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1 Introduction

It is indeniable that convex polyhedral geometry is an important tool of modern
mathematics. For example, it is well-known that understanding the facets of the
TSP polytope has played a role on the solution of large-scale traveling salesman
problems and in the study of cutting planes. In the past fiften years, there have
been new developments on the understanding of the structure of polyhedra and
their lattice points that have produced amazing new algorithmic ideas to solve
mixed integer programs.

These notes intend to introduce smart undergraduates to this topic. The
method used is the famous Moore method. Where students are expected to
think like grown-up mathematicians and discover and prove theorems on their
own! The assumption is that the reader is smart but a novice to polyhedral
geometry, who is willing to think hard about what is written here. By solving
a sequence of problems the students will be introduced to the subject. This is
learning by doing!!!

1. Basic Polyhedral Theory

(a) Weyl-Minkowski, Farkas Duality

(b) Faces and Graphs of Polytopes

2. The Simplex Method.

3. Fourier-Motzkin Elimination

4. Reverse-Search Enumeration.

5. Lattice points in Polyhedra

(a) Lattices and Minkowski’s Geometry of numbers.

(b) Lattice Basis Reduction

2 Basic Polyhedral Theory

We begin with the key definition of this notes:

Definition 2.1 The set of solutions of a system of linear inequalities is called
a polyhedron. In its general form a polyhedron is then a set of the type

P = {x ∈ Rd :< ci, x >≤ βi}

for some non-zero vectors ci in Rd and some real numbers βi.
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Recall from linear algebra that a linear function f : Rd → R is given by a
vector c ∈ Rd, c 6= 0. For a number α ∈ R we say that Hα = {x ∈ Rd : f(x) = α}
is an affine hyperplane or hyperplane for short. Note that a hyperplane divides
Rd into two halfspaces H+

α = {x ∈ Rd : f(x) ≥ α} and H−
α = {x ∈ Rd :

f(x) ≤ α}. Halfspaces are convex sets. In other words A polyhedron in Rd is
the intersection of finitely many halfspaces.

By the way, the plural of the word polyhedron is polyhedra. Although ev-
erybody has seen pictures or models of two and three dimensional polyhedra
such as cubes and triangles and most people may have a mental picture of what
edges, ridges, or facets for these objects are, we will formally introduce them
later on. This is a very short introduction and there are excellent books that
can help the reader to the beautiful of polyhedra, but you are NOT allowed to
consult a book until after you tried hard on your own!!

Everything we do takes place inside Euclidean d-dimensional space Rd. We
have the traditional Euclidean distance between two points x, y defined by
√

(x1 − y1)2 + . . . (x2 − y2)2. Given two points x, y. We will use the common
fact that Rd is a real vector space and thus we know how to add or scale its
points. The set of points [x, y] := {αx + (1 − α)y : 0 ≤ α ≤ 1} is called the
interval between x and y. The points x and y are the endpoints of the interval.

Definition 2.2 A subset S of Rn is called convex if for any two distinct points
x1, x2 in S the line segment joining x1, x2, lies completely in S. This is equiv-
alent to saying x = λx1 + (1 − λ)x2 belongs to S for all choices of λ between 0
and 1.

Lemma 2.3 Let Ax ⊆ b, Cx ⊇ d, be a system of inequalities. The set of
solutions is a convex set.

Write a proof!

We will assume that the empty set is also convex. Observe that the inter-
section of convex sets is convex too. Let A ⊂ Rd, the convex hull of A, denoted
by conv(A), is the intersection of all the convex sets containing A. In other
words, A is the smallest convex set containing A. The reader can check that
the image of a convex set under a linear transformation is again a convex set.
An important definition

Definition 2.4 A polytope is the convex hull of a finite set of points in Rd.

Lemma 2.5 For a finite set of points in Rd A := {a1, a2, . . . , an} we have that
conv(A) equals

{
n

∑

i=1

γiai : γi ≥ 0 and γ1 + . . . γn = 1}
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Write a proof!

Write a proof!

Now it is easier to speak about examples of polytopes! Find more on your
own!

1. Standard Simplex Let e1, e2, . . . , ed+1 be the standard unit vectors in
Rd+1. The standard d-dimensional simplex ∆d is conv({e1, . . . , ed+1}).
From the above lemma we see that the set is precisely

∆d = {x = (x1, . . . , xd+1) : xi ≥ 0 and x1 + x2 + · · · + xd+1 = 1}.

Note that for a polytope P = conv({a1, . . . , am}) we can define a linear
map f : ∆m−1 → P by the formula f(λ1, . . . , λm) = λ1a1 + · · · + λmam.
Lemma 2.5 implies that f(∆m−1) = P . Hence, every polytope is the
image of the standard simplex under a linear transformation. A lot of the
properties of the standard simplex are then shared by all polytopes.

2. Standard Cube Let {ui : i ∈ I} be the set of all 2d vectors in Rd whose
coordinates are either 1 or -1. The polytope Id = conv({ui : i ∈ I} is
called the standard d-dimensional cube. The images of a cube under
linear transformations receive the name of zonotopes.

Clearly Id = {x = (x1, . . . , xd) : −1 ≤ xi ≤ 1}

3. Standard Crosspolytope This is the convex hull of the 2d vectors
e1,−e1, e2,−e2, . . . , ed,−ed. The 3-dimensional crosspolytope is simply
an octahedron.

Let P be a polytope in Rd. A linear inequality f(x) ≤ α is said to be
valid on P if every point in P satisfies it. A set F ⊂ P is a face of P if and
only there exists a linear inequality f(x) ≤ α which is valid on P and such
that F = {x ∈ P : f(x) = α}. In this case f is called a supporting function
of F and the hyperplane defined by f is a supporting hyperplane of F . For a
face F consider the smallest affine subspace aff(F ) in Rd generated by F . Its
dimension is called the dimension of F . Similarly we define the dimension of
the polytope P .

