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The classical Linear Programming Problem:

maximize C1x1 + C2x2 + · · ·+ Cdxd

among all x1, x2, . . . , xd , satisfying:

a1,1x1 + a1,2x2 + · · ·+ a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxd ≤ b2

...

ak,1x1 + ak,2x2 + · · ·+ ak,dxd ≤ bk

Linear Equations are included in this model.

Jesús A. De Loera Recent Advances in the Geometry of Linear Programming



This reduces to the canonical problem

Maximize cT x subject to Ax = b and x ≥ 0;

NOTE: Set of possible solutions is a convex polyhedron

Mathematically speaking the solution of the optimization
problem is equivalent to the solution of the feasibility problem:

Is there a vector x, with Ax = b and x ≥ 0 ?

Linear Programming
m

Linear Algebra over NON-NEGATIVE reals
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Transportation LPs

I My favorite LP problem: A company builds laptops in four
factories, each with certain supply power. Four cities have
laptop demands. There is a cost ci ,j for transporting a laptop
from factory i to city j . What is the best assignment of
transport in order to minimize the cost?

ON FOUR CITIES

DEMANDS

220

215

93

64

108

 286

71

127

SUPPLIES

BY FACTORIES
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I Linear programming is important for optimization:
I Linear programs used in solution/approximation schemes for

combinatorial and non-linear optimization.

I Exciting new applications keep coming (e.g., compressed
sensing!!).

I Impact of linear optimization goes well beyond optimization
and reaches other areas of mathematics:

I Combinatorics and graph theory.
I Statistical Regression.
I Geometry (e.g., solution of Kepler’s conjecture)

I Many different methods of solution known!!
I Fourier-Motzkin elimination
I Simplex Method
I Ellipsoid Method and its relatives
I Interior Point Methods
I Others...
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PART I: Advances in the Simplex Method

Selected one of “10 top most-influential algorithms in the 20th
century” by SIAM news

George Dantzig, inventor of the simplex algorithm
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The simplex method

I Lemma: Feasible region is a polyhedron. An optimal solution
for an LP is among the vertices of the polytope.

I The simplex method walks or searches along the graph of the
polytope, each time moving to a better and better cost!

I Performance of the simplex method depends on the diameter
of the graph of the polytope: largest distance between any
pair of nodes.
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Bounding the Diameter

QUESTION: Is there a polynomial bound of the diameter in terms
of the number of facets and the dimension? The best general
bounds are

Barnette-Larman: 2dim(P)−2

3
(#facets(P)− dim(P) + 5/2).

Kalai-Kleitman: (#facets(P))log(dim(P))+1.
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The Hirsch Conjecture on a Polytopes

The story so far:

I 1957: Hirsch proposes that a d-dimensional polytope with n
facets has diameter (maximal distance between any two
vertices) no more than n − d .

I 2010: Santos constructs a counterexample (43 dimensions
and 86 facets)
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Some remarks

I 2012 B. Matschke, F. Santos, & C. Weibel improved the
counterexample, now smaller in 20 dimensions and one can
actually plug it into a computer!

I The diameter gives a lower bound on the worst-case behavior
of edge-following algorithms. If diameter is exponential then
all edge-path algorithms will be exponential in the worst case.

I Hirsch conjecture known to be true in many instances, e.g. for
polytopes with 0/1 vertices. More important today, bounds
for special families are LINEAR!!!

I But there are some very interesting cases where we do not
know the tight bound

I Open: Is the Hirsch conjecture true for transportation LPs?

I Open: Is the Hirsch conjecture true for Network LPs?
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Using the Coordinate Size

I Theorem[Onn & Kleinschmidt] The diameter of a d-polytope
with all its vertices integer and contained in the box [0,K ]d is
no more than Kd

I Theorem[Bonifas, Bonifas, Di Summa, Eisenbrand, Hähnle,
and Niemeier] Let P = {x ∈ Rn : Ax ≤ b} be a polytope
where all sub-determinants of A ∈ Zn×d are bounded by ∆ in
absolute value. then the diameter of P is at most
O(∆2d3.5 log(d∆)).

I Corollary When A is a totally unimodular matrix, the bound
of Bonifas et al. simplify to O(d3.5 log d).

I Kitahara and Mizuno Given a linear program of the form
max{cT x : Ax = b, x ≥ 0} where A is a real d × n matrix,
The number of different basic feasible solutions (BFSs)
generated by Dantzig’s simplex method is bounded by
ndd γ

δ log(d γ
δ )e, where δ and γ are the minimum and the

maximum values of all the positive elements of primal BFSs.
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Could the diameter be still LINEAR ???

