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Figure 1: The parallelogram law of addition in R3.

1 Introduction

In this section we introduce the fundamental properties of n-dimensional Euclidean space to
be used throughout the course.

We shall denote the set of all real numbers by R. If n> 1 is an integer, then n–dimensional
Euclidean space, denoted by Rn, consists of all ordered n-tuples of real numbers,

Rn = {(x1, . . . , xn) : xi ∈ R},

with some additional structure that will be described later. We shall call (x1, . . . , xn) a point
of Rn and use the notation

x = (x1, . . . , xn).

The origin is given by 0 = (0, . . . , 0).
Addition of points in Rn is defined as follows. If x = (x1, . . . , xn) and y = (y1, . . . , yn),

then x + y is defined by

x + y
def
= (x1 + y1, . . . , xn + yn).

In other words, each coordinate of x+y is obtained by adding the corresponding coordinates
of x and y. As Figure 1 indicates, geometrically x+y is the fourth vertex of the parallelogram
with vertices at 0, x, and y.

Multiplication of a point in Rn by a scalar (real number) is defined as follows. If
x = (x1, . . . , xn) and λ ∈ R, then λx is defined by

λx
def
= (λx1, . . . , λxn).

Thus each coordinate of λx is obtained by multiplying the corresponding coordinate of x by
λ.

We see that Rn enjoys the properties of a vector space. In several instances we refer to the
elements of Rn as vectors, especially when dealing with the properties involving linearity, such
as linear independence. Usually we refer to the elements of Rn as points, in particular when
dealing with the affine properties, such as affine independence, and especially in discussing
metric properties such as distance between points. The linearity properties are dependent on
the origin (the zero vector of the space) while the affine properties are independent of origin
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Figure 2: The Minkowski sum of sets and the translate of a set.

and invariant under the transformation known as translation. It may be helpful to keep in
mind that each point of Rn has an associated position vector which we visualize intuitively
as an arrow drawn from the origin to that point. We hope that the context will allow us to
use the words “point” and “vector” interchangeably without confusing issues.

There is a natural way to define addition of subsets of Rn. If A, B are any subsets of
Rn, the Minkowski sum, or vector sum, of A, B, is defined by

A+B
def
= {x + y : x ∈ A and y ∈ B}.

Note that a mechanical apparatus, based on the parallelogram law, could be constructed for
obtaining A+B from A and B (Figure 2). If B = {x0}, then A+B = A+{x0} is a translate
of A (Figure 2). We have a convention of writing x0 + A for {x0}+ A.

If A ⊆ Rn and λ ∈ R, then λA is defined by

λA
def
= {λx : x ∈ A}.

If λ > 0, this corresponds to “expanding” (or contracting!) A by the factor λ about the
origin (Figure 3). In the special case λ = −1 we write

−A def
= (−1)A = {−x : x ∈ A},

and call −A the the reflection of A through the origin, (Figure 3).

1.1 Exercises

1–1 In R2, let A be the square (including the interior and boundary points) with vertices at
(0, 0), (1, 0), (1, 1), (0, 1) and let B be the open disk (not including boundary points)
with center (1, 0) and radius 1. Sketch A+B.

1–2 The difference set of A ⊂ Rn is defined to be A+ (−A). By definition

A+ (−A) = {x− y : x, y ∈ A} = the set of all “differences” of points of A.

Show that A + (−A) coincides with its reflection through 0 . (A set S that coincides
with its reflection through 0 , i.e. such that S = −S, is said to be centrally symmetric
with center 0 .)
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Figure 3: λA, the expansion of A where λ > 1, and −A, the reflection of A.

1–3 Let T be the (solid) equilateral triangle in R2 with vertices (0, 0), (1
2
,
√

3
2

), (−1
2
,
√

3
2

).
Sketch T + (−T ), and indeed show that T + (−T ) is a regular hexagon centered at the
origin.

1–4 In R2, let A be the line segment A = {(t, t) : 0 6 t6 1} and B the line segment
B = {(t, 0) : 0 6 t6 2}. Sketch A+B.

1–5 In R2, let D be the circular disk {(x, y) : x2 + y2 6 1}. Observe that if A = 1
2
D, then

A+ (−A) = D. Can you find A ⊆ R2, with A 6= 1
2
D, such that A+ (−A) = D?

