CALCULUS, Math 17C
Homework 2 Due April 20

1. Read sections 10.3-10.6.
2. Solve exercises 10.3: 17, 21, 25, 29, 33, 35, 39, 41, 45, 47, 49
3. Solve exercises 10.4: 1, 7, 10, 17, 20, 25, 26, 27, 29
5. Solve exercises 10.6: 1, 3, 5, 9, 12, 26, 27, 29
6. Additional “in-depth” problems:
7. The Diffusion Equation:

Diffusion is the net movement of a substance (e.g., ions or molecules) from a region of high concentration to a region of low concentration. This is also referred to as the movement of a substance down a concentration gradient. A gradient is the change in the value of a quantity (e.g., concentration, pressure, temperature) with the change in another variable (e.g., distance). For example, a change in concentration over a distance is called a concentration gradient. Diffusion is an important mechanism for transport in many biological systems.

The concentration of diffusing particles \(c(x, t) \) in one spatial dimension obeys the **partial differential equation**

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2},
\]

where \(x \) is the position in space, \(t \) is time, and \(D \) is the “diffusion constant”, which depends on the substance that is diffusing and the substrate in which it is diffusing.

(a) If \(c \) is in molecules/mm\(^3\), \(x \) is in mm, and \(t \) is in seconds, What are the units of \(D \)?

(b) Verify that the following function is a solution to the diffusion equation

\[
c(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp \left(-\frac{x^2}{4Dt} \right), \quad t > 0,
\]

(c) The solution above is a Gaussian function (bell shaped curve) for fixed \(t \). Describe what happens to the solution as time \(t \) increases.

8. Energy expenditure during locomotion:
The average energy E (in kcal) needed for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$E(m, v) = 2.65 \frac{m^{2/3}}{v} + \frac{3.5 \ m^{3/4}}{v}$$

where m is the body mass of the lizard (in grams) and v is its speed (in km/hr). Find the linearization of the energy function at $(m, v) = (400, 8)$ (400,8). (from C. Robbins, 1993).