A face of dimension 0 is called a vertex. A face of dimension 1 is called an
edge, and a face of dimension dim(P ) − 1 is called a facet. The empty set is
defined to be a face of P of dimension −1. Faces that are not the empty set or
P itself are called proper.

Definition 2.6 A point x is a convex set S is an extreme point of S if it is
not an interior point of any line segment in S. This is equivalent to saying that
when x = λx1 + (1 − λ)x2, then either λ = 1 or λ = 0.

Lemma 2.7 Every vertex of a polyhedron is an extreme point.

Write a proof!
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Theorem 2.8 Consider the linear program min cx subject to Ax = b, x ≥ 0.
Suppose the m columns Ai1 , Ai2 , . . . , Aim

of the m × n matrix A are linearly
independent and there exist non-negative numbers xij

such that

xi1Ai1 + xi2Ai2 + · · · + xim
Aim

= b.

Then the points with entry xij
in position ij and zero elsewhere is an extreme

point of the polyhedron P = {x : Ax = b, x ≥ 0}.

Write a proof!

Theorem 2.9 Suppose x = (x1, . . . , xn) is an extreme point of a polyhedron
P = {x : Ax = b, x ≥ 0}. Then

1) the columns of A which correspond to positive entries of x form a linearly
independent set of vectors in Rm

2) At most m of the entries of x can be positive, the rest are zero.

Write a proof!

Proof: Suppose the columns are linearly dependent. Thus there are coefficients,
not all zero, such that ci1Ai1 + ci2Ai2 + · · · + cim

Aim
= 0

Thus we can form points

(xi1 − dci1)Ai1 + (xi2 − dci2)Ai2 + · · · + (xim
− dcim

)Aim
= d

(xi1 + dci1)Ai1 + (xi2 + dci2)Ai2 + · · · + (xim
+ dcim

)Aim
= d

Since d is any scalar, we may choose d less than the minimum of xj/|cj| for
those cj 6= 0.

We have reached a contradiction! Since x = 1/2(u) + 1/2(v) and both u, v
are inside the polyhedron. For part (2) simply observe that there cannot be
more than m linearly independent vectors inside Rm.

Definition 2.10 In any basic solution, the n−m variables which are set equal
to zero are called nonbasic variables and the m variables we solved for are called
the basic variables. A basic solution is a a solution of the system Ax = b where
n − m variables are set to zero. If in addition the solutions happens to have
x ≥ 0 then we say is basic feasible solution.

2.1 Weyl-Minkowski, Polarity

It makes sense to study the relation between polytopes and polyhedra. Clearly
standard cubes,simplices and crosspolytopes are also polyhedra, but is this the
case in general? What one expects is really true:

Theorem 2.11 (Weyl-Minkowski theorem) Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.
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This theorem is very important. Having this double way of representing
a polytope allows you to prove, using either the vertex representation or the
inequality representation representation, what would be hard to prove using
a single representation. For example, every intersection of a polytope with
an affine subspace is a polytope. Similarly, the intersection of finitely many
polytopes is a polytope. Both statements are rather easy to prove if one knows
that polytopes are just given by systems of linear inequalities, since then the
intersection of polytopes is just adding new equations. On the other hand, It
is known that every linear projection of a bounded polyhedron is a bounded
polyhedron. To prove this from the inequality representation is difficult, but
it is easy when one observes that the projection of convex hull is the convex
hull of the projection of the vertices of the polytope. In addition, the Weyl-
Minkowski theorem is very useful in applications! its existence is key in the
field of combinatorial and linear optimization.

Before we discuss a proof of Weyl-Minkowski theorem we need to introduce
a useful operation. To every subset of Euclidean space we wish to associate a
convex set. Given a subset A of Rd the polar of A is the set Ao in Rd defined as
the linear functionals whose value on A is not greater than 1, in other words:

Ao = {x ∈ Rd :< x, a >≤ 1 for every a ∈ A}

Another way of thinking of the polar is as the intersection of the halfspaces,
one for each element a ∈ A, of the form

{x ∈ Rd :< x, a >≤ 1}

Here are two little useful examples: Take L a line in R2 passing through
the origin, what is L0? Well the answer is the perpendicular line that passes
through the origin. If the line does not pass through the origin the answer is
different. What is it? Answer: it is a clipped line orthogonal to the given line
that passes through the origin. To see without loss of generality rotate the line
until it is of the form x = c (because the calculation of the polar boils down to
checking angles and lengths between vectors we must get the same answer up
to rotation).

What happens with a circle of radius one with center at the origin? Its polar
set is the disk of radius one with center at the origin. Next take B(0, r). What
is B(0, r)o? The concept of polar is rather useful. We use the following lemma:

Lemma 2.12 1. If P is a polytope and 0 ∈ P , then (P o)o = P .

2. Let P ⊂ Rd be a polytope. Then P o is a polyhedron.

Write a proof!

Now we are ready to prove the Weyl-Minkowski theorem:

6



Proof: Weyl-Minkowski First we verify that a bounded polyhedron is a poly-
tope: Let P be {x ∈ Rd :< x, ci >≤ bi}.