1–6 Prove that, A+B =
⋃

x∈A(x +B).

1–7 (a) Give an example of a set A ⊆ R such that A + A = 2A, but A is not an interval,
a halfline, or all of R.
Remark. The line segment with endpoints x, y ∈ Rn, for any n, is denoted by xy.
A set A ⊂ R is said to be midpoint convex if whenever x, y ∈ A, then the midpoint
of the segment xy belongs to A.
(b) Show that A ⊂ R is midpoint convex if an only if A+ A = 2A.
(c) Investigate, and try to characterize, those A ⊆ R such that A+ A = 2A.

2 The Inner Product in Rn

Rn is an example of an inner product space, that is, a vector space equipped with an inner
product. We define the inner product of x, y in Rn by

〈x,y〉 def
=

n∑
i=1

xiyi, where x = (x1, . . . , xn) and y = (y1, . . . , yn).

〈x,y〉 is linear in each of the variables (bilinear). That is, if λ1, λ2 ∈ R, then

〈λ1x1 + λ2x2,y〉 = λ1〈x1,y〉+ λ2〈x2,y〉,
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and similarly in the other variable.
The norm of x ∈ Rn is

‖x‖ def
= (

n∑
i=1

x2
i )

1
2 = 〈x, x〉

1
2 .

Important properties of the norm:

(i) ‖x‖> 0, and ‖x‖ = 0 if and only if x = 0,

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ Rn,

(iii) ‖x + y‖6 ‖x‖+ ‖y‖.

The proofs of properties (i) and (ii) are left for the reader in Exercise 2–1, below. Property
(iii) requires for its proof the following:

Theorem 1 (The Cauchy-Schwarz Inequality) If x, y ∈ Rn, then

|〈x,y〉| 6 ‖x‖ ‖y‖

with equality if and only if x = λy or y = λx for some λ ∈ R.

Proof. Assume x 6= 0, y 6= 0. Then〈
x− ‖x‖
‖y‖

y,x− ‖x‖
‖y‖

y

〉
> 0

which implies

‖x‖2 − 2
‖x‖
‖y‖
〈x,y〉+

‖x‖2

‖y‖2
‖y‖2 > 0

which in turn implies
〈x,y〉6 ‖x‖‖y‖.

To get −〈x,y〉6 ‖x‖‖y‖, so |〈x,y〉| 6 ‖x‖ ‖y‖, replace x with −x.
The equality condition follows from properties (i) and (ii) of the norm.

Proof of Property (iii), page 7.

‖x + y‖2 = 〈x + y,x + y〉
= ‖x‖2 + 2〈x,y〉+ ‖y‖2

6 ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2, by the Cauchy-Schwarz inequality

= (‖x‖+ ‖y‖)2

We have been investigating the properties of points in Rn, but we may also consider x to
be the position vector from the origin to the point x. Two vectors x and y in Rn are said
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to be independent if neither is a scalar multiple of the other. Otherwise, they are said to
be dependent. It follows that the vectors are dependent if they lie on the same line passing
through the origin. If two vectors x and y in Rn are independent, the Cauchy-Schwarz
inequality implies

−1 <
〈x,y〉
‖x‖ ‖y‖

< 1.

Therefore there is a unique θ, 0 < θ < π, such that cos θ = 〈x,y〉
‖x‖ ‖y‖ . We define this θ to be

the angle between the vectors x and y (Figure 4). We then have

〈x,y〉 = ‖x‖ ‖y‖ cos θ.

Rn is also an example of a metric space. We define the distance d(x,y) between points
x and y by

d(x,y)
def
= (

n∑
i=1

(xi − yi)2)
1
2 = ‖x− y‖.

Important properties of d(x,y):

(i) d(x,y) > 0, and d(x,y) = 0 if and only if x = y,

(ii) d(x,y) = d(y,x),

(iii) d(x,y) + d(y, z) > d(x, z), The Triangle Inequality .

These properties follow readily from the properties of the norm.

2.1 Exercises

In the following, Exercises 2–2 to 2–6 will guide you through a proof of Hölder’s inequal-
ity (which generalizes the Cauchy-Schwarz inequality) and then a proof of an important
inequality of Minkowski.

