,0, 0,1,0,0, 0,1,0,0, 0,1,0,0},
{0,0,1,0, 0,0,1,0, 0,0,1,0, 0,0,1,0},
{0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,1},
{1,1,1,1, 0,0,0,0, 0,0,0,0, 0,0,0,0},
{0,0,0,0, 1,1,1,1, 0,0,0,0, 0,0,0,0},
{0,0,0,0, 0,0,0,0, 1,1,1,1, 0,0,0,0},
{0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1}};

n = rank source matrix A
R = QQ[x_1..x_n, r1,r2,r3,r4,cl,c2,c3,cd];
u = (0,r1-c2-c3-c4,c2,c3,c4,r2,0,0,0,r3,0,0,0,r4,0,0,0);

component = (d,f) -> sum select(terms f, t -> d == sum degree t)

trunc = (d,f) -> sum select(terms f, t -> sum degree t < d+1)
toBinomial = (b,R) -> (

top := 1_R; bottom := 1_R;

scan(#b, i -> if b_i > 0 then top = top * R_i"(b_1i)

else if b_i < O then bottom = bottom * R_i"(-b_i)); top - bottom);

nonfaces = ideal leadTerm ideal apply( A, a -> toBinomial(a,R));
toLinform = (b,R) -> (sss := O_R; scan(#b, i -> sss = sss + b_i * R_i); sss);
linearforms = ideal apply(entries transpose syz matrix A, a -> tolLinform(a,R));

I = linearforms + nonfaces;



d =

n - (codim nonfaces);

d, degree nonfaces

divp = 1;

divpowers = apply(l..d, i -> (divp = sum tolList apply(l..n, i ->

u_i * (x_i * divp % I))));

todd = (d,x) -> (trunc(d,

(1+

1/2%x+1/12%x~2-1/720%x"4+1/30240%x"6-1/1209600%x"8+1/47900160%*x"~10
-691/1307674368000%x"12+1/74724249600*x~14))) ;

toddclass := 1_R;
scan(l..n, i -> toddclass = trunc(d, toddclass * todd(d,x_i)) % I);

erhart = sum tolist apply(0..d-1, i ->

(divpowers_i * (1/(i+1)!) * component(d-i-1,toddclass) % I));

makeone = ideal apply(l..n,i -> x_i - 1);

erhart = (erhart % makeone);

constt = (component(d,toddclass) % I) % makeone;

toString ((1/constt)*erhart + 1)
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6 Appendix: The case of Ay

Now we go to the smallest interesting case A} (others are presented on-line). The f-vector of the
chamber complex is (1,19, 77,107,48). There are 48 chambers, only two of these 48 chambers are not

simplices, they are bipyramids over a triangle. Remarkably, a virtual chamber appears. This is related

to the existence of non-regular triangulations for the Gale diagram of A3+, which is a 10-dimensional

vector configuration We present all 48 polynomials and chambers in the web page. Here we only

present those polynomials that can be factored over Q).

1. If min{bs,bs,bs,b;} >0 then

355 (b1 +3) (bs +2) (bs +1) (bs® +5bs be +9bs +20+ 10b2> +30bs) (be + 3+ by + 3bs)
2. If min{b;,bs + bo + bg,—bs,—b2} > 0 then

355 (b2 + 54 bs + bs) (be + 4+ by + bs) (be + 3+ by + bs) (b2 + 2+ ul + bs)

(be +14+bs +bs) (b2 +3+bs —2bs)
3. If min{—bs, —bs — by, —bs — by, bs + bs + bs 4+ b;} > 0 then

555 (b + 3+ b1 +bs+bs) (by +2+ by +bs +bs) (by + 1+ by + bs + bs)

(60 +56b; +6bs —14by —54b; +9bs by by +6bs bs —3b2 by by —9bs?bs+

3b; b42+3 bs b42—6 bs b42+27b1 bs—9b; bs—9 b12b4 +6 b22b4 +9 b12b2—6 b; b22+3 b32b4 +6 b32b2+
24 bs b4 — 45 b, b4 — 6 b2 bs b4 — b33+6b12—9b22—15b32—2b13+3b23+9b42)

10



10.

11.

12.

13.

14.

15.

If min{—bs,—bo,—by,b: +bo +bs +b;} >0 then

ga5 (b2 +3+ b1 —2bs) (by + 3+ by + bs + b2) (by + 2+ by + bs + be)

(by + 14 by +bs + b2) (b +2b2 by +9bs +2bs bs —3ba by +9bs +bs>+20+9b; +2bs bs + bs” —
3bsby —21b; —3bs; b, +6b,2)

If min {bs, b;,—b2,b; + b2} >0 then

S (bo + by +3) (be + 2+ b1) (be + 1+ b1) (bs +5+ b1) (b + 4+ bs) (bs + 3 + bs + 3 bs)

If min {b;,bs,bs + by, —b; —bs —b;} >0 then

355 (b1 +3) (b1 +2) (b1 +1)

(60 4 56 b; + 110 bg + 70 by 4+ 50 b; — 30 bg by by + 90 b bs + 30 ba>bs — 15 be by by

