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In today’s lecture...
Combinatorial feasibility or existence problems regard
deciding whether a certain combinatorial property or structure
exist or not (e.g., is there a hamiltonian cycle on a graph?, is
a graph 3-colorable?).

Suppose your life depends on deciding it, What would you do?
conventional wisdom: use branch-and-bound and
enumeration, help yourself with integer programming or
perhaps use an approximation or a heuristic...

What are we doing today?

We transfer the Combinatorial feasibility problem to the
solvability of a system of polynomials
We then solve a Polynomial Feasibility Problem by a finite
sequence of linear algebra problems!.

Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

In today’s lecture...
Combinatorial feasibility or existence problems regard
deciding whether a certain combinatorial property or structure
exist or not (e.g., is there a hamiltonian cycle on a graph?, is
a graph 3-colorable?).
Suppose your life depends on deciding it, What would you do?

conventional wisdom: use branch-and-bound and
enumeration, help yourself with integer programming or
perhaps use an approximation or a heuristic...

What are we doing today?

We transfer the Combinatorial feasibility problem to the
solvability of a system of polynomials
We then solve a Polynomial Feasibility Problem by a finite
sequence of linear algebra problems!.
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Le Menu

COMBINATORICS AND MULTIVARIATE POLYNOMIALS.

HILBERT’S NULLSTELLENSATZ and COMBINATORIAL
FEASIBILITY.

The NulLA ALGORITHM and BEYOND.
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Part I

Combinatorics and
Polynomials

Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

Combinatorial Problems =⇒ Systems of Polynomial Equations

A Typical Combinatorial Feasibility Problem

Stable Set: Given a graph G and an integer k, does there
exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?

Recall, the stability number of a graph is the size of the
largest stable set in the graph, and is denoted by α(G ).

Turán Graph T (5, 3): no stable set of size bigger than 2.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Stable Set as a System of Polynomial Equations (L. Lovász 1989)

Given a graph G and an integer k :

one variable per vertex

For every vertex i = 1, . . . , n, let x2
i − xi = 0

For every edge (i , j) ∈ E (G ), let xixj = 0

Finally, let (
− k +

n∑
i=1

xi

)
= 0
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Turán Graph T (5, 3): =⇒ System of Polynomial Equations

Figure: Does T (5, 3) have a stable set of size 3?

x1x3 = 0, x1x4 = 0, x1x5 = 0, x2x3 = 0, x2
1 − x1 = 0, x2

2 − x2 = 0

x2x4 = 0, x2x5 = 0, x3x5 = 0, x4x5 = 0, x2
3 − x3 = 0, x2

4 − x4 = 0

x1 + x3 + x5 + x2 + x4 − 3 = 0, x2
5 − x5 = 0

Proposition: Let G be a graph, k an integer, encoded as the
above (n + m + 1) system of equations. Then this system has a
solution over C if and only if G has a stable set of size k . Bijection
between stable sets of size k and solutions of the equations.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Graph coloring: Given a graph G , and an integer k, can the
vertices be colored with k colors in such a way that no two
adjacent vertices are the same color?

Is the Petersen Graph 3-colorable?
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Graph Coloring modeled by a Polynomial System

one variable per vertex

vertex polynomials: For every vertex i = 1, . . . , n,

xk
i − 1 = 0

edge polynomials: For every edge (i , j) ∈ E (G ),

xk−1
i + xk−2

i xj + · · ·+ xix
k−2
j + xk−1

j = 0

Proposition:(1988 D. Bayer) Let G be a graph, k an integer,
then the system of equations has a solution over C if and only
if G is k-colorable. Moreover, the number of k-colorings is
equal to the number of solutions divided by k!.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Example: Petersen Graph Polynomial System of Equations

Figure: Decision Question: Is the Petersen graph 3-colorable?