2–1 Prove properties (i) and (ii) of the norm, page 7.
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2–2 (a) Suppose 0 < α < 1 and t> 0. Prove that tα−αt6 1−α, with equality if and only
if t = 1.
(b) Suppose α > 1 and t> 0. Prove that tα − αt> 1 − α, with equality if and only if
t = 1.

[Hint: Study the graph of f(t) = tα − αt.]

2–3 Suppose a, b > 0, and p, q > 0 with 1
p

+ 1
q

= 1. Prove that

ab6
1

p
ap +

1

q
bq.

[Hint: Let t = ap

bq
and α = 1

p
in Exercise 2–2 (a).]

2–4 Suppose a1, . . . , an > 0, b1, . . . , bn > 0, with
∑n
i=1 a

p
i =

∑n
i=1 b

q
i = 1, where p, q > 0 with

1
p

+ 1
q

= 1. Prove that
n∑
i=1

aibi 6 1.

2–5 Suppose x1, . . . , xn > 0, y1, . . . , yn > 0, p, q > 0 with 1
p

+ 1
q

= 1. Prove Hölder’s inequal-
ity:

n∑
i=1

xiyi 6 (
n∑
i=1

xpi )
1
p (

n∑
i=1

yqi )
1
q .

[Hint: Let ai = xi/(
∑
xpi )

1
p , bi = yi/(

∑
yqi )

1
q ]

Why is this a generalization of the Cauchy-Schwarz inequality?

2–6 Suppose x1, . . . , xn, y1, . . . , yn ∈ R and p> 1. Prove Minkowski’s inequality:

(
n∑
i=1

|xi + yi|p)
1
p 6 (

n∑
i=1

|xi|p)
1
p + (

n∑
i=1

|yi|p)
1
p .

[Use the idea of F. Riesz, see Hardy et al. (1952, p. 24). First show that it suffices to
consider the case where x1, . . . , xn, y1, . . . , yn are nonnegative. Then write

n∑
i=1

(xi + yi)
p =

n∑
i=1

xi(xi + yi)
p−1 +

n∑
i=1

yi(xi + yi)
p−1,

and apply Hölder’s inequality to the terms on the righthand side, with q = p
p−1

.]

2–7 The inequality in Exercise 2–2 (b) can be used to prove the famous inequality between
the arithmetic and geometric means of n positive real numbers. If a1, . . . , an > 0, this
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inequality asserts that the arithmetic mean is greater than or equal to the geometric
mean. That is,

a1 + a2 + · · ·+ an
n

> (a1a2 · · · an)
1
n .

with equality if and only if a1 = a2 = · · · = an.
The following idea for a proof is from Akerberg (1963):
Rewrite 2–2 (b) in the form t(α− tα−1) 6α− 1. Let A = a1+a2+···+an

n
, and substitute

t = (a1/A)
1
n and α = n. Show that this gives

(
a1 + a2 + · · ·+ an

n
)n > a1(

a1 + a2 + · · ·+ an
n− 1

)n−1.

But a repetition of this, applied to a2, . . . , an on the righthand side, gives then

(
a1 + a2 + · · ·+ an

n
)n > a1a2(

a1 + a2 + · · ·+ an
n− 2

)n−2.

Continuing, we have

(
a1 + a2 + · · ·+ an

n
)n > a1a2 · · · an.

2–8 (a) Suppose f(t) is continuous and strictly increasing for t> 0, and f(0) = 0. Let g be
the inverse function of f . If a, b > 0, prove Young’s inequality:

ab6
∫ a

0
f(x) dx+

∫ b

0
g(y) dy.

[Hint: Interpret the various quantities as areas. Sketch the graph of f .]
(b) Recall that for a, b > 0, p, q > 0 with 1

p
+ 1

q
= 1, the inequality

ab6
1

p
ap +

1

q
bq,

proved in Exercise 2–3, was crucial for the proof of Hölder’s inequality. Derive this
inequality from Young’s inequality.

3 Combinations

3.1 Linear, Affine and Convex Combinations

If x1, . . . ,xk ∈ Rn, then

• a linear combination of x1, . . . ,xk is

λ1x1 + · · ·λkxk, for λ1, . . . , λk ∈ R.
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• an affine combination of x1, . . . ,xk is

λ1x1 + · · ·+ λkxk, where λ1 + · · ·+ λk = 1.