—6bs2bs—15bs>b; —30b; b;2—30b2 by;2—30bs by2+57 by bp+21b;s bs—15b,%b; +3bs2be+15b; bs® —
30b32b; +30bs by —15b; by +15bs bg by —10b3> —20 b, +6 6,2 460 b2 — 2b,% +10b2> — 30 b,2)
If min {b;,bs + by, bz + by, —b; — by} >0 then

355 (br +3) (bs +2) (bs +1)

(3b1%bs —6bs2b; +9bs>+3bs%bs +51bs +57bs by +15by be® —9b; by

—15b; by2+27b;s by —15b2 by by +15bs bg by +30 b2 by +60+60 bs +60 be?+40b; +90 bs by —30b,% +
110 bs — 10 by 4+ 30 b2%bs + 10 bs® — 30 b2 ;%)

If min{—bs — by, —bs — bg,—bs —bs — by, by + b2 + bs + by} >0 then

ﬁ (by +34+bs +bs +b2)(by +24bs +bs+b2)(by +1+ by + bs + b2)

(60 4+51b; +11bs —9bs —59b; +3bs by by —6bs%bs —9bo by by —3b;2bs

—6b3%b; +9b1 b2 —9bg by? +27bs b —9bs by —3bs%by +9b2%by + 6b:2bs — 3 by bo? + 66370, +
24bg by —39b; by +6ba by by —3bs®+2b;%4+9bs% —12bp% — 18 bs? + be® +125,2)

If min {—by,—bs — by, b1 + by + bs + by, —bs — by — by} >0 then

555 (b +3+bs +bs +b2)(by +2+ by +bs +b2) (b +1+bs + bs +b2) (be +4— by —bs + bs) (2b2°+
13bo +4bs bo —boby —bobg +15+13by — by bg +2bs2 —Tbg —Tb; — by by +2b,;2 +4bgb; +2bs?)
If min {b;,b; + b + bs, —bs — bg,—bs — bg} > 0 then

— g5 (ba =3+ bs —2bs) (b +5+ by + bs) (be +4+ bs + bs) (b2 + 3+ b1 + bs) (bs + 2+ by + bs) (be + 1+ bs
If min {b;,bs + bs + by, —bs — by, —b; — bs} > 0 then

a5 (bs +3) (b1 +2) (bs +1) (bs —2by + bs +3) (1022 + 30 ba + 15 by ba + 20 bg bs +20 bz by + 20 +
15b; b; +30bs +30by +15b; by +6b:> +10b;2 +10bs> 4+ 24 b; + 20 bs by)

If min {b;,b;,bs + bg,—b; — b3} >0 then

355 (b1 +3) (bs +2) (bs +1) (b +4+2bs +2bs)

(5b2% +5bs bs + 10bs bs +20bs +13bs +5bs by +20bs +2b:° +5bs” + 15)

If min{—bs — bg,—by,bs + bs +bs + by, —bs — bs} >0 then

—ga5 (be —34+bs —2bs) (b; +3+ by + bs + ba) (by +2+ by + bs + b2) (b; + 1+ by + bs + b2)
(bo®4+2bs bs+9ba+2bs ba—3be by +9bs+b:2+204+9bs4+2bs bs+bs®>—3bs b, —21b; —3bs by+6b,2)
If min {—bg,bs + by, bs + bs,—bs — bg — b;} > 0 then

555 (b2 + 14+ b1) (be +5+by) (ba +4+ bs) (be +bs +3) (be +2+b1)(2b2 +2bs +3b; +3+3bs)
If min{—b; — by, —bs —bs — by, by + bz +bs + by, —bs — bs} >0 then

ﬁ (bs —2b; +bs +3) (by +1+ by +bs + b2) (b; +3+ bz +bs + bs) (by +2+ by + bs + bs) (b2*+2bs b+
2bsbg —6bs —3b; b2+20+b42+2b3b4+b32—6b4—3b1 b4—6b3—3b1 bs + 24 b; +6b12)
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16. If min {bs, b2, bs + by, —bs — b2 — b;} > 0 then
ga5 (b1 +3) (b1 +2) (b1 +1) (bs> +5bs be +9bs +20+ 10627 +30bs) (2be +2bs +3b; +3+3bs)
17. If min {b;, bs + bs + by, —b; — bg — by, —bs; — bz — by} > 0 then
sa5 (br +3) (bs +2) (bs +1) (—b; +3—bs +2b2) (10 b2” +30 bz + 15 by bs +20 b bs +20 bs by +20+
1561 b; +30bs +30b; +15b; bs + 60> +10b;2 +10bs? + 24 b; + 20 bs by)
18. If min {—by — bg — by, —bs — by — by, by + bz + bs + by, —bs — bs — b;} >0 then

ﬁ (—b; +3—bs +2b2) (by +2+ br +bs + b2) (b; + 14 bs + bs + bs) (by +3+ bs + bs + bs) (bo”+
2 bs b4+2b2 bs —6bs —3b; b2+20+b42+263 b4+b32—664—3b1 b4—6b3—3b1 bs +24 by +6b12)
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