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Le Menu

Appetizer: What is Integer Optimization? and why do we need new
mathematics to deal with it?

Main Dish: A Taste of Two New Techniques.

Graver bases for Integer Linear Programming
Rational Functions for Non-linear Mixed Integer Programming

Dessert: Closing Comments and Future directions.
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What is Integer Optimization?

Why we need new tools?
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A part of Applied Mathematics, its main problem: Given a finite set X , each
of whose elements has an assigned cost, price or optimality criteria, find the
cheapest such object.

Problems come from bioinformatics, industrial engineering, management,
operations planning, finances, any area where the best solution is required!

History starts with the WWII Initial work by Kantorovich (1939), T.C
Koopmans (1941), von Neumann (1947), Dantzig (1950), Ford and
Fulkerson (1956). Invention of linear programming and the simplex method.
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My Favorite Example

The Transportation problem: A company builds laptops in four factories,
each with certain supply power. Four cities have laptop demands. There is a
cost ci,j for tranporting a laptop from factor i to city j . What is the best
assignment of transport in order to minimize the cost?

ON FOUR CITIES

DEMANDS

220

215

93

64

108

 286

71

127

SUPPLIES

BY FACTORIES

A silly way to solve this: run through all possibilities! Well how do I do this??
Not so easy... If supply and demand are all ONE and if number of cities and
factories is n = 35, and a computer took 10−9 seconds to check one
possibility, it would take 200,000 years to solve!
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Integer Linear Programming

Linear programs

max c>x

s.t. Ax ≤ b

max c>

Easy
(polynomial-time

solvable)

Mixed integer programs

max c>x

s.t. Ax ≤ b

some xi integer

max c>

Hard
(NP-hard)

Integer programs

max c>x

s.t. Ax ≤ b

all xi integer

max c>

Hard
(NP-hard)
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A way to model it via equations and inequalities

Let xi,j be a variable indicating number of laptops factory i provides to city j .
xi,j can only take non-negative integer values, xi,j ≥ 0.

Then Since factory i produces ai laptops we have

n∑
j=1

xi,j = ai , for all i = 1, . . . , n.

and since city j needs bi laptops

n∑
i=1

xi,j = bj , for all j = 1, . . . , n.

Now we minimize
∑

ci,jxi,j .
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Integer Linear Programming: The state of the art

Traditional Algorithms

Dual (polyhedral) techniques

max c>

x2

x1

x0max c>

x2

x0

x1

Cutting plane algorithms
– based on polyhedral theory

Enumeration

max c> x0max c> x0max c> x0

Branch-and-bound

Primal methods

max c>

x1

max c>

x1

Primal heuristic

Mathematical modelling – Strong initial IP formulation
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WE NEED NEW MATHEMATICAL METHODS!!
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REASON ONE: Reality is NON-LINEAR!

Non-linear Mixed Integer
Optimization

max/min f (x1, . . . , xd)

subject to gj(x1, . . . , xd) ≤ 0,

for j = 1 . . . s, and with

some xi integer!

where

The constraints f and gi ’s
can be non-linear functions
now!

Problem has huge modeling
power!

bad news!!

The problem is INCREDIBLY HARD
It is UNDECIDABLE already when f ,gi ’s
are
polynomials and even with number of
variables=10.
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REASON TWO: Even baby problems unsolvable with
traditional techniques!

Market Share problem (Cornéujols- Dawande, Williams)

minimize
Pm

i=1 |si | subject to the constraints

nX
j=1

ai,jxj + si = di , i = 1, . . . , m

xj ∈ {0, 1}, j = 1, . . . , n, and all si ∈ integer

Nasty Knapsack problems (Aardal, Bixby et al)

Minimize or maximize
P10

i=1 xi , subject to xi ≥ 0 and

3719x1 + 20289x2 + 29067x3 + 60517x4 + 64354x5 + 65633x6 + 76969x7 +

102024x8 + 106036x9 + 119930x10 = 13385100
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A Taste of Two New
Algebraic Techniques

Graver bases for ILP
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Test Sets and Augmentation Methods

A TEST SET is a finite collection of integral vectors with the property that
every feasible non-optimal solution of an integer program can be improved by
adding a vector in the test set.

We focus here on Algebraic Test Sets: Graver and Gröbner bases, Hilbert
bases, integral basis method. Work by Graver, Scarf, Sturmfels, Weismantel
et al. and many others.
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Graver Bases

The lattice L(A) = {x ∈ Zn : Ax = 0} has a natural partial order. For
u, v ∈ Zn we say that u is conformal to v , denoted u < v , if |ui | ≤ |vi | and
uivi ≥ 0 for i = 1, . . . , n, that is, u and v lie in the same orthant of Rn and
each component of u is bounded by the corresponding component of v in
absolute value.

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A.

Example: If A = [1 2 1] then its Graver basis is

±{[2,−1, 0], [0,−1, 2], [1, 0,−1], [1,−1, 1]}

.
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Theorem [J. Graver 1975] Graver bases for A can be used to solve the
augmentation problem Given A ∈ Zm×n, x ∈ Nn and c ∈ Zn, either find an
improving direction g ∈ Zn, namely one with x − g ∈ {y ∈ Nn : Ay = Ax}
and cg > 0, or assert that no such g exists.

The fastest algorithm to compute Graver bases is based on a completion and
project-and-lift method. Implemented in 4ti2 (by R. Hemmecke and P.
Malkin). Equivalent to the computation of minimal Hilbert bases.

Graver bases contain, and generalize, the LP test set given by the circuits of
the matrix A. Circuits contain all possible edges of polyhedra in the family

P(b) := {x | Ax = b, x ≥ 0}

.