x3
1 − 1 = 0, x3

2 − 1 = 0, x2
1 + x1x2 + x2

2 = 0, x2
1 + x1x5 + x2

5 = 0

x3
3 − 1 = 0, x3

4 − 1 = 0, x2
1 + x1x6 + x2

6 = 0, x2
2 + x2x3 + x2

3 = 0

x3
5 − 1 = 0, x3

6 − 1 = 0, x2
2 + x2x7 + x2

7 = 0, x2
3 + x3x8 + x2

8 = 0

x3
7 − 1 = 0, x3

8 − 1 = 0, · · · · · · · · · · · ·
x3

9 − 1 = 0, x3
10 − 1 = 0, x2

7 + x7x9 + x2
9 = 0, x2

8 + x8x10 + x2
10 = 0
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Other algebraic ways to think about colorability

Definition: Let G be a graph with vertices V = {1, . . . , n} and
edges E . The graph polynomial of G is

fG =
∏

{i ,j}∈E , i<j

(xi − xj).

Theorem: (1990 Kleitman Lovász) Let H(n, k) be the set of all
graphs with n vertices consisting of a clique of size k + 1 and all
other n − k + 1 vertices isolated. The graph G on n vertices is not
k-colorable if and only if

fG =
∑

H∈H(n,k)

αH fH

where αH are polynomials.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Polynomials are expressive: Largest k-colorable subgraph

A graph G has a k-colorable subgraph with R edges if and only if
the following system of equations has a solution:∑

{i ,j}∈E(G)

yij − R = 0,

For each vertex i ∈ V (G ):

xk
i = 1,

For each edge {i , j} ∈ E (G ):

y 2
ij − yij = 0, yij

(
xk−1
i + xk−2

i xj + · · ·+ xk−1
j

)
= 0.

Many other interesting encodings: e.g., existence of k-cycle in a
graph, largest planar subgraph, graph isomorphism problem, etc.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Applications: Proving theorems and characterizations

(Lovász-Schrijver 1990) A graph is t-perfect: A linear form
f (z) ≥ 0 for all incidence vectors of stable sets if and only if
there exist polynomials gi , of degree ≤ t, such that

f = g 2
1 + . . . g 2

k +
∑

aijxixj +
∑

bi (x2
i − xi )

Proposition: If there exist an integer constant t for which the
graph G is t-perfect then the stable set polytope of G is the
projection of a polytope whose number of facets is polynomial
n. facets.

(Hillar-Windfeldt 2008) An algebraic characterization for when
a graph is uniquely k-colorable. The number of k-colorings
equals dimension of quotient ring.
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Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

Combinatorial Problems =⇒ Systems of Polynomial Equations

Applications: Proving theorems and characterizations

(Lovász-Schrijver 1990) A graph is t-perfect: A linear form
f (z) ≥ 0 for all incidence vectors of stable sets if and only if
there exist polynomials gi , of degree ≤ t, such that

f = g 2
1 + . . . g 2

k +
∑

aijxixj +
∑

bi (x2
i − xi )

Proposition: If there exist an integer constant t for which the
graph G is t-perfect then the stable set polytope of G is the
projection of a polytope whose number of facets is polynomial
n. facets.

(Hillar-Windfeldt 2008) An algebraic characterization for when
a graph is uniquely k-colorable. The number of k-colorings
equals dimension of quotient ring.
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Combinatorial Problems =⇒ Systems of Polynomial Equations

The Combinatorial Nullstellensatz

( Alon-Tarsi 1989) If a graph G has an orientation D such that
max outdegree is d and

#even Eulerian subgraphs of D 6= # odd Eulerian subgraphs,

then G is (d + 1)-colorable.

Theorem Let F be an arbitrary field, and let f (x1, . . . , xn) be
polynomial in F [x1, . . . , xn]. Suppose the degree deg(f ) is

∑
i=1 ti ,

where each ti is a nonnegative integer and suppose the coefficient
of the monomial x t1

1 x t2
2 · · · x tn

n is non-zero inside f . Then, if
S1, . . .Sn are subsets of F with |Si | > ti , there are
(s1, . . . , sn) ∈ S1 × S2 × . . . Sn.

