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THE STORY OF THIS LECTURE

-Optimization is a vibrant branch of Applied Mathematics.

Its goal is to maximizing or minimizing some objective function
relative to a set of possible solutions! E.g., Maximum profit,
optimal arrangement, minimal error, etc.

This talk is about USING
ALGEBRA, GEOMETRY and

TOPOLOGY
in

in OPTIMIZATION research
Due to time I will focus onLINEAR OPTIMIZATION...
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OUTLINE

1 WHAT IS LINEAR OPTIMIZATION AND WHY YOU MUST
CARE!

2 TOPOLOGY INSIDE THE SIMPLEX METHOD

What is Simplex Method? How does it work?

Is there an efficient version of simplex?

Combinatorial Topology to the rescue!

3 ALGEBRAIC VIEW OF INTERIOR POINT METHODS

A quick review of interior point methods

The curvature of the central path

Tropical Algebraic Geometry to the rescue!
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The classical Linear Optimization Problem:

minimize c1x1 + c2x2 + · · ·+ cdxd

Subject to:
a1,1x1 + a1,2x2 + · · ·+ a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxd ≤ b2

...

an,1x1 + an,2x2 + · · ·+ an,dxd ≤ bn
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Here ai,j, bi, cj are rational numbers, n is the number of inequalities, d
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The classical Linear Optimization Problem:

minimize c1x1 + c2x2 + · · ·+ cdxd

Subject to:
a1,1x1 + a1,2x2 + · · ·+ a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxd ≤ b2

...

an,1x1 + an,2x2 + · · ·+ an,dxd ≤ bn

Adding/changing variables, we can rewrite it system

Minimize qTy subject to By = d and y ≥ 0;

Linear Programming
m

Linear Algebra over NON-NEGATIVE reals
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The classical Linear Optimization Problem:

minimize c1x1 + c2x2 + · · ·+ cdxd

Subject to:
a1,1x1 + a1,2x2 + · · ·+ a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxd ≤ b2

...

an,1x1 + an,2x2 + · · ·+ an,dxd ≤ bn

KEY POINT: Set of possible solutions is a convex polyhedron,
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ANATOMY OF A POLYTOPE P

Let P be a d-polytope. It has a nice decomposition into
smaller-dimension polytopes!
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ANATOMY OF A POLYTOPE P
If the halfspace H = {x ∈ Rc : a1x1 + · · ·+ acxc ≤ a0} ⊃ P,
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ANATOMY OF A POLYTOPE P
the face F of P determined by H is ∂H ∩ P.
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ANATOMY OF A POLYTOPE P
The dimension of a face is the dimension of its affine hull.
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ANATOMY OF A POLYTOPE P
Faces of dimension 0 are called vertices.
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ANATOMY OF A POLYTOPE P
Faces of dimension 1 are called edges. The vertices and edges of P
form an abstract, finite, undirected graph called the 1-skeleton G(P)

of P.
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ANATOMY OF A POLYTOPE P
Faces of dimension d − 1 are called facets.
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ANATOMY OF A POLYTOPE P

We assume: All polyhedra are simple, i.e., each vertex is defined by
d facets.

Small perturbations produce SIMPLE polyhedra!
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AN EXAMPLE: TRANSPORTATION NETWORKS

N1 × N2 Transportation problem: N1 supply sites and N2 demand
sites. We have cost ci,j for transporting goods from supply site i to
demand site j.

What is the best assignment of transport to minimize the cost?

Oldest LPs: Kantorovich (1939) Koopmans (1941), von
Neumann (1947).

Applications: Wasserstein distance between distributions,
Contingency tables.
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Linear Optimization is important for Optimization and beyond!

Linear Optimization is an expressive model! Besides
transportation, it includes

-shortest paths on a network,

- zero-sum two-player games,

-least absolute value regression, etc.

Exciting new applications keep coming:

-compressed sensing,

-computer solution of Kepler’s conjecture,

-support vector machines

Linear programs workhorse for the solution/approximation
schemes for combinatorial and non-linear optimization.

Many different algorithms for solution known:

Fourier-Motzkin elimination, Ellipsoid Method and its relatives,
Projection-Relaxation methods, Others.... TODAY
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TOPOLOGY INSIDE THE SIMPLEX METHOD
George Dantzig, inventor of the simplex algorithm (1947)
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The vertices and edges of a polyhedron form an undirected graph
called the 1-skeleton G(P) of P.

The distance d(v1, v2) between two vertices v1 and v2 is the
length of shortest edge-path between v1 and v2.

For example, d(v1, v2) = 2.