Consider the set of points E in P that are the unique intersection of d or
more of the defining hyperplanes. The cardinality of E is at most

(

m
d

)

so it is
clearly a finite set and all its element are on the boundary of P . Denote by
Q the convex hull of all elements of E. Clearly Q is a polytope and Q ⊂ P .
We claim that Q = P . Suppose there is a y ∈ P − Q. Since Q is closed and
bounded (bounded) we can find a linear functional f with the property that
f(y) > f(x) for all x ∈ Q. Now P is compact too, hence f attains its maximum
on the boundary moreover we claim it must reach it in a point of E. The reason
is that a boundary point that is not in E is in the solution set

We verify next that a polytope is indeed a polyhedron: We can assume
that the polytope contains the origin in its interior (otherwise translate). So
for a sufficiently small ball centered at the origin we have B(0, r) ⊂ P . Hence
P o ⊂ B(0, r)o = B(0, 1/r). This implies that P o is a bounded polyhedron. But
we saw in the first part that bounded polyhedra are polytopes. Then P o is a
polytope. We are done because we know from the above lemma that (P o)o = P
and polar of polytopes are polyhedra.

2.2 The Face Poset of a Polytope

Now is time to look carefully at the partially ordered set of faces of a polytope.

Proposition 2.13 Let P = conv(a1, . . . , an). and F ⊂ P a face. Then F =
conv(ai, ai ∈ F ).

Proof: Let f(x) = α be the suporting hyperplane. That Q = conv(ai, ai ∈ F )
is contained in F is clear. For the converse take x ∈ F − Q. We can still
write x as λ1a1 + · · · + λnan with the lambdas as usual. Applying f we get
that if λj > 0 for an index not in Q, then we get f(x) < α because f(aj) < α
thus λ1f(a1) + · · · + λnf(an) < λ1α + . . . λnα = α. nd thus we arrive to a
contradiction

Corollary 2.14 A Polytope has a finite number of faces, in particular a finite
number of vertices and facets.

For a polytope with vertex set V = {v1, v2, . . . , vn} the graph of P is
the abstract graph with vertex set V and the set of edges E = {(vi, vj) :
[vi, vj ]is an edge of P}. You can have a very entertaining day by drawing
the graphs of polytopes. Later on we will prove a lot of cute properties about
the graph of a polytope. Now there is a serious problem. We still don’t have
a formal verification that the graph of a polytope under our definition is non-
empty! we must verify that there is always at least a vertex in a polytope. Such
a seemingly obvious fact requires a proof. From looking at models of polyhedra

7



one is certain that there is a containment relation among faces: a vertex of an
edge that lies on the boundary of several facets, etc. Here is a first step to
understand the

Lemma 2.15 Let P be a d-polytope and F ⊂ P be a face. Let G ⊂ F be a face
of F . Then G is a face of P as well.

Write a proof!

Corollary 2.16 Every non-empty polytope has at least one vertex.

Write a proof!

Lemma 2.17 Every basic feasible of a polyhedron {x : Ax = b, x ≥ 0} is a
vertex. Thus the sets of basic feasible solutions, vertices, and extreme points are
identical.

Write a proof!

Theorem 2.18 Every polytope is the convex hull of the set of its vertices.

Write a proof!

2.3 Polar Polytopes and Duality of Face Posets

Now we know that a polytope has a canonical representation as the convex
hull of its vertices. The results above establishes that the set of all faces of
a polytope form a partially ordered set by the order given by containment.
This poset receives the name of the face poset of a polytope. We say that two
polytopes are combinatorially equivalent or combinatorially isomorphic if their
face posets are the same. In particular, two polytopes P, Q are isomorphic if
they have the same number of vertices and there is a one-to-one correspondence
pi to qi between the vertices such that conv(pi : i ∈ I) is a face of P if and only
if conv(qi : i ∈ I) is a face of Q. The bijection is called an isomorphism.

A property that can guess from looking at the Platonic solids is that there
is a duality relation where two polytopes are matched to each other by paring
the vertices of one with the facets of the other and vice versa. We want now to
make this intuition precise. We will establish a bijection between the faces of
P and the faces of P o. Let P ⊂ Rd be a d-dimensional polytope containing the
origin as its interior point. For a non-empty face F of P define

F̂ = {x ∈ P o :< x, y >= 1for all y ∈ F}

and for the empty face defineˆ= Q.
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Theorem 2.19 The hat operation applied to faces of a d-polytope P satisfies

1. The set F̂ is a face of P o

2. dim(F ) + dim(F̂ ) = d − 1.

3. The hat operation is involutory:
ˆ

( ˆ )F = F .

4. If F, G ⊂ P are faces and F ⊂ G ⊂ P , then Ĝ, F̂ are faces of P o and
Ĝ ⊂ F̂ .

Proof: To set up notation we take P = conv(a1, a2, . . . , am) and F = conv(ai :
i ∈ I).

(1) Define v := 1/|I|
∑

i∈I ai. We claim that in fact, F̂ = {x ∈ P o :< x, v >=

1}. It is clear that F̂ ⊂ {x ∈ P o :< x, v >= 1} The reasons for the other
containment are: we already know that < x, ai >≤ 1 and < x, v >= 1 implies
then that < x, ai >= 1 for all i ∈ I. Since all other elements of F are convex
linear combinations of ai’s we are done.

Now that the set F̂ is a face of P o is clear because the supporting hyperplane
to the face is the linear functional < x, v >= 1. Warning! the F̂ could be still
empty face!!

(2) Now we convince ourselves that if F is a non-empty face, then F̂ is non-
empty and moreover the sum of their dimensions is equal to d − 1.

By definition of face F = {x :< x, c >= α} and for other points in P we
have < y, c >< α. Because the origin is in P we have that α > 0, which means
that b = c/α ∈ F̂ because 1) < b, ai >= 1 for i ∈ I and 2) < b, ai >≤ 1 (this
second observation is a reality check: b is in P o). Hence F̂ is not empty.