• a convex combination of x1, . . . ,xk is

λ1x1 + · · ·+ λkxk, where λ1 + · · ·+ λk = 1 and λ1 > 0, . . . , λk > 0.

Thus a convex combination is an affine combination with nonnegative coefficients, and
an affine combination is a linear combination whose coefficients sum to 1.

Previously, page 8, we defined linear independence for a pair of vectors. More generally,
the vectors x1, . . . ,xk ∈ Rn are said to be linearly independent if no one of them is a linear
combination of the others. Equivalently, x1, . . . ,xk ∈ Rn are linearly independent if

k∑
i=1

λixi = 0 for λ1, . . . , λk ∈ R implies λ1 = · · · = λk = 0.

Otherwise, they are said to be linearly dependent. The points x1, . . . ,xk ∈ Rn are said to
be affinely independent if no one of them is a affine combination of the others. An equivalent
formulation is that x1, . . . ,xk ∈ Rn are affinely independent if

k∑
i=1

λixi = 0 for λ1, . . . , λk ∈ R and
k∑
i=1

λi = 0 implies λ1 = · · · = λk = 0.

Otherwise, they are said to be affinely dependent.
In the following examples, suppose x1, x2 ∈ Rn.

Example 3–A. The sum, x1 + x2, is a linear combination.

Example 3–B. The midpoint of the line segment with endpoints x1 and x2 is 1
2
(x1 + x2).

Thus the midpoint is a convex combination.

A “Physical” Interpretation. Place masses mi at xi ∈ Rn for i = 1, . . . , k. Then

the center of mass
def
=

m1x1 + · · ·+mkxk
m1 + · · ·+mk

.

Note this is a convex combination of x1, . . . ,xk.

3.2 Centroids

If x1, . . . ,xk ∈ Rn and the masses in the previous physical interpretation are all equal, we
obtain the

centroid of x1, . . . ,xk
def
=

1

k
(x1 + · · ·+ xk).

Figure 5 illustrates the following examples.
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Figure 5: c is the centroid of 2, 3 and 4 points respectively.

Example 3–C. The centroid of x1, x2 ∈ Rn is the midpoint of the line joining them.

Example 3–D. Three distinct, non-collinear points x1, x2, x3 ∈ Rn determine a plane.
Their centroid,

1

3
(x1 + x2 + x3) = x3 +

2

3
(
x1 + x2

2
− x3)

is the familiar centroid of the triangle with vertices x1, x2, x3. Here, the centroid of
the point is intersection of the medians of the triangle and these medians trisect one
another.

Example 3–E. Four affinely independent points x1, x2,x3,x4 ∈ R3 determine a
3–dimensional simplex. (For more on simplices see Exercise 8–10, page 30.) Their
centroid is

1

4
(x1 + · · ·+ x4) = x4 +

3

4
(
x1 + · · ·+ x3

3
− x4).

One should avoid confusion between the centroid of the vertices and the centroid of
the solid, which happen to coincide for simplices. The centroid of a solid is defined in
terms of certain integrals, but we shall not go into this here. An excellent introduction
may be found in Bonnesen & Fenchel (1934, §2).

3.3 Exercises

3–1 An n–dimensional simplex is determined by n + 1 affinely independent points x1, x2,
. . ., xn+1 ∈ Rn. (For more on simplices see Exercise 8–10, page 30.) Let c be the
centroid of x1, . . . ,xn+1 and let c1 be the centroid of x1, . . . ,xn. Prove that c is the
following convex combination of c1 and xn+1:

c =
n

n+ 1
c1 +

1

n+ 1
xn+1.

Remark. This tells us that the centroid of an n–dimensional simplex divides the
line segment joining any vertex to the centroid of the (n − 1)–dimensional simplex
determined by the other n points in the ratio n : 1. The next exercise can be viewed
as a generalization of this result.
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Figure 6: The plane x− y + z = 0 in R3, in Example 4–A.

3–2 Suppose x1, . . . ,xk ∈ Rn and 1 < r < k for some integer r. Let c be the centroid of
x1, . . . ,xk, let c1 be the centroid of x1, . . . ,xr, and let c2 be the centroid of xr+1, . . . ,xk.
Prove that

c =
r

k
c1 + (1− r

k
)c2.

