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Challenges in Discrete Optimization

why need for new tools
(in particular from computational geometry and algebraic combinatorics).
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At the beginning there was...

Linear programs

max c>x

s.t. Ax ≤ b

max c>

Easy
(polynomial-time

solvable)

Special integer programs

max c>x

s.t. Ax ≤ b

all xi integer

Matrix A is SPECIAL!

Medium
(can be easy or hard)

Network problems
Fixed dimension

knapsacks
0-1 matrices

Integer programs

max c>x

s.t. Ax ≤ b

all xi integer

max c>

Hard
(NP-hard)
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A Useful Example

The Transportation problem: A company builds laptops in four factories,
each with certain supply power. Four cities have laptop demands. There is a
cost ci,j for transporting a laptop from factory i to city j . What is the best
assignment of transport in order to minimize the cost?

ON FOUR CITIES

DEMANDS

220

215

93

64

108

 286

71

127

SUPPLIES

BY FACTORIES

A very special kind of Integer Program. Widely familiar to all, considered
easy...
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ILP model: equations and inequalities

Let xi,j be a variable indicating number of laptops factory i provides to city j .
xi,j can only take non-negative integer values, xi,j ≥ 0.

Then Since factory i produces ai laptops we have

n∑
j=1

xi,j = ai , for all i = 1, . . . , n.

and since city j needs bj laptops

n∑
i=1

xi,j = bj , for all j = 1, . . . , n.

Now we minimize
∑

ci,jxi,j .
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Integer Linear Programming: The state of the art

Traditional Algorithms

Dual (polyhedral) techniques

max c>

x2

x1

x0max c>

x2

x0

x1

Cutting plane algorithms
– based on polyhedral theory

Enumeration

max c> x0max c> x0max c> x0

Branch-and-bound

Adhoc methods

special structure
(e.g. network,
matroids, etc.)

Mathematical modelling – Strong initial IP formulation
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We wish to handle more complicated

Constraints and Objective functions

() September 8, 2009 8 / 33



REASON ONE: Reality is NON-LINEAR!

Non-linear Mixed Integer
Optimization

max/min f (x1, . . . , xd)

subject to gj(x1, . . . , xd) ≤ 0,

for j = 1 . . . s, and with

some xi integer!

where

The constraints f and gi ’s
can be non-linear functions
now!

Problem has huge modeling
power!

bad news!!

The problem is INCREDIBLY HARD
It is UNDECIDABLE already when f ,gi ’s
are
polynomials and even with number of
variables=10.
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How about polyhedral constraints non-linear objective??

Problem type

max f (x1, . . . , xd)

subject to (x1, . . . , xd) ∈ P ∩ Zd ,

where

P is a polytope (bounded
polyhedron) given by linear
constraints,

f is a (multivariate)
polynomial function
non-negative over P ∩ Zd ,

the dimension d is fixed.

Prior Work

Integer Linear Programming can be
solved in polynomial time

(H. W. Lenstra Jr, 1983)

Convex polynomials f can be
minimized in polynomial time

(Khachiyan and Porkolab, 2000)

Optimizing an arbitrary degree-4
polynomial f for d = 2 is NP-hard

WHAT CAN BE PROVED IN THIS
GENERAL CONTEXT??
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Example: Non-linear transportation polytopes

1 In the traditional transportation problem cost at an edge is a constant. Thus
we optimize a linear function.

2 but due to congestion or heavy traffic or heavy communication load the
transportation cost on an edge is a non-linear function of the flow at each
edge.

3 For example cost at each edge is fij(xij) = cij |xij |aij for suitable constant aij .
This results on a non-linear function

∑
fij which is much harder to minimize.
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REASON TWO: Multiple criteria optimization!!