Suppose dim(F ) = k and let h1, . . . , hd−k−1 ∈ Rd be linear independent
vectors orthogonal to the linear span of F . The orthogonality means that <
hi, aj >= 0 for j ∈ I and all hi. We complete to a basis!

For all sufficiently small values ǫ1, . . . , ǫd−k−1 we have that r := b + ǫ1h1 +
ǫ2h2 + · · · + ǫd−k−1hd−k−1 satisfies < r, ai >= 1 for i ∈ I and < r, aj >< 1 for

other indices. Hence r is in F̂ proving that dim(F̂ ) ≥ d − 1 − dim(F ).

On the other hand F̂ is in the intersection of the hyperplanes {x ∈ Rd :<
x, ai >= 1} therefore dim(F̂ ) ≤ d − 1 − dim(F ). We are done.

(3) Denote by G the set {x ∈ P :< x, y >= 1for y ∈ P}. We know from the
previous two parts that G is a face of P and it has the same dimension as F
and F is contained in G! who else can it be? why?

(4) Suppose again that F ⊂ G. If x ∈ Ĝ then < x, y >= 1 for all y ∈ G in
particular for all members of F hence x ∈ F̂ .

From now on, by the dual of a polytope P ⊂ Rd we mean the following:
Consider the smallest affine subspace containing P , so that P has full dimension.
Move the origin to be inside P and apply the polar operation to P . Regardless
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of where exactly you put the origin you will get the same combinatorial type
of polytope!! thus if we are only interested on the combinatorial structure of
polytopes the dual will be unique.

Definition 2.20 Consider the moment curve which is parametrized as follows:
γ(t) = (t, t2, t3, . . . , td) Take n different values for t. That gives n different
points in the curve. The cyclic polytope C(n, d) is the convex hull of such points.

Firt of all we would need to convince ourselves that when we say “the” cyclic
polytope it makes sense! what we really mean is that no matter which choice
of values you make the same kind of polytope will appear!! That means the
same number of faces, number of vertices, and their adjacencies are preserved
everytime. Can you make a good picture of C(6,2)? Observe what happens
when the choice of points different. This is not so trivial but is true! Here is a
first step toward the understanding of this:

Proposition 2.21 Every hyperplane intersects the moment curve γ(t) = (t, t2, t3, . . . , td)
in no more than d points.

Proof: Key idea: think what it means to cut the curve and think on polynomi-
als....What kind of polytope is this?

Theorem 2.22 The largest possible number of i-dimensional faces of a d-polytope
with n vertices is achieved by the cyclic polytope C(n, d).

3 Feasibility of Polyhedra and the Simplex Method

4 Polyhedra: Solving Systems of Linear Inequal-

ities

When is a polytope empty? Can this be decided algorithmically? How can one
solve a system of linear inequalities Ax ≤ b? We start this topic looking back
on the already familiar problem of how to solve systems of linear equations. It
is a crucial algorithmic step in many areas of mathematics and also would help
us better understand the new problem of solving systems of linear inequalities.
Recall the fundamental problem of linear algebra is

Problem: Given an m × n matrix A with rational coefficients, and a rational
vector b ∈ Qm, is there a solution of Ax = b? If there is solution we want to
find one, else, can one produce a proof that no solution exist?

I am sure you are well-aware of the Gaussian elimination algorithm to solve
such systems. Thanks to this and other algorithms we can answer the first
question. Something that is usually not stressed in linear algebra courses is that
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when the system is infeasible (this is a fancy word to mean no solution exists)
Gaussian elimination can provide a proof that the system is indeed infeasible!
This is summarized in the following theorem:

Theorem 4.1 (Fredholm’s theorem of the Alternative) The system of lin-
ear equations Ax=b has a solution if and only for each y with the property that
yA = 0, then yb = 0 as well.

In other words, one and only one of the following things can occur: Either
Ax = b has solution or there exist a vector y with the property that yA = 0 but
yb 6= 0.

Write a proof!

Thus when Ax = b has no solution we get a certificate, a proof that the
system is infeasible. But, how does one compute this special certificate vector
y? With care, it can be carefully extracted from the Gaussian elimination. Here
is how: The system Ax = b can be written as an extended matrix.

















a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

...
...

...

am1 am2 . . . amn bm

















We perform row operations to eliminate the first variable from the second,
third rows. Say a11 is non-zero (otherwise reorder the equations). Substract
multiples of the first row from the second row, third row, etc. Note that this is
the same as multiplying the extended matrix, on the left, by elementary lower
triangular matrices. After no more than m steps the new extended matrix looks
like.

















a11 a12 . . . a1n b1

0 a′
22 . . . a′

2n b′2

...
...

...
...

...

0 a′
m2 . . . a′

mn b′m

















Now the last m− 1 rows have one less column. Recursively solve the system
of m − 1 equations. What happens is the variables have to be eliminated in all
but one of the equations creating eventually a row-echelon shaped matrix B.
Again all these row operations are the same as multiplying A on the left by a
certain matrix U . If there is a solution of this smaller system, then to obtain
the solution value for the variable x1 can be done by substituing the values in
the first equation. When there is no solution we detect this because one of the
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Figure 1: A cubical array of 27 seven numbers and the 27 line sums

rows, say the i-th row, in the row-echelon shaped matrix B has zeros until the
last column where it is non-zero. The certificate vector y is given then by the
i-th row of the matrix U which is the one producing a contradition 0 = c 6= 0.

If you are familiar with the concerns of numerical analysis, you may be
concerned about believing the vector y is an exact proof of infeasibility. “What
if there are round of errors? Can one trust the existence of y?” you will
say. Well, you are right! It is good time to stress a fundamental difference in
this lecture from what you learned in a numerical analysis course: Computer
operations are performed using exact arithmetic not floating point arithmetic.
We can trust the identities discovered as exact.