3–3 Use Exercise 3–1 to deduce that the medians of a triangle intersect at one point.

3–4 Show that the points x1, . . . ,xk ∈ Rn are affinely independent if and only if the vectors
x2 − x1, . . . ,xk − x1 are linearly independent.

3–5 In the definition of an affine combination we have
∑k
i=1 λi = 1, but in the definition of

affine independence we have
∑k
i=1 λi = 0. Explain why the latter set of λi’s summing

to zero is not inconsistent with the former set summing to one.

4 Linear and Affine Hulls

The linear hull (or linear span) of x1, . . . ,xk ∈ Rn consists of the set of all possible linear
combinations of x1, . . . ,xk:

linear hull of x1, . . . ,xk
def
= {λ1x1 + · · ·λkxk : λ1, . . . , λk ∈ R}.

We say that S ⊆ Rn, S 6= ∅, is a subspace if and only if x1, x2 ∈ S implies λx1 +λ2x2 ∈ S
for all λ1, λ2 ∈ R. That is, S is “closed” under taking linear combinations of pairs of points
of S. The dimension of a subspace is the number of linearly independent vectors required
to span the subspace.

Example 4–A. In R3 let x1 = (1, 1, 0), x2 = (0, 1, 1). Then the linear hull of x1, x2 is

{λx1 + λ2x2} = {(λ1, λ1 + λ2, λ2) : λ1, λ2 ∈ R}.

Note that this is a plane through 0 with equation x − y + z = 0 (Figure 6). It is a
2-dimensional subspace of R3.
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The example illustrates a general property:

Theorem 2 If x1, . . . ,xk ∈ Rn, then their linear hull is

(i) a subspace of Rn;

(ii) in fact, the “smallest” subspace of Rn containing x1, . . . ,xk. That is, if S is a
subspace of Rn containing x1, . . . ,xk, then S contains the linear hull of x1, . . . ,xk;

(iii) the intersection of all subspaces of Rn which contain x1, . . . ,xk. That is,

linear hull of x1, . . . ,xk =
⋂
{S : {x1, . . . ,xk} ⊆ S and S is a subspace of Rn}.

The proof is left to the reader.
The affine hull of x1, . . . ,xk consists of all affine combinations of x1, . . . ,xk:

affine hull of x1, . . . ,xk
def
= {λ1x1 + · · ·λkxk : λ1 + · · ·+ λk = 1}.

A flat in Rn is any translate of a subspace in Rn. Thus if F is a flat, then there exists a
subspace S and x0 such that

F = x0 + S.

You may think of a flat as a subset closed under taking the straight line through each pair of
its points. The dimension of a flat is the dimension of the subspace of which it is a translate.

Example 4–B. The affine hull of two distinct points is the straight line through those two
points. Thus it is a one-dimensional flat. Note that we have two descriptions of the
straight line through x1, x2 ∈ Rn:

{λ1x1 + λ2x2 : λ1 + λ2 = 1}

or
{(1− λ)x1 + λx2 = x1 + λ(x2 − x1) : −∞ < λ <∞}.

Example 4–C. In R3 let x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1). Then

affine hull of x1,x2,x3 = {λ1x1 + λ2x2 + λ3x3 : λ1 + λ2 + λ3 = 1}
= {(λ1, λ2, λ3) : λ1 + λ2 + λ3 = 1}
= the plane with equation x+ y + z = 1.

The plane x+ y + z = 1 is a 2–dimensional flat in R3 (Figure 7).

These examples illustrate the general property:

Theorem 3 If x1, . . . ,xk ∈ Rn, then their affine hull is

(i) a flat in Rn;
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Figure 7: The plane x+ y + z = 1 in R3, in Example 4–C.

(ii) in fact, the “smallest” flat in Rn containing x1, . . . ,xk. That is, if F is a flat in
Rn containing x1, . . . ,xk, then F contains the affine hull of x1, . . . ,xk;

(iii) the intersection of all flats in Rn which contain x1, . . . ,xk. That is,

affine hull of x1, . . . ,xk =
⋂
{F : {x1, . . . ,xk} ⊆ F and F is a flat of Rn}.