This has been used in many other applications: Graph
factorizations, additive number theory, hamiltonian cycles, others...
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S1, . . .Sn are subsets of F with |Si | > ti , there are
(s1, . . . , sn) ∈ S1 × S2 × . . . Sn.

This has been used in many other applications: Graph
factorizations, additive number theory, hamiltonian cycles, others...
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What if the Nullstellensatz certificate is big?

Combinatorial Problems =⇒ Systems of Polynomial Equations

A big important issue...

Noga Alon 2000: “Is it possible to modify the algebraic proofs
given here so that they yield efficient ways of solving the
corresponding algorithmic problems? It seems likely that such
algorithms do exists. ”

To answer this let us go back 120 years!!!

Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm
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Combinatorial Problems =⇒ Systems of Polynomial Equations

Part II

Hilbert’s Nullstellensatz
and Combinatorial Infeasibility

Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

Hilbert’s Nullstellensatz

Theorem: Let K be a field and K̄ its algebraic closure field.
Let f1, . . . , fs be polynomials in K[x1, . . . , xn]. The system of
equations f1 = f2 = · · · = fs = 0 has no solution over K̄ if and
only if there exist polynomials α1, . . . , αs ∈ K[x1, . . . , xn] such
that

1 =
s∑

i=1

αi fi

This polynomial identity is a Nullstellensatz certificate.

Let d = max{deg(α1), deg(α2), . . . , deg(αs)}. Then d is the
degree of the Nullstellensatz certificate.

Remark: Nullstellensatz certificates are certificates for the
infeasibility of a given system of polynomial equations.
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Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

Key Point: For fixed degree this is a linear algebra
Problem!!

Example: Consider system of polynomial equations

x2
1 − 1 = 0, x1 + x3 = 0, x1 + x2 = 0, x2 + x3 = 0

1 Assume Nullstellensatz certificate has degree 1

1 = (c0x1 + c1x2 + c2x3 + c3)(x
2
1 − 1) + (c4x1 + c5x2 + c6x3 + c7)(x1 + x2)

+ (c8x1 + c9x2 + c10x3 + c11)(x1 + x3) + (c12x1 + c13x2 + c14x3 + c15)(x2 + x3)

2 Expand the Nullstellensatz certificate, group by monomials

c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x

2
1 + (c5 + c13)x

2
2 + (c10 + c14)x

2
3 +

(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3+

(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

3 We extract a linear system of equations from expanded
certificate

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1

4 Solve the linear system, and reconstitute the certificate

1 = −(x2
1 − 1) +

1

2
x1(x1 + x2)− 1

2
x1(x2 + x3) +

1

2
x1(x1 + x3)
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

Bounds for the Nullstellensatz degree

Question: How big can the degree of the coefficients αi be?

The most general bound...

Theorem: (Kollár) The deg(αi ) is bounded by max{3,D}n,
where n is the number of variables and
D = max{deg(f1), deg(f2), . . . , deg(fs)}.

But for the ideals in question we have a better bound:

Theorem: (Brownawell-Lazard) The deg(αi ) is bounded by
n(D − 1).
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

NulLA: Nullstellensatz Linear Algebra Algorithm for
checking infeasibility:

INPUT: A system of polynomial equations
F = {f1 = 0, f2 = 0, . . . , fs = 0}.
While d ≤ HBound and no solution found for Ld

Construct a tentative Nullstellensatz certificate of degree d
Extract a linear system of equations from tentative
Nullstellensatz certificate
Solve the linear system Ld .
If there is a solution, construct the certificate, OUTPUT: F is
Infeasible.
Else, d = d + 1,

If d = HBound and no solution found for Ld , then OUTPUT:
F is Feasible
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

We can’t expect miracles...

Lemma: The Kollár exponential bound is known to be tight for
some exotic polynomial systems with very special shape!!