There is not a single case with diameter more than 2(n − d)
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Diameters of Simplicial Complexes

Definition

I The distance between two facets, F1,F2, is the length k of
the shortest simplicial path F1 = f0, f1, . . . , fk = F2.

I The diameter of a simplicial complex is the maximum over all
distances between all pairs of facets.

Why? We work with simplicial complexes, we can use topological
arguments! Idea goes back to the 1980’s.
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Weak k-Decomposability

Definition
A d-dimensional complex ∆ is weakly k-decomposable if

1. All the maximal-dimension pieces are of the same dimension,
and

2. either ∆ is a d-simplex, or there exists a face τ of ∆ (called a
shedding face) such that dim(τ) ≤ k and ∆ \ τ is
d-dimensional and weakly k-decomposable.

Definition
When k = 0, weak k-decomposability is known as weak vertex-
decomposability.

2
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2-simplex!
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Jesús A. De Loera Recent Advances in the Geometry of Linear Programming



Why should we care??

Theorem (Billera,Provan, 1980)

If ∆ is a weakly k-decomposable complex, 0 ≤ k ≤ d, then

diam(∆) ≤ 2fk(∆),

where fk(∆) is the number of k-faces ∆.
In the case of weakly 0-decomposable, we have the following linear
bound (n = f0(∆)):

diam(∆) ≤ 2f0(∆) = 2n.

Theorem: All simplicial d-dimensional polytopes are weakly
d-decomposable (because they are shellable!).
Theorem: [Provan] Some topological spheres are not weakly
0-decomposable
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BIG OLD QUESTIONS from 1980’s

I Are all simplicial polytopes weakly vertex-decomposable?

I Are all simplicial polytopes weakly k-decomposable?

I Is there a constant k that works for all polytopes???

All these questions have been finally answered
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RESULTS

I Theorem (2012, JDL and S. Klee) Not all simplicial
polytopes are weakly vertex decomposable!
We constructed explicit transportation problems whose polars
are not weakly vertex-decomposable (from dimension 4
onward).

I Question: Is there a different constant 0 < k < d such that
every simplicial polytope is k-decomposable?

I Theorem (2012, Hähnle, Klee, Pilaud): Our family of
examples has in fact non-k-weakly decomposable members for
any k < d .

I Other contributions using “topological lenses”: work by
Adler-Dantzig, Billera-Provan, Klee-Walkup,
Klee-Kleinschmidt, Kim,
Eisenbrand-Hähnle-Razborov-Rothvoss.

I Theorem (2013) Santos The diameter of d-manifold grows

at least as O(n
2d
3 ).
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Eisenbrand-Hähnle-Razborov-Rothvoss.

I Theorem (2013) Santos The diameter of d-manifold grows

at least as O(n
2d
3 ).
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Part II: Contributions to Interior-Point Methods

Narendra Karmarkar, inventor of interior point methods

Jesús A. De Loera Recent Advances in the Geometry of Linear Programming



The Central Path of a Linear Program: Optimizers view

Linear Program: Maximizex∈Rn c · x s.t. A · x = b and x ≥ 0.

Replace by : Maximizex∈Rn fλ(x) s.t. A · x = b,

where λ ∈ R+ and fλ(x) := cT · x + λ
∑n

i=1 log |xi |.

The maximum of the function fλ is attained by a unique point
x∗(λ) in the the open polytope {x ∈ (R>0)n : A · x = b}.

The central path is {x∗(λ) : λ > 0}.
As λ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).
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where λ ∈ R+ and fλ(x) := cT · x + λ
∑n

i=1 log |xi |.

The maximum of the function fλ is attained by a unique point
x∗(λ) in the the open polytope {x ∈ (R>0)n : A · x = b}.

The central path is {x∗(λ) : λ > 0}.
As λ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).
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The Central Path of a Linear Program

The central path is {x∗(λ) : λ > 0}.
As λ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).

Interior point methods = piecewise-linear approx. of this path

Key point: The convergence of Newton steps will depend on how
“curvy” how “twisted” is the central path!!!
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CURVATURE: measuring how “twisted” is the central path

The total curvature of a curve C in Rm is the arc length of its
image under the Gauss map. γ : C → Sm−1.

Bounds on total curvature → bounds on # Newton steps.
Megiddo-Shub (1989), Sonnevend-Stoer-Zhao (1991),Todd-Ye (1996), Vavasis-Ye (1996), Monteiro-Tsuchiya

(2008), Dedieu-Malajovich-Shub (2005), Deza-Terlaky-Zinchenko (2008)....
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The Central Path is part of an Algebraic Curve

The central curve C is the Zariski closure of the central path.
It contains the central paths of all polyhedra in the hyperplane
arrangement {xi = 0}i=1,...,n ⊂ {A · x = b}.