Proof. For the proof of (i), let

F = {λ1x1 + · · ·+ λkxk : λ1 + · · ·+ λk = 1}
= {(1− λ2 − · · · − λk)x1 + λ2x2 + · · ·+ λkxk : λ2, . . . , λk ∈ R}
= {x1 + λ2(x2 − x1) + · · ·+ λk(xk − x1) : λ2, . . . , λk ∈ R}
= x1 + S,

where S is the subspace {λ2(x2 − x1) + · · ·+ λk(xk − x1) : λ2, . . . , λk ∈ R}.
For the proof of (ii), let F = x0 + S, for some subspace S, be any flat such that

{x1, . . . ,xk} ⊂ F . Since xi ∈ F , we have xi = x0 + yi for some yi ∈ S, i = 1, . . . , k.
Note then that any linear combination of y1, . . . ,yk belongs to S. If λ1 + · · ·+ λk = 1, then

k∑
i=1

λixi =
k∑
i=1

λi(x0 + yi)

= (
k∑
i=1

λix0) + (
k∑
i=1

λiyi)

= (
k∑
i=1

λi)x0 + (
k∑
i=1

λiyi)

= x0 + (
k∑
i=1

λiyi).

The latter sum is a linear combination of y1, . . . ,yk and hence an element of S. This shows
that every affine combination of x1, . . . ,xk is in F ; thus the affine hull is a subset of F . This
completes the proof of (ii).

Part (iii) follows from (i) and (ii).
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Figure 8: A convex set, and examples of a ball, hyperplane and halfspaces.

4.1 Exercises

4–1 (a) Let x1, . . . ,xk ∈ Rn with k> n+2. It is known that any n+1 or more vectors in Rn

are linearly independent. Deduce that x1, . . . ,xk are affinely independent (Exercise 3–
4, page 13).
(b) Show that x1, . . . ,xk ∈ Rn are affinely independent if and only if one of them is
contained in the affine hull of the others.

4–2 In R3, let x1 = (1, 0, 0), x2 = (−1, 0, 0), x3 = (0, 1, 0), x4 = (0,−1, 0).
(a) Describe geometrically the linear hull of {x1,x2,x3,x4}.
(b) Describe geometrically the affine hull of {x1,x2,x3,x4}.

5 Convex Sets

Having used linear combinations to define the linear hull and affine combinations to define
the affine hull, we now expect to use convex combinations to define the convex hull. We
also expect to state a theorem which tells us that the convex hull of a set of points is the
“smallest object” that contains the set. This section identifies that object.

K ⊂ Rn is convex if and only if whenever x1, x2 ∈ K, then all the points of the line
segment with endpoints x1, x2 belong to K (Figure 8). In other words, K is convex if and
only if whenever x1, x2 ∈ K, then (1− λ)x1 + λx2 ∈ K for all 0 6 λ6 1. The dimension of
a convex set is the dimension of its affine hull.

Example 5–A. Rn is an n–dimensional convex set.

Example 5–B. Any flat in Rn is convex.

Example 5–C. Let x0 ∈ Rn and r > 0. The closed ball of radius r centered at x0

B(x0, r)
def
= {x ∈ Rn : d(x,x0) 6 r}

is an n–dimensional convex set (Figure 8).

Example 5–D. The open ball
{x ∈ Rn : d(x,x0) < r}

is also an n–dimensional convex set.
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Example 5–E. Let x0 ∈ Rn and ‖u‖ = 1 (u is a “direction”). Then the set

H = {x ∈ Rn : 〈x− x0,u〉 = 0}

is a hyperplane passing through x0 and having unit normal u (Figure 8). Note that a
hyperplane is an (n− 1)–dimensional flat.

H+ = {x ∈ Rn : 〈x− x0,u〉> 0} and

H− = {x ∈ Rn : 〈x− x0,u〉6 0}

are the two closed halfspaces defined by H (Figure 8). Any closed halfspace is an
n–dimensional convex set. The open halfspaces defined by H are

{x ∈ Rn : 〈x− x0,u〉 > 0} and

{x ∈ Rn : 〈x− x0,u〉 < 0}.

These are also an n–dimensional convex sets.

5.1 Exercises

5–1 Prove that every halfspace is convex. [Hint: Suppose H+ is a closed halfspace given
by {x ∈ Rn : 〈x − x0,u〉> 0}. Given x1, x2 ∈ H+, it is required to show that
(1− λ)x1 + λx2 ∈ H+ when 0 6 λ6 1.