Lemma: If P 6= NP, then there must exist an infinite family of
graphs such that the degree of a Nullstellensatz certificates for the
non-existence of a stable set of size k grows with respect to the
number of vertices and edges in the graph.

Lemma: (Razborov, Beam, Impagliazzo et al) Propositional logic
statements encoded via “boolean” polynomials. Nullstellensatz
degree grows linear on number of logical variables for the
Pigeonhole principle.
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

How good is NulLA?

Question 1 (L. Lovász, 1994)

Can we explicitly describe such families of graphs?

Question 2 (JDL, 2005)

What is the practical performance of NulLA for Combinatorial
Problems??

NEXT THE RESULTS...
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What if the Nullstellensatz certificate is big?

Hilbert’s Nullstellensatz and large-scale Linear Algebra

But first a commercial break...

From work by Parrilo, Nesterov, Lasserre, Laurent and others
developed We can solve a Polynomial Optimization Program
by a sequence of growing-size semidefinite programming
relaxations

Applied to 0/1-problems, or any finite varieties. We know
that there is finite converge for this sequence of semidefinite
programs.

They aim to work over the reals, but for our purposes we can
work over field. Semidefinite programming is replaced by
large-scale linear algebra.
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Part III

The NulLA algorithm
and Beyond
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What if the Nullstellensatz certificate is big?

The case of stable sets in Graphs

Theorem: For a graph G , a minimum-degree Nullstellensatz
certificate for the non-existence of a stable set of size greater
than α(G ) has degree equal to α(G ) and contains at least one
term for every stable set in G .

Example: The disjoint union of triangles has a
minimum-degree Nullstellensatz of degree n/3 and at least
4n/3−1 terms.
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What if the Nullstellensatz certificate is big?

The case of stable sets in Graphs

Turán Graph T (5, 3): Reduced Certificate Example
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Jesús De Loera, UC Davis Nullstellensatz



Encoding Combinatorial Problems via Systems of Polynomials
Combinatorial Infeasibility and the Nullstellensatz

Theoretical Complexity of the Algorithm
Experimental Complexity of the Algorithm

What if the Nullstellensatz certificate is big?

The case of stable sets in Graphs

Nullstellensatz certificates for non-3-colorability

Theorem Every Nullstellensatz certificate for non-3-colorability of
a graph has degree at least four. Moreover, in the case of a graph
containing an odd-wheel or a clique as a subgraph, a
minimum-degree Nullstellensatz certificate for non-3-colorability
has degree exactly four.
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What if the Nullstellensatz certificate is big?

The case of stable sets in Graphs

So far all has used fields of characteristic zero...

We tried it with finite fields...
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What if the Nullstellensatz certificate is big?

System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

Graph 3-Coloring as a System of Polynomial Equations
over F2 (inspired by Bayer)

one variable per vertex

vertex polynomials: For every vertex i = 1, . . . , n,

x3
i + 1 = 0

edge polynomials: For every edge (i , j) ∈ E (G ),

x2
i + xixj + x2

j = 0

Theorem: Let G be a graph encoded as the above (n + m)
system of equations. Then this system has a solution if and
only if G is 3-colorable.
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What if the Nullstellensatz certificate is big?

System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

Experimental results for NulLA 3-colorability

Graph vertices edges rows cols deg sec
Mycielski 7 95 755 64,281 71,726 1 .46
Mycielski 9 383 7,271 2,477,931 2,784,794 1 268.78

Mycielski 10 767 22,196 15,270,943 17,024,333 1 14835
(8, 3)-Kneser 56 280 15,737 15,681 1 .07

(10, 4)-Kneser 210 1,575 349,651 330,751 1 3.92
(12, 5)-Kneser 792 8,316 7,030,585 6,586,273 1 466.47
(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333 1 216105
1-Insertions 5 202 1,227 268,049 247,855 1 1.69
2-Insertions 5 597 3,936 2,628,805 2,349,793 1 18.23
3-Insertions 5 1,406 9,695 15,392,209 13,631,171 1 83.45
ash331GPIA 662 4,185 3,147,007 2,770,471 1 13.71
ash608GPIA 1,216 7,844 10,904,642 9,538,305 1 34.65
ash958GPIA 1,916 12,506 27,450,965 23,961,497 1 90.41

Table: Graphs without 4-cliques.
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What if the Nullstellensatz certificate is big?