Theorem The Graver basis contains all edges for all integer hulls
conv({x | Ax = b, x ≥ 0, x ∈ Zn}) as b changes.
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For a fixed cost vector c , we can visualize a Graver basis of of an integer
program by creating a graph!!

Here is how to construct it, consider

L(b) := {x | Ax = b, x ≥ 0, x ∈ Zn}

.
Nodes are lattice points in L(b) and the Graver basis elements give directed
edges departing from each lattice point u ∈ L(b).
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BAD NEWS!!

Graver test sets can be exponentially large even in fixed dimension!

People typically store a list of the whole test set. Very large indeed. (New
ways to store them available, using algebra!).

Very hard to compute, you don’t want to do this too often.

GOAL: Make test sets efficient at least in special cases.

OUR NEW RESULTS: We show a useful cases where Graver bases become
very manageable.
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N-fold Systems

Fix any pair of integer matrices A and B with the same number of columns, of
dimensions r × q and s × q, respectively. The n-fold matrix of the ordered pair
A,B is the following (s + nr)× nq matrix,

[A,B](n) := (1n ⊗ B)⊕ (In ⊗ A) =


B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

 .

N-fold systems DO appear in applications! Multiway Transportation problems are
examples!
Theorem Fix any integer matrices A,B of sizes r × q and s × q, respectively.
Then there is a polynomial time algorithm that, given any n and any integer
vectors b and c , solves the corresponding n-fold integer programming problem.

min{cx : [A,B](n)x = b, x ∈ Nnq} .
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vectors b and c , solves the corresponding n-fold integer programming problem.

min{cx : [A,B](n)x = b, x ∈ Nnq} .
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Key Lemma Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q.
Then there is a polynomial time algorithm that, given n, computes the Graver
basis G ([A,B](n)) of the n-fold matrix [A,B](n). In particular, the cardinality
and the bit size of G ([A,B](n)) are bounded by a polynomial function of n.

Key Idea (from Commutative Algebra!) [Aoki-Takemura,
Santos-Sturmfels, Hosten-Sullivant] For every pair of integer matrices
A ∈ Zr×q and B ∈ Zs×q, there exists a constant g(A,B) such that for all n,
the Graver basis of [A,B](n) consists of vectors with at most g(A,B) the
number nonzero components.
The smallest constant g(A,B) possible is the Graver complexity of A,B.
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Example: Consider the matrices A = [1 1] and B = I2. The Graver complexity of
the pair A,B is g(A,B) = 2.

[A,B](2) =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , G ([A,B](2)) = ±
(

1 −1 −1 1
)

.

By our theorem, the Graver basis of the 4-fold matrix

[A,B](4) =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

G ([A,B](4)) = ±


1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

 .
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A Taste of Two New
Algebraic Techniques

Rational Functions for Non-Linear Integer Optimization
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Going Beyond Convex Integer Optimization!!!

Problem type

max f (x1, . . . , xd)

subject to (x1, . . . , xd) ∈ P ∩ Zd ,

where

P is a polytope (bounded
polyhedron) given by linear
constraints,

f is a (multivariate)
polynomial function
non-negative over P ∩ Zd ,

the dimension d is fixed.

Prior Work

Integer Linear Programming can be
solved in polynomial time

(H. W. Lenstra Jr, 1983)

Convex polynomials f can be
minimized in polynomial time

(Khachiyan and Porkolab, 2000)

Optimizing an arbitrary degree-4
polynomial f for d = 2 is NP-hard

Fully Polynomial-Time Approximation
Scheme (FPTA S)

For every ε > 0, there exists an algorithm
Aε with running time polynomial in the
input size and 1/ε, which computes an
approximation xε wi th

|f (xε)− f (xmax)| ≤ ε f (xmax).
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Key Idea: Represent Sets of Lattice Points as Rational
Function

Given K ⊂ Rd we define the sum

f (K ) =
∑

α∈K∩Zd

zα1
1 zα2

2 . . . zαn
n .

Think of the lattice points as monomials!!! EXAMPLE: (7, 4,−3) is z7
1 z4

2 z−3
3 .

When K is a rational convex polyhedron, i.e. K = {x ∈ Rn|Ax = b, Bx ≤ b′},
where A, B are integral matrices and b, b′ are integral vectors, The generating
function f (K ), and thus ALL the lattice points of the polyhedron K , can be
encoded in a sum of rational functions!
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Example

Let P be the square with vertices V1 = (0, 0), V2 = (5000, 0), V3 = (5000, 5000),
and V4 = (0, 5000).

The generating function f (P) has over 25,000,000 monomials,
f (P) = 1 + z1 + z2 + z1

1 z2
2 + z2

1 z2 + · · ·+ z5000
1 z5000

2 ,
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But it can be written using only four rational functions

1

(1− z1) (1− z2)
+

z1
5000

(1− z1
−1) (1− z2)

+
z2

5000

(1− z2
−1) (1− z1)

+
z1

5000z2
5000

(1− z1
−1) (1− z2

−1)

Also, f (tP, z) is

1

(1− z1) (1− z2)
+

z1
5000·t

(1− z1
−1) (1− z2)

+
z2

5000·t

(1− z2
−1) (1− z1)

+
z1

5000·tz2
5000·t

(1− z1
−1) (1− z2

−1)
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Conclusions and Future work

Traditional Methods are not sufficient to solve all current integer
optimization models, even the simple linear ones!

There is new demand to solve NON-LINEAR INTEGER optimization
problems, not just model things linearly anymore.

Tools from Commutative Algebra, Number Theory, Functional Analysis,
Probability, and Convex Geometry are bound to play an stronger role in the
foundations of new algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.
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Thank you

Gracias

Merci

Danke
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