−→
Zariski closure

Bayer-Lagarias (1989) first studied the central path as an algebraic
curve and suggest the problem of identifying its defining equations.
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Questions and Contributions

Motivating Question 1: Find the defining equations for the central

curve, what is the degree of the curve?

Motivating Question 2: What is the degree and the maximum total
curvature of the central path given a matrix A?

Our contribution: We use algebraic geometry and matroid theory
to find explicit defining equations of the central curve and refine
bounds on its degree and total curvature.
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Conditions defining the curve

Recall the function fλ(x) = c · x + λ
∑n

i=1 log |xi | in {A · x = b}:

Lemma: A point x belongs to the central curve

⇔ ∇fλ(x) = c + λx−1 ∈ span{rows(A)}

⇔ x−1 ∈ span{rows(A), c} =: LA,c

⇔ x ∈ L−1
A,c

where L−1
A,c is the coordinate-wise reciprocal LA,c:

L−1
A,c :=

{
(u−1

1 , . . . , u−1
n ) where (u1, . . . , un) ∈ LA,c

}
Corollary: The central curve equals the intersection of the

central sheet L−1
A,c with the affine space

{
A · x = b

}
.
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(Linear) Matroids

Given the matrix A the defines the LP:

A =
[

x1 x2 · · · xn
]

E := {1, 2, . . . , n}.
C := {S ⊂ E : AS has linearly dependent columns;
AS−e has linearly independent columns}.

These are called the CIRCUITS of the matroid of A.
They satisfy three axioms:

(C1) ∅ /∈ C.

(C2) X ,Y ∈ C, X ⊂ Y ⇒ X = Y .

(C3) X ,Y ∈ C, X 6= Y , e ∈ X ∩ Y ⇒
∃ Z ∈ C with Z ⊂ (X ∪ Y )− e.
(Elimination Property)
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Example of circuits

“circuits 101”:
E = {1, 2, 3, 4, 5, 6}.

A =

 1 0 0 1 0 1
0 1 0 −1 1 0
0 0 1 0 −1 1


Q1: {2, 3, 4, 6} ∈ C?
A1: Yes. A2 + A3 + A4 − A6 = 0.

det[A2|A3|A4] = 1, det[A2|A3|A6] = 1,
det[A2|A4|A6] = −1, det[A3|A4|A6] = 1.

Key Point: The curvature can be bounded for the curve using
matroid properties of CIRCUITS!!!.
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Equations

Applying results by Proudfoot and Speyer (2006) we obtained:

Lemma: The equations defining L−1
A,c are the homogeneous

polynomials ∑
i∈supp(v)

vi ·
∏

j∈supp(v)\{i}

xj ,

where v is a vector in kernel
(A

c

)
of minimal support circuits.

(
A
c

)
=

1 1 1 0 0
0 0 0 1 1
1 2 0 4 0

 Circuit v =
(
−2 1 1 0 0

)
produces −2x2x3 + 1x1x3 + 1x1x2.
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Example

(n = 5, d = 2)

A =

(
1 1 1 0 0
0 0 0 1 1

)
c =

(
1 2 0 4 0

)
b =

(
3
2

)

Equations for C:

−2x2x3 + x1x3 + x1x2,
4x2x4x5 − 4x1x4x5 + x1x2x5 − x1x2x4,
4x3x4x5 − 4x1x4x5 − x1x3x5 + x1x3x4,
4x3x4x5 − 4x2x4x5 − 2x2x3x5 + 2x2x3x4

x1 + x2 + x3 = 3

x4 + x5 = 2
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Degree, Genus, and the Broken Circuit Complexes

I How about the degree of the central curve?? Matroids again!

I Fix the standard ordering 1 < 2 < · · · < n of [n]. A broken
circuit of M is any subset of [n] of the form C\{min(C )}
where C is a circuit.

I The broken circuit complex of M is the simplicial complex
Br(M) whose minimal non-faces are the broken circuits. A
subset of [n] is a face of Br(M) if it does not contain any
broken circuit.

I Write fi = fi (Br(M)) for the number of i-dimensional faces of
the broken circuit complex Br(M).

I An easy linear transformation of the fi gives a vector
(h0, h1, . . . , hd).
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Degree from Matroid data

One can recover its Hilbert series from the Stanley-Reisner ring of
the broken circuit complex

Using the matroid associated to L−1
A,c, construct its broken circuit

complex.

