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I Goal: Count the solutions of the integer restricted partition
problem:

Given a = [α1, α2, . . . , αN ] positive integers and t is a
non-negative integer, we consider the counting function

Ea(t) = #{x : α1x1+α2x2+· · ·+αNxN = t , x ≥ 0, xi integer}.

I Also known as the Sylvester’s DENUMERANT.
I We assume gcd(a) = gcd(α1, α2, . . . , αN) = 1.

E(a)(gcd(a)t) = Ea/gcd(a)(t).
I For a given t , one wishes to decide whether Ea(t) 6= 0, but

this is NP-complete and the counting problem of lattice
points is #P-complete.

I Ea(t) equals number of integral points in the
(N − 1)-dimensional simplex in RN

∆a = { [x1, x2, . . . , xN ] : xi ≥ 0,
∑N

i=1 αixi = t } with rational
vertices si = [0, . . . ,0, t

αi
,0 . . . ,0].
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Ea(b) = #{(x , y , z)|3x + 5y + 17z = b, x ≥ 0, y ≥ 0, z ≥ 0}

As b changes we obtain different values for Ea(b). E.g., we see
that Ea(100) = 25,Ea(1110) = 2471, etc...

BIG QUESTION: How does this function behave?
Geometrically we are dilating the simplex as b grows...
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For P a d-dimensional convex polytope, consider the Ehrhart
function

EP(n) = #|{a ∈ (nP ∩ Zd )}|

This is done for the lattice points in the dilation nP.

P 3P



Ehrhart quasipolynomials

I Theorem (E. Ehrhart 1962) For P a rational convex
polytope on Rd and n ∈ N dilatation factor. Then the
function

EP(n) = #|{a ∈ (nP ∩ Zd )}|

I is a quasipolynomial of degree dim P:

EP(n) =
dim P∑
k=0

Ek (n)nk ,

Coefficients EP(n) are periodic modular functions
Depend only on n mod M, for some integer M.

I Its leading coefficient is the normalized volume of the
simplex.

I When the coordinates of the vertices of P are integers,
EP(n) is a polynomial in n. It is an Ehrhart polynomial.
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Example

i(P,n) = (n + 1)2

In general for a d-dimensional unit cube i(P,n) = (n + 1)d .



Example

Consider the Denumerant problem a = [6,2,3].
On each of the cosets q + 6Z, the function Ea(t) coincides with
a single polynomial E [q](t)!!
Here are the corresponding polynomials.

E [0](t) = 1
72 t2 + 1

4 t + 1, E [1](t) = 1
72 t2 + 1

18 t − 5
72 ,

E [2](t) = 1
72 t2 + 7

36 t + 5
9 , E [3](t) = 1

72 t2 + 1
6 t + 3

8 ,

E [4](t) = 1
72 t2 + 5

36 t + 2
9 , E [5](t) = 1

72 t2 + 1
9 t + 7

72 .

Warning: Hard to figure out the “periodicity”!!
Warning: This is NOT an efficient way to represent the
quasipolynomial!! Too many pieces!!!
GOOD NEWS: There are other (better!!!) ways to represent
quasi-polynomials.
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Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.
I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.

I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.

I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.
I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?

I For fixed k0, polynomial time algorithm for computing the
top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.
I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.
I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)

I Deep Consequences in the Theory of Optimization



Previous Algorithmic results

I Theorem When the number of variables is fixed, there is a
polynomial-time algorithm to compute Ehrhart
quasi-polynomials (shown as rational functions) (follows
from Barvinok 1993).

I First implemented in LattE in 2000.
I But, WHAT CAN BE DONE IN NON-FIXED DIMENSION?
I For fixed k0, polynomial time algorithm for computing the

top k0 + 1 Ehrhart coefficients, for the number of lattice
points of a simplex. (Barvinok 2006).

I Generalizations to weighted counting (PISA team 2011)
I Deep Consequences in the Theory of Optimization



And now...

THE NEW RESULTS



COMMERCIAL BREAK!!!



Are you thirsty to hear applications of Algebraic
Combinatorics and Discrete Geometry?





Main Theorem (2012) (Pisa Team)

There is a polynomial time algorithm for the following problem.
Fix k0 positive integer.
Input: a = [α1, α2, . . . , αN ] be a sequence of positive integers.

Output: The k0 + 1 top degree Ehrhart coefficients of the
quasi-polynomial function

Ea(t) = #{x : aT x = t , x ≥ 0, x integral}.

This will be presented as a Step polynomials.

The dimension not fixed!!!!!.
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What are step polynomials?
(i) Let {s} = dse − s ∈ [0,1) for s ∈ R, where dse denotes the

smallest integer larger or equal to s. The function
{s + 1} = {s} is a periodic function of s modulo 1.

(ii) If r is rational with denominator q, the function T 7→ {rT}
is a function of T ∈ R periodic modulo q.
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1. Definition A periodic function φ(T ) of the form

T 7→
L∑

l=1

cl

Jl∏
j=1

{rl,jT}nl ,j .

will be called a step polynomial.

