Homework

Solve as many problems as you can!

1. Let A, B be two sets inside R^{d}. We define the Minkowski sum of A and B to be $A+B=\{x+y: x \in A, y \in B\}$. Show that if A, B are convex the Minkowski sum is a convex set too. The scaling of a set A by a scalar α is $\alpha A=\{\alpha: x \in A\}$. Show that αA is convex when A is convex. Is it always true that $(\alpha+\beta) A=\alpha A+\beta A$? Explain your answer. (I suggest you draw some pictures of Minkowski sums of sets in the plane)
2. Let A be a finite set of $d+2$ or more points inside R^{d}. Prove that one can represent A as the disjoint union of sets B, C such that $\operatorname{conv}(B) \cap \operatorname{conv}(C)$ is not empty.
3. Let $A_{1}, \ldots A_{m}$ be a family of convex sets inside R^{d}. Suppose that the intersection of any $d+1$ of these sets is not empty. Then the intersection $\cap_{i=1}^{m} A_{i}$ is not empty.
4. We defined the convex hull of a set S to be the intersection of all convex sets that contain S. Prove that the convex hull of a set of point a_{1}, \ldots, a_{m} is the same as

$$
\left\{\sum_{i \in I} \gamma_{i} a_{i}: \gamma_{i} \geq 0, \sum \gamma_{i}=1, I \subset\{1 . . m\}|I|=d+1\right\}
$$

5. A^{o} denotes the polar set to A. Suppose that $A^{o}=A$. Prove that A is the unit ball. What is the polar of the standard cube? Is it true that every polyhedron is the polar of a polytope? Prove or disprove: $(A \cup B)^{o}=A^{o} \cap B^{o}$.
6. 6 For any $n \geq 4$ construct a 3 -dimensional polytope with n vertices which is dual to itself. Describe as thoroughly as you can the dual polytope to the cyclic polytope $C(3,8)$.
7. 7 Given a convex polytope P and a point $b \notin P$, there exists a linear function f and a number α such that $f(b)>\alpha>f(x)$ for every x in P. This means geometrically that a hyperplane separates P and b.
8. 8 Let P be a polytope in R^{d}. Consider an inclusion of R^{d} into R^{d+1} and a point $p \in R^{d+1}-R^{d}$. Describe the face lattice of $\operatorname{conv}(p, P)$ in terms of the face lattice of P.
9. 9 Prove that there are only five Platonic solids.