1 1 1 0 0
0 0 0 1 1
1 2 0 4 0

 {123, 1245,

1345, 2345} h = (1, 2, 2)

matrix
(
A
c

)
→ matroid → “broken circuit” → h-vector

complex

⇒ deg(C) =
∑d

i=0 hi and genus(C) = 1−
∑d

j=0(1− j)hj .
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Total Curvature

Theorem: Dedieu-Malajovich-Shub (2005) The total curvature of C
is bounded above by π times the degree deg(γ(C)) of the
projective Gauss curve in Pm−1.

Classic algebraic geometry: deg(γ(C)) ≤ 2 · (deg(C) + genus(C)− 1)

Theorem: The degree of the projective Gauss curve of the central
curve C satisfies a bound in terms of matroid invariants:

deg(γ(C)) ≤ 2 ·
d∑

i=1

i · hi

The total curvature of the central curve is no more than

(2 · π) ·
d∑

i=1

i · hi
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Example (continued!)

(n = 5, d = 2)

A =

(
1 1 1 0 0
0 0 0 1 1

)
c =

(
1 2 0 4 0

)
b =

(
3
2

)

Equations for C:

−2x2x3 + x1x3 + x1x2,
4x2x4x5 − 4x1x4x5 + x1x2x5 − x1x2x4,
4x3x4x5 − 4x1x4x5 − x1x3x5 + x1x3x4,
4x3x4x5 − 4x2x4x5 − 2x2x3x5 + 2x2x3x4

x1 + x2 + x3 = 3

x4 + x5 = 2

h = (1, 2, 2) ⇒ deg(C) = 5, total curvature(C) ≤ 12π

(≤ 16π)
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Part III: Other Methods

Fourier & Motzkin
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Linear Feasibility

We are interested in determining the feasibility of systems of the
form

Ax = b, Cx ≤ d

with x ∈ Rn, A an m× n matrix, and C an l × n matrix. The set of
all x ∈ Rn that satisfy the above constraints is the feasible region.

Figure: Example of a feasible region.

This is the Linear Feasibility Problem (LFP), it is computationally
equivalent to the Linear Optimization Problem!!
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The Relaxation Method

I Start at current best guess xj .

I Consider one constraint, i.e. cix ≤ di , at a time.

I In the first algorithm proposed by Motzkin and Schoenberg
[1954], project onto the most violated constraint ckx = dk ,
where k = arg max{cixj − di}.

I Set projected point to xj+1 and repeat.

I Sequence of points converges to the feasible region.

Feasible Region

x0

Figure: Projection onto violated constraints.
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Agmon [1954], and Motzkin and Schoenberg [1954]

Pros of the relaxation method:

I Always terminates or converges to a point in the feasible
region.

I Lends itself for parallelization.

Cons of the relaxation method:

I Need to assume feasible region is nonempty.

I May take exponential time [Goffin 1982, Telgen 1982].

x2

x3
x1

x0

Feasible Region

Figure: 2-dim example of the relaxation method.
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The Chubanov Relaxation Method [2011]

What is the idea?

Induced Hyperplanes!

I These are new constraints derived as convex combinations of
the original constraints.

I Such an advantage that when Cx ≤ d takes the form
0 ≤ x ≤ 1, Chubanov’s algorithm runs in strongly polynomial
time.

x2

x3
x1

x0

Feasible Region

Feasible Region

x1

x0

x2
x3

Figure: Projecting onto an induced hyperplane.
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Jesús A. De Loera Recent Advances in the Geometry of Linear Programming



Theoretical Extensions and Numerical Results

Theory:

I Chubanov’s algorithm either returns a feasible solution or
determines no integer solutions exist.

I We use Chubanov’s method to determine feasibility of strict
LFPs.

I When the constraint matrix is totally unimodular, we get a
strongly polynomial running time similar to that of Tardos
[1986].

Numerics:

I Despite its theoretical advantages, Chubanov’s relaxation
method it is practically much slower than the original
relaxation method.

I We are investigating how it influences the number of branches
when solving 0/1 integer programs.
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MANY OPEN PROBLEMS!!

I Is there a strongly polynomial time linear programming
algorithm ??

I Is there a polynomial-time pivot rule for the simplex method??

I What are the best bounds for the diameter of convex
polyhedra??

I What is total curvature of just the central path?

I Conjecture:( Deza, Terlaky, Zinchenko) The total curvature
of the central path in a polyhedron is
≤ 2π(#number of facets).

Jesús A. De Loera Recent Advances in the Geometry of Linear Programming



MANY OPEN PROBLEMS!!

I Is there a strongly polynomial time linear programming
algorithm ??

I Is there a polynomial-time pivot rule for the simplex method??

I What are the best bounds for the diameter of convex
polyhedra??

I What is total curvature of just the central path?

I Conjecture:( Deza, Terlaky, Zinchenko) The total curvature
of the central path in a polyhedron is
≤ 2π(#number of facets).
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Thank You!
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