2. A step polynomial φ has of degree u if
∑

j nj ≤ u for all set
of indices I occurring in the formula for φ.

3. φ is of period q if all the rational numbers rj have common
denominator q.
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Example

Wish to compute Ea(t) for a = [1,2,3,4]. The coefficients are:

I 1
144 t3

I 5
48 t2

I (1/2− 1/4{t/2}+ 1/4 ({t/2})2)t

I 1 + 3/2 ({t/3})3 − 3/2 ({t/3})2 − 1/3 {t/4} − ({t/4})2 +
4/3 ({t/4})3 − 7/6 {t/2}+ {t/4}{t/2}+ 1/2 ({t/2})2 −
{t/4} ({t/2})2 + 2/3 ({t/2})3 .
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KEY IDEAS + METHODS



Counting through generating functions

I Given a = [α1, α2, . . . , αN+1]. We can construct a
generating function

Fa(z) :=
∞∑

n=0

Ea(n)zn =
1∏N

i=1(1− zαi )

I EXAMPLE When a = [3,5,17], a short formula for Ea(t)
would be a generating function!

∞∑
t=0

Ea(t)z t =
1

(1− z17) (1− z5) (1− z3)
.

I Basic complex analysis: Compute the values of Ea(n),
through the poles of the complex function Fa(z).
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I NOTE: The poles of Fa(z) are roots of unity
P =

⋃N+1
i=1 { ζ ∈ C : ζαi = 1 }

I Lemma: Let a = [α1, α2, . . . , αN ] be a list of integers with
greatest common divisor equal to 1, and let

F (a)(z) :=
1∏N

i=1(1− zαi )
.

If t is a non-negative integer, then

E(a)(t) = −
∑
ζ∈P

Resz=ζ z−t−1Fa(z) dz (1)

and the ζ-term of this sum is a quasi-polynomial function of
t with degree less than or equal to p(ζ)− 1.



IDEA 1: Only the higher-order poles matter!!!
I Because the αi ’s have greatest common divisor 1, we have
ζ = 1 as a pole of order N

I Other poles have order strictly less than N.

Denote by p(ζ) the order of the pole ζ for ζ ∈ P.
I Given an integer 0 ≤ k ≤ N, we partition the set of poles P

in two disjoint sets:

P>N−k = { ζ : p(ζ) > N−k }, P≤N−k = { ζ : p(ζ) ≤ N−k }.

I We have

E(a)(t) = EP>N−k (t) + EP≤N−k (t),

I For computing what we need it is sufficient to compute the
function EP>N−k (t).
The function EP≤N−k (t) is a quasi-polynomial function of t
of degree in t strictly less than N − k .
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The function EP≤N−k (t) is a quasi-polynomial function of t
of degree in t strictly less than N − k .
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IDEA 2: Posets+Groups on the higher-order poles
I If ζ is a pole of order ≥ p, this means that there exist at

least p elements αi in the list a so that ζαi = 1.

I ζαi = 1 for a list αi1 , . . . αir ⇐⇒ ζ f = 1, for f the greatest
common divisor of the elements αi , i ∈ I.

I I>N−k be the set of sublists of a of length greater than
N − k .
I>N−k is stable by the operation of taking supersets,

I Define fI to be the greatest common divisor of the sublist
I = [αi1 , . . . αir ]. Let G>N−k (a) = { fI : I ∈ I>N−k } be the set
of greatest common divisors so obtained.

I the set G>N−k (a) is a set of integers stable by the operation
of taking greatest common divisors. Thus, G>N−k (a) is a
partially ordered set, where f � f ′ if f divides f ′.

I Using the group G(f ) ⊂ C× of f -th roots of unity,

G(f ) = { ζ ∈ C : ζ f = 1 },

we have thus P>N−k =
⋃

f∈G>N−k (a) G(f ). Not a disjoint
union!!!
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I Lemma Inclusion–exclusion principle says: We can write
the characteristic function of P>N−k as a linear
combination of characteristic functions of the groups G(f ):

[P>N−k ] =
∑

f∈G>N−k (a)

µ(f )[G(f )],

where µ(f ) is the Möbius function.

I Lemma If f is a positive integer define

E(a, f )(t) = −
∑
ζ f =1

Resz=ζ z−t−1F (a)(z) dz.

Let k be a fixed integer. Then

EP>N−k (t) = −
∑

f∈G>N−k (a)

µ(f )E(a, f )(t).
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I Lemma If f is a positive integer define

E(a, f )(t) = −
∑
ζ f =1

Resz=ζ z−t−1F (a)(z) dz.

Let k be a fixed integer. Then

EP>N−k (t) = −
∑

f∈G>N−k (a)

µ(f )E(a, f )(t).



IDEA 3: Use polyhedral cones and special lattices!

Use convex geometry to compute

E(a, f )(t) = −
∑
ζ f =1

Resz=ζ z−t−1F (a)(z) dz.

SUPER COOL Lemma For each f ∈ G>N−k (a), the function
E(a, f )(t) is the generating functions for lattice points of cones
of fixed dimension k but on a different lattice depending on f .

NEWS Very Nice paper with experiments coming soon !!!
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