System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

Comparison with graph coloring heuristics

A Branch-and-Cut algorithm for graph coloring by Isabel
Méndez-D́ıaz and Paula Zabala (2006)

B&C DSATUR NulLA

Graph n m lb up lb up deg sec

4-Insertions 3.col 79 156 3 4 2 4 1 0
3-Insertions 4.col 281 1046 3 5 2 5 1 2
4-Insertions 4.col 475 1795 3 5 2 5 1 6
2-Insertions 5.col 597 3936 3 6 2 6 1 19
3-Insertions 5.col 1,406 9695 3 6 2 6 1 169
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System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

What are the ugliest examples?

near-4-clique free 4-critical graphs by Nishihara-Mizuno
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What if the Nullstellensatz certificate is big?

System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

Growth in Nullstellensatz degree

Gi n m row col deg sec max terms

G0 10 18 336 319 1 0 3
G1 20 37 401,699 626,934 4 5 563
G2 30 55 3,073,952 4,081,088 4 58 1961
G3 39 72 11,703,170 14,192,150 4 287 2272
G4 49 90 – – ≥ 6 – –
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What if the Nullstellensatz certificate is big?

System of Polynomial Equations for 3-coloring
Computational Investigations (over F2)

Comparison with Gröbner bases

Wheels n m GB NulLA

17 18 34 0 0
151 152 302 2.21 .21
501 502 1,002 126.83 15.58

1001 1,002 2,002 1706.69 622.73
2001 2,002 4,002 – 12905.6

NOTE: Lower bounds for the Nullstellensatz translate in lower
bounds for Gröbner!!!!
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Appending auxiliary equations helps!!

degree 4 certificate
7, 585, 826× 9, 887, 481

over 4 hours

⇓
degree 1 certificate

4, 626× 4, 3464
.2 seconds

=⇒ 25 triangles

“Triangle” equation:

0 = x + y + z

Degree two triangle equation:

0 = x2 + y 2 + z2
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Example

Consider the complete graph K4. A degree-one Hilbert
Nullstellensatz certificate for non-3-colorability, over F2 is

1 = c0(x3
1 + 1)

+ (c1
12x1 + c2

12x2 + c3
12x3 + c4

12x4)(x2
1 + x1x2 + x2

2 ) + (c1
13x1 + c2

13x2 + c3
13x3 + c4

13x4)(x2
1 + x1x3 + x2

3 )

+ (c1
14x1 + c2

14x2 + c3
14x3 + c4

14x4)(x2
1 + x1x4 + x2

4 ) + (c1
23x1 + c2

23x2 + c3
23x3 + c4

23x4)(x2
2 + x2x3 + x2

3 )

+ (c1
24x1 + c2

24x2 + c3
24x3 + c4

24x4)(x2
2 + x2x4 + x2

4 ) + (c1
34x1 + c2

34x2 + c3
34x3 + c4

34x4)(x2
3 + x3x4 + x2

4 )
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Matrix MF ,1

c0 c1
12 c2

12 c3
12 c4

12 c1
13 c2

13 c3
13 c4

13 c1
14 c2

14 c3
14 c4

14 c1
23 c2

23 c3
23 c4

23 c1
24 c2

24 c3
24 c4

24 c1
34 c2

34 c3
34 c4

34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x1x2
2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

x1x2x3 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x1x2
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x1x3x4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

x1x2
4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

x3
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

x2
2 x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

x2
2 x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

x2x2
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

x2x2
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

x3x2
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

x3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Suppose we have a group acting...