The diameter δ = max{d(v1, v2) : v1, v2 ∈ V} is the maximum
distance among all pairs of vertices.
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THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



THE SIMPLEX METHOD IN 2 MINUTES

Lemma: If there is an optimal solution, then one vertex of the
polytope is an optimal solution. Finitely many vertices!

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost value!

10



BIG QUESTION

Is there a version of the
simplex method

that runs in polynomial time
(in the input size)?

11



RELATED BIG QUESTION:
Is there a polynomial bound

of the diameter??
WARNING: If diameter is exponential, then all
versions of the simplex method will be exponential
in the worst case.
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RELATED BIG QUESTION:
Is there a polynomial bound

of the diameter??
WARNING: If diameter is exponential, then all
versions of the simplex method will be exponential
in the worst case.
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A TOPOLOGICAL VIEW OF THE SIMPLEX METHOD I
KEY IDEA: Work without coordinates!! Diameter of simplicial
complexes instead of polyhedra Adler & Dantzig (1970’s)

A simplicial complex K is a finite collection of simplices glued to
each other in a structured manner:

a) If σ ∈ K then all its faces (which are smaller simplices too!) are
also in K.

b) The intersection of any two elements of K is another element of K.

The complex K is pure if all of its maximal simplices are of the same
dimension.
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A TOPOLOGICAL VIEW OF THE SIMPLEX METHOD II

Does this abstraction make any sense??
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A TOPOLOGICAL VIEW OF THE SIMPLEX METHOD II

Does this abstraction make any sense??

YES! Every polyhedron can be naturally associated a pure simplicial
complex via POLARITY
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A TOPOLOGICAL VIEW OF THE SIMPLEX METHOD II
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A TOPOLOGICAL VIEW OF THE SIMPLEX METHOD II

We reduced the vertex diameter of LPs to the facet diameter of
Simplicial Polytopes!

The distance between two facets, F1,F2, is the length k of the
shortest simplicial path F1 = f0, f1, . . . , fk = F2.

The diameter of a simplicial complex is the maximum over all
distances between all pairs of vertices.
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BEST UPPER BOUNDS ON THE DIAMETER

Kalai-Kleitman: (facets(P))log(dim(P))+1.

Todd, Sukegawa (facets(P)− dim(P))log(O(
dim(P)

log(dim(P)) ))

Barnette, Larman: 2dim(P)−3

3 (facets(P)− dim(P) + 5/2).

Theorem: These bounds work for diameter of simplicial complexes!
Eisenbrand-Hähnle-Razborov-Rothvoss (2010)
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NICE SIMPLICIAL COMPLEXES HAVE LOW DIAMETER:
WEAK VERTEX-DECOMPOSABILITY

DEFINITION

A d-dimensional complex ∆ is weakly vertex-decomposable if
1 All the maximal-dimension simplices are of dimension d, and
2 either ∆ is a d-simplex, or there exists a vertex τ of ∆ (called a

shedding vertex) such that ∆ \ τ is d-dimensional and weakly
vertex-decomposable.

2

1

3

4

5 \2

1

3

4

5 \1
3

4

5

2-simplex!

2

1

1

2

3 \2

1

1
3

not of right dimension!
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WHY SHOULD WE CARE??

THEOREM (BILLERA,PROVAN, 1980)
If ∆ is a weakly vertex-decomposable complex, then we have a linear
bound (n = f0(∆)):

diam(∆) ≤ 2f0(∆) = 2n.

Which simplicial polytopes are weakly vertex-decomposable?

Theorem ( JDL + S. Klee, 2012) Not all simplicial polytopes are
weakly vertex decomposable!

We constructed explicit transportation problems whose polars are not
weakly vertex-decomposable (from dimension 4 onward).
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SIMPLICIAL COMPLEXES OF LARGE DIAMETER

Theorem: Santos (2012) Constructed examples with largest
known diameter for simplicial spheres (e.g., polytopes).

But today, the best we know is still LINEAR!!

Theorem Criado and Santos (2015) Pure simplicial complexes,
even pseudomanifolds, can have exponential diameter!!!

Hirsch conjecture: There is a polynomial function f (n, d) such
that for any polytope of dimension d with n facets, the diameter
is less than f (n, d).
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ALGEBRAIC VIEW OF INTERIOR POINT METHODS
Narendra Karmarkar, inventor of interior point methods

20



THE CENTRAL PATH OF A LINEAR PROGRAM:
OPTIMIZERS VIEW

Linear Program: Maximizex∈Rn cT · x s.t. A · x = b and x ≥ 0.

Replace by : Maximizex∈Rn fµ(x) s.t. A · x = b,

where µ ∈ R+ and fµ(x) := cT · x + µ
∑n

i=1 log |xi|.