Let A = (aij) be an integral m × n-matrix and b ∈ Zm defining a polytope
P = {u ∈ Rn : Au ≤ b } . Given k linear functionals f1, f2, . . . , fk ∈ Zn

min
(
f1(u), . . . , fk(u)

)
subject to Au ≤ b

u ∈ Zn

where min is defined as
the problem of finding
all Pareto optima and a
corresponding Pareto
strategy,
First, the Pareto
strategies are the lattice
points inside P. The
Pareto optima are
points in the projection,
for which no player can
decrease a value without
increasing one of the
criteria.

f

f1

2

P

f

f1

2

P
min f1(u)

f1

min f2(u)

f2
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Example: Multiobjective transportation polytopes

1 In the traditional transportation problem one cost per edge. Thus we
optimize a linear function.

2 but the cost of an edge for the company may not be the same as for an
environmentalist. So we get two costs per edge and we are looking to find
points where two linear functionals are “minimized”.

3 The two objective functions induce a partial order over the lattice points in
the feasible region

4 The multiobjective optimization approach is to find the minimal elements of
a partially ordered set.
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REASON THREE: Even baby problems unsolvable with
traditional techniques!

Market Share problem (Cornéujols- Dawande, Williams)

minimize
Pm

i=1 |si | subject to the constraints

nX
j=1

ai,jxj + si = di , i = 1, . . . , m

xj ∈ {0, 1}, j = 1, . . . , n, and all si ∈ integer

Nasty Knapsack problems (Aardal, Bixby et al)

Minimize or maximize
P10

i=1 xi , subject to xi ≥ 0 and

3719x1 + 20289x2 + 29067x3 + 60517x4 + 64354x5 + 65633x6 + 76969x7 +

102024x8 + 106036x9 + 119930x10 = 13385100
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MANY MORE REASONS (not discussed here)

How to deal with Mixed Integer Variables? Mixed Integer Non-Linear
Programming!

How to deal with Uncertainty, Stochastic? How to deal with error of data?
Robustness?

How to deal with large-scale problems? Heuristics and Approximation?

In all these topics we also have some results, active ongoing research!! But
little time to mention here...

We will see a rich combination of new tools from discrete mathematics to
attack these problems
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Two Algorithms for Non-Linear

Optimization over the Lattice

Points of Polyhedra
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Idea: New Representation of Lattice Points

Given K ⊂ Rd we define the formal power series

f (K ) =
∑

α∈K∩Zd

zα1
1 zα2

2 . . . zαn
n .

Think of the lattice points as monomials!!! EXAMPLE: (7, 4,−3) is z7
1 z4

2 z−3
3 .

Theorem (see R. Stanley EC Vol 1) Given K = {x ∈ Rn|Ax = b, Bx ≤ b′}
where A, B are integral matrices and b, b′ are integral vectors, The
generating function f (K ) can be encoded as rational function.

GOOD NEWS: ALL the lattice points of the polyhedron K , be encoded in a
sum of rational functions efficiently!!!
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Barvinok’s short rational generating functions

Generating functions

gP(z) = z0 + z1 + z2 + z3 + . . . zM

=
1− zM

1− z
for z 6= 1

Theorem (Alexander Barvinok, 1994)

Let the dimension d be fixed. There is a
polynomial-time algorithm for computing a
representation of the generating function

gP(z1, . . . , zd) =
∑

(α1,...,αd )∈P∩Zd

zα1
1 · · · z

αd

d =
∑

α∈P∩Zd

zα

of the integer points P ∩ Zd of a polyhedron P ⊂ Rd

(given by rational inequalities) in the form of a rational
function.

Corollary

In particular,

N = |P ∩Zd | = gP(1)

can be computed in
polynomial time (in
fixed dimension).
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Example

Let P be the square with vertices V1 = (0, 0), V2 = (5000, 0), V3 = (5000, 5000),
and V4 = (0, 5000).