Unfortunately, in many situations finding just any solution might not be
enough. Consider the following situations:

Suppose a friend of yours claims to have a 3× 3 × 3 array of numbers, with
the property that when adding 3 of the numbers along vertical lines or any
horizontal row or column you get the numbers shown in Figure 1:

The challenge is to figure out whether your friend is telling the truth or not?
Clearly because the numbers in the figure are in fact integer numbers one can
hope for an integral solution, or even for a nonnegative integral solution because
the numbers are non-negative integers. This suggests three interesting variations
of linear algebra. We present them more or less in order of difficulty here below.
We begin now studying an algorithm to solve problem A. We will encounter
problems B and C later on. Can you guess which of the three problems is
harder in practice?

Problem A: Given a rational matrix A ∈ Qm×n and a rational vector b ∈ Qm.
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Is there a solution for the system Ax = b, x ≥ 0, i.e. a solution with all
non-negative entries? If yes, find one, otherwise give a proof of infeasibility.

Problem B: Given an integral matrix A ∈ Zm×n and an integral vector b ∈ Zm.
Is there a solution for the system Ax = b, with x an integral vector? If yes, find
a solution, otherwise, find a proof of infeasibility.

Problem C: Given an integral matrix A ∈ Zm×n and an integral vector b ∈ Zm.
Is there a solution for the system Ax = b, x ≥ 0? i.e. a solution x using only
non-negative integer numbers? If yes, find a solution, otherwise, find a proof of
infeasibility.

We will use a simple iterative algorithm. The key idea was introduced by
Robert Bland in [3] and developed in this form by Avis and Kaluzny [1].

Algorithm: B-Rule Algorithm

input: A ∈ Qm×n of full row rank and b ∈ Qm.

output: Either a nonnegative vector x with Ax = b or a vector y certifying
infeasibility.

Step 1 : Find an invertible m × m submatrix B of A. Rewrite the system
Ax = b leaving the variables associated to B in left

Step 2: Set the non-basic variables to zero. Find the smallest index of a
basic variable with negative solution.

If there is none, we have found a feasible solution x stop.

Else, select the equation corresponding to that basic variable.

Step 3: Find the non-basic variable in the equation chosen in step 2, that
has smallest index and a positive coefficient.

If there is none, then the problem is infeasible.

Else, solve this equation for the non-basic variable and substitute the result
in all other equations. Go to step 2.

Example 4.2 Solve the next system for xi ≥ 0, i = 1, 2, ..., 7.

2x1 + x2 + 3x3 + x4 + x5 = 8
2x1 + 3x2 + 4x4 + x6 = 12
3x1 + 2x2 + 2x3 + x7 = 18.

Before to run the B-Rule Algorithm we have to write our problem in a more
convenient form: Ax = b, it is a good practice for the student to do it in order
to avoid making common mistakes. According to the first step of the B-Rule
Algorithm, we have to find a basis in the matrix A, in this example we choose
the easiest-elegible basis, which is given by the 5th, 6th and 7th columns of A,
let us denote the basis by B = {5, 6, 7} and the set of the remaining vectors by
NB = {1, 2, 3, 4}. Next we solve the equation Ax = b for the basic variables
XB = {x5, x6, x7}.

13



XB = B−1b − B−1CXNB =





8
12
18



 −





2 1 3 1
2 3 0 4
3 2 2 0













x1

x2

x3

x4









The second step in the B-Rule Algorithm says that we have to set all non-
basic variables equal to zero. So we obtain the non-negative values x5 = 8,
x6 = 12, x7 = 18. Therefore, and according to third step, this problem is feasi-
ble, and its solution is given by x1 = x2 = x3 = x4 = 0, x5 = 8, x6 = 12 and
x7 = 18.

Now, suppose that we choose a different basis from the above, say B′ =
(1, 4, 7), and solve the problem keeping this election. It is not difficult for the
student to obtain solution x1 = 10/3, x2 = x3 = 0, x4 = 10/3, x5 = x6 = 0,
x7 = 8.

We can easily observe that the two solutions are completely different. In
general, the solution always depends on the election of the basis, it means that
the solution is not unique.

Example 4.3 Solve the system Ax = b for xi ≥ 0, i = 1, 2, ..., 6., where A and
b are given by

A =





−1 −2 1 1 0 0
1 −3 −1 0 1 0

−1 −2 2 0 0 1



 b =





−1
2

−2





Let us to choose a basis from A, say B = {4, 5, 6}. Next we solve the system
for the basic variables XB = {x4, x5, x6}.

x4

x5

x6

= −1 + x1 + 2x2 − x3

= 2 − x1 + 3x2 + x3

= −2 + x1 + 2x2 − 2x3

Setting all non-basic variables equal to zero, as the second setp indicates, we
get x4 = −1, x5 = 2 and x6 = −2. Note that x4 and x6 are basic variables with
negative solution, then we choose the equation that corresponds to x4 in the
equation above, which is called Dictionary. Now, we must find the non-basic
variable in the equation that has smallest index and a positive coefficient, in
this case it is clear that x1 is such a variable. Next, according to step three, we
have to solve the first equation for that non-basic variable, taking from now x1

as basic variable and coming back to step two of the algorithm.
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x1

x5

x6

= 1 − 2x2 + x3 + x4

= 2 − (1 − 2x2 + x3 + x4) + 3x2 + x3

= −2 + (1 − 2x2 + x3 + x4) + 2x2 − 2x3

= 1 − 2x2 + x3 + x4

= 1 + 5x2 − x4

= −1 − x3 + x4

Setting again all non-basic variables equal to zero we obtain x1 = 1, x5 = 1
and x6 = −1. In this case x6 has negative solution so we choose the correspond-
ing equation to that basic variable and look for the non-basic variable in the
equation that has smallest index and a positive coefficient, in this case x4. Next
we solve that equation for x4 and rewrite the system as follow.