The maximum fµ is a unique point x∗(µ) in the open polytope
{x ∈ (R>0)n : A · x = b}.
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THE CENTRAL PATH OF A LINEAR PROGRAM

The central path is {x∗(µ) : µ > 0}.
As µ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).
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THE CENTRAL PATH OF A LINEAR PROGRAM

In practice = piecewise-linear approx. of the entire central path
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HOW “CURVY” OR “TWISTED” IS THE CENTRAL PATH?

Intuition: The number of steps will depend on how “curvy” how
“twisted” is the central path! What is the curvature?
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The total curvature of a curve C in Rm is the arc length of its image
under the Gauss map. γ : C → Sm−1.

Bounds on curvature→ bounds on # steps.

Megiddo-Shub (1989), Sonnevend-Stoer-Zhao (1991),Todd-Ye (1996),
Vavasis-Ye (1996), Dedieu-Malajovich-Shub (2005),
Deza-Terlaky-Zinchenko (2008),Monteiro-Tsuchiya (2008)....

Question: What is the exact total curvature of the central path?

Conjecture:( Deza, Terlaky, Zinchenko) The total curvature of the
central path in a polyhedron is ≤ 2π(#number of facets).

There is a recent solution of this conjecture!

They used Algebraic Geometry, studying solutions of polynomial
equations with coefficients over a field K
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HIGH CURVATURE LPS EXIST!

THEOREM (ALLAMIGEON, BENCHIMOL, GAUBERT, JOSWIG,
2017)
There is a parametric family, of linear programs in 2r variables with
3r + 1 constraints, such that the total curvature of the central path is
exponential in r.

COROLLARY

The number of iterations of any primal-dual path-following interior
point algorithm with a log-barrier function which iterates in the wide
neighborhood of the central path is exponential in r (for sufficiently
large parameter value).
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IDEA 1: CENTRAL PATH IS PART OF AN ALGEBRAIC

CURVE!!!!

The central curve C is the Zariski closure of the central path.

Theorem: JDL, B. Sturmfels, C. Vinzant (2014): computed
equations, curvature, degree.

−→
Zariski closure

From an algebraic variety V , one can obtain a combinatorial model,
its tropical variety T(V). We do a tropicalization!
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IDEA 2: TROPICAL GEOMETRY

The tropicalization of V is a polyhedral complex in Rd. We turn
algebra into combinatorics!

KEY POINT: Features of the algebraic variety V are easier to
see/compute in its tropicalization T(V).

E.g., the central curve is piecewise linear, the curvature is now a
sum of piece-wise linear angular turns.
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TROPICAL ARITHMETIC

Tropical Geometry is geometry over the Tropical semiring:

T(R), this is the reals union −∞ with two binary operations
⊕ = max and ⊗ = +.

1⊕ 3 = 3 5⊗ 0 = 5

Tropical Arithmetic is associative distributive, the additive
identity is −∞ and the multiplicative identity is 0. We do not
have subtraction!

Tropical arithmetic extends to matrices and polynomials
equations.

The polynomials we use have parametric coefficients.
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TROPICALIZATION OF PARAMETRIC POLYNOMIALS

The tropicalization replaces a parametric polynomial
(coefficients depend on t) into a tropical polynomial.

f (x, t) := x3 − (t3 + 2t + 1)x2 − 2t4

goes to a tropical polynomial.

F(x) = x⊗3 ⊕ 3⊗ x⊗2 ⊕ 4

The coefficients in t replaced by the leading power dominating
term. Signs do not matter!!

Now, in the usual arithmetic F(x) is a piece-wise linear
function!

max(3x, 3 + 2x, 4)
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AN ILLUSTRATIVE EXAMPLE

A parametric polyhedron P ⊂ K2 is defined by inequalities.

x1 + x2 ≤ 2

tx1 ≤ 1 + t2x2

tx2 ≤ 1 + t3x1

x1 ≤ t2x2

x1, x2 ≥ 0 .

(1)

The tropicalization of P is described by five tropical linear
inequalities:

max(x1, x2) ≤ 0

1 + x1 ≤ max(0, 2 + x2)

1 + x2 ≤ max(0, 3 + x1)

x1 ≤ 2 + x2 .

(2)
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min x1 min tx1 + x2

Figure shows the tropicalization of the polyhedron, but it also shows,
in red, two different tropical central paths (for two different objective
functions).

Note: The tropical central path may degenerate to a vertex-edge path,
like the simplex method.
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CONCLUSIONS

Similar methods can be applied in other areas of optimization!

Global and Conic optimization and Real algebraic geometry

Tropical Geometry and Game Theory

Lattices and Geometry of Numbers and Integer Optimization

Diversity of methodology is a powerful way to approach
problems!!

Just imagine what we could do if we have a larger and more
diverse group of mathematicians working together?
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Gracias!
Thank you!
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