Suppose a finite permutation group G acts on the variables
x1, . . . , xn. Assume that the set F of polynomials is invariant under
the action of G , i.e., g(fi ) ∈ F for each fi ∈ F .

We wish to shrink the matrix using the group!!!
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Example, Part 2, action of Z3 by (2,3,4)

c0 c1
12 c1

13 c1
14 c2

12 c3
13 c4

14 c3
12 c4

13 c2
14 c4

12 c2
13 c3

14 c1
23 c1

34 c1
24 c2

23 c3
34 c4

24 c2
24 c3

23 c4
34 c2

34 c3
24 c4

23

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x2
2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x1x2
3 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

x1x2
4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

x1x2x3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1x3x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

x3
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

x3
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

x3
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

x2
2 x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

x2x2
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

x2
2 x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

x2x2
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

x3x2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

The Matrix MF ,1,G

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 3 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x2
2 ) 0 1 1 0 0 2 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 3

(mod 2)
≡

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 1 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x2
2 ) 0 1 1 0 0 0 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 1
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Theorem

Let K be an algebraically-closed field. Let F = {f1, . . . , fs}
⊂ K[x1, . . . , xn] polynomials and suppose F is closed under the
action of the group G on the variable. Suppose that the order of
the group |G | and the characteristic of the field K are relatively
prime.

Then, the degree d Nullstellensatz linear system of equations
MF ,d y = bF ,d has a solution over K if and only if the system of
linear equations M̄F ,d ,G ȳ = b̄F ,d ,G has a solution over K.
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THANK YOU!
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What if the Nullstellensatz certificate is big?

Appending auxiliary equations
Using Symmetry

Poset Dimension

For an n element poset P, a linear extension is an order
preserving bijection σ : P → {1, 2, . . . , n}.

The poset dimension of P is the smallest integer t for which
there exists a family of t linear extensions σ1, . . . , σt of P
such that x < y in P if and only if σi (x) < σi (y) for all σi .

The incidence poset P(G ) of a graph G with node set V and
edge set E is the partially ordered set of height two on the
union of nodes and edges, where we say x < y if x is a node
and y is an edge, and y is incident to x .
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Example
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Schnyder’s theorem

Theorem A graph G is planar if and only if the poset
dimension of P(G ) is no more than three.

Our goal is to encode the linear extensions and the poset
dimension of a poset P in terms of polynomials equations.

Lemma The poset P = (E , >) has poset dimension at most p
if and only if the following system of equations has a solution:
For k = 1, . . . , p :

|E |∏
s=1

(xi (k)− s) = 0, for each i ∈ {1, . . . , |E |},

sk

( ∏
{i,j}∈{1,...,|E |},

i<j

xi (k)− xj(k)

)
= 1.
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For k = 1, . . . , p, and each ordered pair of comparable elements
ei > ej in P: (

xi (k)− xj(k)−∆ij(k)
)

= 0. (1)

For each ordered pair of incomparable elements of P (i.e., ei 6> ej

and ej 6> ei ):

p∏
k=1

(
xi (k)− xj(k)−∆ij(k)

)
= 0,

p∏
k=1

(
xj(k)− xi (k)−∆ji (k)

)
= 0,

(2)

For k = 1, . . . , p, and for each pair {i , j} ∈ {1, . . . , |E |}:
|E |−1∏
d=1

(∆ij(k)− d) = 0,

|E |−1∏
d=1

(∆ji (k)− d) = 0. (3)
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For k = 1, . . . , p, and each ordered pair of comparable elements
ei > ej in P: (
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)

= 0. (1)

For each ordered pair of incomparable elements of P (i.e., ei 6> ej

and ej 6> ei ):
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)
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k=1

(
xj(k)− xi (k)−∆ji (k)

)
= 0,

(2)

For k = 1, . . . , p, and for each pair {i , j} ∈ {1, . . . , |E |}:
|E |−1∏
d=1

(∆ij(k)− d) = 0,

|E |−1∏
d=1

(∆ji (k)− d) = 0. (3)
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