The generating function f (P) has over 25,000,000 monomials,
f (P) = 1 + z1 + z2 + z1

1 z2
2 + z2

1 z2 + · · ·+ z5000
1 z5000

2 ,
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But it can be written using only four rational functions

1

(1− z1) (1− z2)
+

z1
5000

(1− z1
−1) (1− z2)

+
z2

5000

(1− z2
−1) (1− z1)

+
z1

5000z2
5000

(1− z1
−1) (1− z2

−1)

Also, f (tP, z) is

1

(1− z1) (1− z2)
+

z1
5000·t

(1− z1
−1) (1− z2)

+
z2

5000·t

(1− z2
−1) (1− z1)

+
z1

5000·tz2
5000·t

(1− z1
−1) (1− z2

−1)
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Rational Function of a pointed Cone

EXAMPLE: we have d = 2 and c1 = (1, 2), c2 = (4,−1). We have:

f (K ) =
z4
1 z2 + z3

1 z2 + z2
1 z2 + z1z2 + z4

1 + z3
1 + z2

1 + z1 + 1

(1− z1z2
2 )(1− z4

1 z−1
2 )

.
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Theorem (FPTAS for Integer Polynomial Maximization)

Let the dimension d be fixed. There exists an algorithm whose input data are

a polytope P ⊂ Rd , given by rational linear inequalities, and

a polynomial f ∈ Z[x1, . . . , xd ] with integer coefficients and maximum total
degree D that is non-negative on P ∩ Zd

with the following properties.
1 For a given k , it computes in running time polynomial in k, the encoding size

of P and f , and D lower and upper bounds Lk ≤ f (xmax) ≤ Uk satisfying

Uk − Lk ≤
(

k

√
|P ∩ Zd | − 1

)
· f (xmax).

2 For k = (1 + 1/ε) log(|P ∩ Zd |), the bounds satisfy

Uk − Lk ≤ ε f (xmax),

and they can be computed in time polynomial in the input size, the total
degree D, and 1/ε.

3 By iterated bisection of P ∩ Zd , it constructs a feasible solution xε ∈ P ∩ Zd

with ∣∣f (xε)− f (xmax)
∣∣ ≤ εf (xmax).
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Results on Multiobjective Optimization

Theorem (Counting and enumeration theorem)

Let k and n be fixed integers.

Using the input data A ∈ Zm×n, an m-vector b, and linear functions
f1, . . . , fk ∈ Zn,

(i) there exists a polynomial-time algorithm to exactly count the Pareto optima;

(ii) there exists a polynomial-space polynomial-delay prescribed-order
enumeration algorithm to generate the full sequence of Pareto optima
ordered lexicographically.

Theorem (Global-criterion optimization theorem)

Let the dimension n and the number k of objective functions be fixed.

(i) There exists a polynomial-time algorithm to find a Pareto optimum v
of (12) that minimizes the distance ‖v − v̂‖ from a prescribed point v̂ ∈ Zk

for an arbitrary polyhedral norm.

(ii) There exists a fully polynomial-time approximation scheme for the problem
of minimizing the Euclidean distance of a Pareto optimum from a prescribed
comparison point v̂ ∈ Zk .() September 8, 2009 24 / 33



A SECOND ALGORITHM: Graver Bases

We are interested on optimization of a convex function over
{x ∈ Zn : Ax = b, x ≥ 0}. We will use Computational Geometry and
Algebra.

For the lattice L(A) = {x ∈ Zn : Ax = 0} introduce a natural partial order on
the lattice vectors.

For u, v ∈ Zn. u is conformally smaller than v , denoted u < v , if |ui | ≤ |vi |
and uivi ≥ 0 for i = 1, . . . , n.
Eg: (3,−2,−8, 0, 8) < (4,−3,−9, 0, 9), incomparable to (−4,−3, 9, 1,−8).

���� ��

�
�
�
�

����

��
��
��
��

��

��
��
��
��

������

��
��
��
��

��

���� �� ��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

����������

�
�
�
�

��
��
��
��
����

��
��
��
��

Equivalent to the computation of several Hilbert bases computations.
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The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A.

Example: If A = [1 2 1] then its Graver basis is

±{[2,−1, 0], [0,−1, 2], [1, 0,−1], [1,−1, 1]}

.

The fastest algorithm to compute Graver bases is based on a completion and
project-and-lift method (Got Groebner bases? ). Implemented in 4ti2 (by R.
Hemmecke and P. Malkin).

Graver bases contain, and generalize, the LP test set given by the circuits of
the matrix A. Circuits contain all possible edges of polyhedra in the family

P(b) := {x | Ax = b, x ≥ 0}

.