x1

x4

x5

= 1 − 2x2 + x3 + (1 + x3 + x6)
= 1 + x3 + x6

= 1 + 5x2 − (1 + x3 + x6)

= 2 − 2x2 + 2x3 + x6

= 1 + x3 + x6

= 0 + 5x2 − x3 − x6

Notice that in the above system one equation changed position. Back again
to step two, but now with x1, x4 and x5 as basic variables, we set all non-basic
variables equal to zero obtaining non-negative solutions for the basic variables.
So we have found that one solution to the problem is x1 = 2, x2 = x3 = 0
x4 = 1 and x5 = x6 = 0.

We have showed, so far, examples where there exists a solution, next we will
cosider an example which does not have any solution.

Example 4.4 Solve the system Ax = b for xi ≥ 0, i = 1, ...6, where A and b
are given as follow.

A =





−1 2 1 1 0 0
3 −2 1 0 1 0

−1 −6 23 0 0 1



 b =





3
−17

19





First choose a basis from A, say B = {4, 5, 6}, and solve the system for the
basic variables x4, x5 and x6.

x4

x5

x6

= 3 + x1 − 2x2 − x3

= −17 − 3x1 + 2x2 − x3

= 19 + x1 + 6x2 + 23x3

Next set all non-basic variables equal to zero. We obtain x4 = 3, x5 = −17
and x6 = 19. Since x5 has negative solution we have to find the non-basic
variable in the second equation that has smallest index and a positive coefficient.
Solve that equation for x2 and after substitute the variable x5 by the variable
x2 in the basis.

x2

x4

x5

= 17/2 + 3/2x1 + 1/2x3 + 1/2x5

= 3 + x1 − 2(17/2 + 3/2x1 + 1/2x3 + 1/2x5) − x3

= 19 + x1 + 6(17/2 + 3/2x1 + 1/2x3 + 1/2x5) + 23x3

= 17/2 + 3/2x1 + 1/2x3 + 1/2x5

= −14 − 2x1 − 2x3 − x5

= 70 + 10x1 + 26x3 + 3x5

15



Now we are in setp two again, and we set all non-basic variables equal to
zero. The only solution negative is x4 = −14, so we must choose the corre-
spondig equation to x4. We realize that all coefficients in that equation are
negative, therefore, according to step three, the problem is infeasible. There is
not solution to the problem.

Suppose there exists such a solution xi ≥ 0, ∀i such that2x1 + 0x2 + 2x3 +
x4 + x5 = −14. Clearly this is a contradiction, because a positive number can
not be equal to a negative number.

The first main theorem is the following:

Theorem 4.5 The B-Rule Algorithm terminates

The proof is really easy from the following lemma:

Lemma 4.6 If xn is the last variable, during the b-rule iterations, xn cannot
enter the basic variables and then leave neither be chosen to leave the basic
variables and then later on re-enter.

Write a proof

Proof: (of Theorem). We procede by contradiction. Suppose there is a matrix
A and a vector b for which the algorithm does not terminate. Let us assume
that A is an example with smallest number of rows plus columns. Since there is
a finite number of bases, in fact no more than

(

n
m

)

, then if the algorithm does
not terminate one can find a cycle of iterations. In other words, one starts at
one basis B1, then moves to B2, B3, . . . , and after say k iterations one returns
to B1.

Now by the lemma, during this cycle of bases, the last variable xn is either in
all Bi or in none of them. In the first case xn is the basic variable associated to
an equation that we can discard without affecting the choice of variables entering
or leaving the basis. Thus we have a smaller counterexample. Similarly, if xn

is always non-basic then we can set xn = 0 and still the remaining equations
would give a smaller counterexample. In both cases we reach a contradiction.

Theorem 4.7 Given Ax = b, A ∈ Qm×n matrix, b ∈ Qm, then either ∃x ≥ 0,
a solution, or ∃y, yA ≥ 0 but yb < 0. Only one of these cases is possible.

Proof: Say both x and y exist simultaneously. Then we see that Ax=b ⇒
(yA)x = yb < 0 where (yA ≥ 0). Now using the B-Rule Algorithm, you find
a solution or reach a situation where xi = b′i +

∑

j /∈B a′
ijxj where B is the set

of basic variables. Rewriting the equation we see that xi +
∑

j /∈B (a′
ij)xj = b′i

Contradition.
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We define Cone(A) as the set of all non-negative linear combinations of
columns of A. A solution resides within the cone. If there is no solution then
b is not inside the cone and y represents a plane that separates b from A as
shown in Figure 2. However, in Figure 3 we see the case where b in fact resides
within the cone which means that there is a solution.

The key is that empty polyhedra come with some kind of “emptiness cer-
tificate”, similar to Fredholms alternative theorem, via Farka’s lemma: There
is something really profound in Farkas’lemma and we will look at another nice
new proof of it.

Theorem 4.8 For a system of equations Ax = b, where A is a matrix and b is
a vector. One and only one of the following choices holds:

• There is a non-negative vector x with Ax = b.

• There exists a non-trivial vector c such that cA ≥ 0 but c · b < 0.

Proof: Clearly if the second option holds there cannot be positive solution for
Ax = b because it gives 0 ≤ (cA)x = c(Ax) = cb < 0.

Now suppose that yb ≥ 0 for all y such that yA ≥ 0. We want to prove
that then b is an element of the cone K generated by the non-negative linear
combinations of columns of A. For every b in Rn there exist in the cone K =
{Ax|x ≥ 0} a point a that is closes to b and Ax = a for x ≥ 0. This observation is
quite easy to prove and we leave it as an exercise (there are very easy arguments
when the cone K is pointed). Now using this observation we have that

(Aj , b − a) ≤ 0, j = 1 . . . k (1)

and

(−a, b − a) ≤ 0. (2)

Why? the reason is a simple inequality on dot products. If we do not have
the inequalities above we get for sufficiently small t ∈ (0, 1):

|b − (a + tAj)|
2 = |(b − a) − tAj |

2 =

|b − a|2 − 2t(Aj , b − a) + t2|Aj |
2 < |b − a|2

or similarly we would get

|b − (a − ta)|2 = |(b − a) + ta|2 = |b − a|2 − 2t(−a, b − a) + t2|a|2| < |b − a|2

Both inequalities contradict the choice of b because a + tAj is in K and
the same is true for a − ta = (1 − t)a ∈ K. We have then that from the
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hypothesis and the equations in (ONE) that (b,−(b−a)) ≥ 0, which is the same
as (b, b − a) ≤ 0 and this together with equation (TWO) (−a, b − a) ≤ 0 gives
(b − a, b − a) = 0, and in consequence b = a.

The theorem above is equivalent to

Theorem 4.9 For a system of inequalities Ax ≤ b, where A is a matrix and b
is a vector. One and only one of the following choices holds:

• There is a vector x with Ax ≤ b.

• There exists a vector c such that c · b < 0, c ≥ 0,
∑

ci > 0, and cA = 0.

The reason is simple, The system of inequalities Ax ≤ b has a solution if
and only if for the matrix A′ = [I, A,−A] there is a non-negative solution to
A′x = b. The rest is only a translation of the previous theorem in the second
alternative. If you tried to solve the strict inequalities in the system Bx < 0,
like the one we got for deciding convexity of pictures, you would run into troubles
for most computer programs (e.g. MAPLE, MATHEMATICA,etc). One needs
to observe that a system of strict inequalities Bx < 0 has a solution precisely
when Bx ≤ −1 has a solution. If the solution x gives Bx < −1/q for instance
px is a solution for the strict inequality and vice versa. Thus the above theorem
implies the Farkas’ lemma version we saw earlier.

The system of inequalities Ax ≤ b has a solution if and only if yb ≥ 0yA =
0, y ≥ 0 has a solution. You have two systems that are match to each other.
They have different number of variables and therefore represent polyhedra in
different spaces and dimensions. But still they share this property. This is the
foundation of duality in linear programming. Farkas’lemma actually implies a
similar matching phenomenon between a maximization LP and a minimization
LP:

Theorem 4.10 (Duality theorem of linear programming) Let A be a ma-
trix and b, c vectors (of adequate dimensions). The

maxcx subject toAx ≤ b = minyb subject toyA = c, y ≥ 0

.

Lemma 4.11 Given any system of inequalities Ax ≤ b, Cx ≥ d, then it can
be transformed into a system of the form Dx̄ = f with the property that one
system has a solution ⇔ the other system has a solution.

Proof: If you have the inequality
∑n

j=1
aijxj ≤ bi, add the variable si →

∑n
j=1

aijxj + si = bi

Similarly,
∑n

j=1
cijxj ≥ di →

∑n
j=1

cijxj − ti = di

18



Note that the cone doesn’t necessarily have to
be circular.

A

b

Figure 2: A problem with no solution. The plane A separates b from the cone.

Example 4.12 Solve the system of inequalities:
7x + 3y - 20z ≤ -2
4x - 3y + 9z ≤ 3
-x + 2y - z ≥ 4
11x - 2y + 2z ≥ 11

Using the previous lemma, we can now modify the system:
7x+ − 7x− + 3y+ − 3y− + 20z+ − 20z− + s1 = −2
4x+ − 4x− − 3y+ + 3y− + 9z+ − 9z− + s2 = 3
−x+ + x− + 2y+ − 2y− − z+ + z− − t1 = 4
11x+ − 11x− − 2y+ + 2y− − 2z+ + 2z− − t2 = 11

where x±, y±, z±, t1, t2, S1, s2 ≥ 0 now we can solve by B-Rule Algorithm.

We now describe the (in very broad terms) a well-known algorithm to find the
optimal solution of a linear programming problem of the form min cx subject to
x ∈ {x : Ax = bx ≥ 0}. The simplex method was developed by George Dantzig
in 1947 to solve linear programs. It proceeds from a given extreme point to an
adjacent extreme point in a such a way that the value of the objective function
increases. The method stops when we either find an optimal solution of find the
problem is in fact unbounded. We already discussed in the B-rule algorithm a
way to find one basic feasible solution, if any, now we need to talk about a way
to obtain a new improved basic feasible solution.

The geometric intuitive idea for solving a linear program is that, although
there are infinitely many points inside a polyhedron, we already saw there are
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Note that the cone doesn’t necessarily have to
be circular.

b

Figure 3: A problem with a solution. We see that b resides within the cone.

finitely many extreme points. Thus the search for an optimal solution can
be limited to the extreme points of S. Moreover we also saw that the extreme
points can be computationally identified as basic feasible solutions of the system
defining a polyhedron. But rather than looking in a disorganized way we will
move progressively from one vertex to the next until we find the optimal.

WRITE DOWN AN EXAMPLE.

Definition 4.13 Two distinct extreme points in a polyhedron P are said to be
adjacent if as basic feasible solutions they have all but one basic variable in
common.