Theorem The Graver basis contains all edges for all integer hulls
conv({x | Ax = b, x ≥ 0, x ∈ Zn}) as b changes.
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For a fixed cost vector c , we can visualize a Graver basis of of an integer
program by creating a graph!!

Here is how to construct it, consider

L(b) := {x | Ax = b, x ≥ 0, x ∈ Zn}

.
Nodes are lattice points in L(b) and the Graver basis elements give directed
edges departing from each lattice point u ∈ L(b).
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GOOD NEWS: Test Sets and Augmentation Method

A TEST SET is a finite collection of integral vectors with the property that
every feasible non-optimal solution of an integer program can be improved by
adding a vector in the test set.

Theorem [J. Graver 1975] Graver bases for A can be used to solve the
augmentation problem Given A ∈ Zm×n, x ∈ Nn and c ∈ Zn, either find an
improving direction g ∈ Zn, namely one with x − g ∈ {y ∈ Nn : Ay = Ax}
and cg > 0, or assert that no such g exists.
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BAD NEWS!!

Graver test sets can be exponentially large even in fixed dimension!

People typically store a list of the whole test set. Very large indeed. (New
ways to store them available, using algebra!).

Very hard to compute, you don’t want to do this too often (NP-hard)

OUR NEW RESULTS: There are useful cases where Graver bases become
very manageable!!!
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N-fold Systems

Fix any pair of integer matrices A and B with the same number of columns, of
dimensions r × q and s × q, respectively. The n-fold matrix of the ordered pair
A,B is the following (s + nr)× nq matrix,

[A,B](n) := (1n ⊗ B)⊕ (In ⊗ A) =


B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

 .

N-fold systems DO appear in applications! Transportation problems with fixed
number of suppliers are examples!
Theorem Fix any integer matrices A,B of sizes r × q and s × q, respectively.
Then there is a polynomial time algorithm that, given any n, an integer vectors b,
cost vector c , and a convex function f , solves the corresponding n-fold integer
programming problem.

max{f (cx) : [A,B](n)x = b, x ∈ Nnq} .
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Proof by Example

Consider the matrices A = [1 1] and B = I2. The Graver complexity of the pair
A,B is g(A,B) = 2.

[A,B](2) =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , G ([A,B](2)) = ±
(

1 −1 −1 1
)

.

By our theorem, the Graver basis of the 4-fold matrix

[A,B](4) =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

G ([A,B](4)) = ±


1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

 .
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Conclusions and Future work

Traditional Methods are not sufficient to solve all current integer
optimization models, even the simple linear ones!

There is demand to solve NON-LINEAR, MULTIOBJECTIVE optimization
problems, not just model things linearly anymore.

Tools from Algebra, Number Theory, Functional Analysis, Probability, and
Convex Geometry are bound to play a stronger role in the foundations of new
algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.

() September 8, 2009 32 / 33



Conclusions and Future work

Traditional Methods are not sufficient to solve all current integer
optimization models, even the simple linear ones!

There is demand to solve NON-LINEAR, MULTIOBJECTIVE optimization
problems, not just model things linearly anymore.

Tools from Algebra, Number Theory, Functional Analysis, Probability, and
Convex Geometry are bound to play a stronger role in the foundations of new
algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.

() September 8, 2009 32 / 33



Conclusions and Future work

Traditional Methods are not sufficient to solve all current integer
optimization models, even the simple linear ones!

There is demand to solve NON-LINEAR, MULTIOBJECTIVE optimization
problems, not just model things linearly anymore.

Tools from Algebra, Number Theory, Functional Analysis, Probability, and
Convex Geometry are bound to play a stronger role in the foundations of new
algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.

() September 8, 2009 32 / 33



Conclusions and Future work

Traditional Methods are not sufficient to solve all current integer
optimization models, even the simple linear ones!

There is demand to solve NON-LINEAR, MULTIOBJECTIVE optimization
problems, not just model things linearly anymore.

Tools from Algebra, Number Theory, Functional Analysis, Probability, and
Convex Geometry are bound to play a stronger role in the foundations of new
algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.

() September 8, 2009 32 / 33



Merci

Thank you

Gracias
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