Definition 4.14 Given a basic solution and a basis B, let cB be the vector of
basic variables. For each j define the reduced cost c̄j of a variable xj by

c̄j = cj − cBB−1Aj

Lemma 4.15 Consider a basic feasible solution x associated with the basis B,
and let c̄ be the corresponding vector of reduced costs. If c̄ ≥ 0 then x is optimal.
Moreover if x is optimal and nondegenerate then c̄ ≥ 0.

Proof: First assume c̄ is nonnegative. Let y be any other feasible solution and
let d = y − x. Thus we have Ax = Ay = b and thus Ad = 0. Thus we can
rewrite this last equality as

BdB +
∑

i∈N

Aidi = 0

Where N is the set of indices of nonbasic variables. Since B is invertible, we
obtain dB = −

∑

i∈N B−1Aidi. Thus
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c(y − x) = cBdB +
∑

i∈N cidi =
∑

i∈N (ci − cBB−1Ai)di =
∑

i∈N c̄idi ≥ 0

The last inequality is obtained since yi ≥ 0, xi = 0 for all basic variablesand
di ≥ 0.

1. Put the linear program into standard form. This means making the linear
program a minimization problem and changing inequality constraints to
equality constraints.

2. Use the B-bland rule to find a first basic feasible solution.

3. Calculate the Reduced costs and test for optimality for current basis B

4. Choose the entering variable from among those that have negative reduced
coset. If all are positive we have found an optimum solution else we choose
j with c̄j < 0.

5. Test for unboundedness, for this compute u = B−1Aj . If no component
of u is positive, we have problem is unbounded. Stop.

6. Choose the leaving variable by the Min Ratio Test:

min
{i:ui>0}

xBi
/ui

. Let l be one variable attaining the minimum among those in the current
basis.

7. Update the solution and change the basis. The new basis replaces Al by
Aj .

8. Go to Step 3.

4.1 Graph of Polytopes

The study of graphs of polytopes is a very worthy and classic endeavour. There
are famous connections of graphs of 3-dimensional polytopes and the four color
problem for example. We work here with graphs in the context of discrete
optimization, these are abstract collections of nodes joined by edges. For several
the concepts here we refer to any book in graph theory We also recommend [?].

In the 1960’s Balinski proved a now classical theorem about the graphs of
polytopes:

Theorem 4.16 The graphs of d-dimensional polytopes are d-connected.

before we sketch a the proof we should observe that given a linear function
l(x) : Rd → R such that l(vi) 6= l(vj) for any pair of vertices of a d-polytope P ,
we can orient or direct the edges of P from vi to vj whenever l(vi) < l(vj) and
vi, vj are adjacent. The orientation we have produced allows you to find the
“winning” vertex that maximizes the linear function by simply walking along
the graph!! the basic reason is the following lemma:
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Lemma 4.17 For a d-polytope P and a linear function l that is not constant
in an edge of P . Then for every vertex v0 of P either l(v) = max{l(x) : x ∈ P}
or there exists a neighbor u of v such that l(u) > l(v).

Proof: Denote by v1, v2, . . . , vk the neighbors of v0 in the graph of P . It is
enough to be sure that any point of P , say x, can be written in the form

x = v0 +
k

∑

i=1

λ(vi − v0).

With positive coefficients. The reason this is enough is because if one such
expression exists l(vi − v0) is positive precisely when moving from v0 to vi

increases the value of l. If no l(vi − v0) is positive then clearly staying at v0

is best you can do. How can we prove that equation above? Take the interval
segment [x, v0]. For a point r inside the interval close enough to v0 we have that
indeed

r = t(x − v0) =
∑k

i=1
si(vi − v0)

By the property of being in a convex hull. So we are done.

Now we prove Balinski’s theorem:

Proof: (Balinski’s theorem) We proceed by induction on the dimension of
the polytope. It is clear the theorem holds for dimension one because polytopes
are simply segments. Assume the theorem is true for all polytopes of dimension
less than d and suppose you have a d-polytope with a vertex-cut v1, . . . , vs with
s < d. This means that s + 1 ≤ d. Because in Rd a hyperplane is determined
by d points we can make a H hyperplane pass through the vi’s plus at least one
vertex not in the set.

There are two cases: 1) H is supporting hyperplane for a face or 2) H cuts
through the interior of the polytope. In the first case find the hyperplane H ′

that parallel to H that supports an another face. For any two points not in
the cut we can move, using the previous lemma, until we reach H ′. There by
induction any two points are connected, so we have find a connecting path.

In the second case. We again have two hyperplanes H ′ and H ′′ parallel to H
supporting the polytope from below and from above in two faces F ′, F ′′. if the
two points not in the cut are in the same side of H we repeat the argument to
connect via the use of F ′ or F ′′ depending on which side the points are present.
If they are in opposite sides we still have the extra point along H to connect
them (we can construct an increasing path from that extra point to F ′ or a
decreasing path to F ′′).
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5 Branch-and-Bound and Integer Linear Pro-

gramming

6 Convex Hull and Listing Algorithms

6.1 Reverse-Search Enumeration

References

[1] Avis, D. and Kaluzny, B. Solving inequalities and proving Farkas’s lemma
made easy American Math. Monthly, vol. 111, No.2, 2004, 152–157.

[2] Barvinok, A.I. and Pommersheim, J. An algorithmic theory of lattice points
in polyhedra, in: New Perspectives in Algebraic Combinatorics (Berkeley,
CA, 1996-1997), 91-147, Math. Sci. Res. Inst. Publ. 38, Cambridge Univ.
Press, Cambridge, 1999.

[3] Bland, R.G New pivot rules for the simplex method, Math. Oper. Res. 2
(1977) 103-107.

[4] Schrijver, A. Theory of Linear and Integer Programming. Wiley-
Interscience, 1986.

23