5–2 Prove that every ball is convex. [Hint: Suppose B = {x ∈ Rn : d(x,x0) 6 r}. Thus
if x1, x2 ∈ B, then ‖x1 − x0‖6 r and ‖x2 − x0‖6 r. One needs to show in that case
(1− λ)x1 + λx2 ∈ B when 0 6 λ6 1. A crucial observation that should help you is

((1− λ)x1 + λx2)− x0 = (1− λ)(x1 − x0) + λ(x2 − x0).]

5–3 A very useful tool in establishing that certain sets are convex is the following fact:
“The intersection of convex sets is convex.” Prove that for any collection of convex
sets {Kα : α ∈ A}, the set

⋂
α∈AKα is again a convex set.

5–4 In Rn, let In be the n–dimensional cube defined by

In
def
= {x ∈ Rn : −1 6 xi 6 1, i = 1, . . . , n}.

(a) Sketch this set in case n = 1, 2, 3.
(b) In is the intersection of certain closed halfspaces. What are they?
(c) Why does part (b) show that In is convex?
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5–5 In Rn, the n–dimensional crosspolytope is defined by

Cn
def
= {x ∈ Rn : |x1|+ · · ·+ |xn|6 1}.

(a) Sketch this set in case n = 1, 2, 3.
(b) Prove that the n–dimensional crosspolytope is convex.

5–6 Let a1, . . . , an > 0. Prove that the (solid) n–dimensional ellipsoid

E = {x ∈ Rn :
n∑
i=1

x2
i

a2
i

6 1}

is convex. [Hint: Proceed directly. Suppose x, y ∈ E. Then
∑ x2

i

a2
i
6 1 and

∑ y2i
a2

i
6 1. If

0 6 λ6 1 then one needs to show that (1− λ)x + λy ∈ E, that is,

n∑
i=1

((1− λ)xi + λyi)
2

a2
i

6 1.

Apply Minkowski’s inequality, Exercise 2–6, to the square root of the sum.]

5–7 Describe all the convex subsets of R.

5–8 (a) Prove that if K1 and K2 are convex, then K1 +K2 is convex.
(b) Prove that if K1, . . . , Kr are convex, then K1 + · · ·+Kr is convex.

5–9 Use Exercise 5–8 to show in another way that the n–dimensional cube In described in
Exercise 5–4 is convex [Hint: In = I1 + · · ·+ In, where Ii =?]

5–10 Prove that if K is convex, then K +K = 2K.

6 Convex Hulls and Polytopes

6.1 The Convex Hull

Rather than give the definition of the convex hull of a finite set of points, we present a more
general definition.

The convex hull of A ⊂ Rn, denoted conv(A), is defined to be the set of all convex
combinations of finitely many elements of A. That is,

conv(A)
def
= {λ1x1 + · · ·λkxk :

k a positive integer, x1, . . . ,xk ∈ A,
k∑
i=1

λi = 1, and λi > 0, i = 1, . . . , k}.
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Figure 9: The set of convex combinations of x1,x2,x3, in Example 6–B.

If A is a finite set, k can be taken to be the number of elements of A. However, if A is
infinite, k is arbitrary. Analogous to our earlier definitions of hulls, we have

conv{x1, . . . ,xk} = {λ1x1 + · · ·λkxk :
k∑
i=1

λi = 1, and λi > 0, i = 1, . . . , k}.

When using set notation, we have a convention of writing conv{ } for conv({ }).

Example 6–A. The line segment with endpoints x1, x2 ∈ Rn consists of the set of all convex
combinations of x1 and x2. That is,

{(1− λ)x1 + λx2 : 0 6 λ6 1}.

Example 6–B. In R3 let x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1). Then the convex
combinations fill out the closed triangle with the vertices x1,x2,x3 (Figure 9).

We are now ready for theorem which we anticipated from Section 4.

Theorem 4 If A ⊂ Rn, then its convex hull is

(i) a convex set in Rn;

(ii) in fact, the “smallest” convex set in Rn containing A. That is, if K is a convex
set in Rn containing A, then K contains the convex hull of A;

(iii) the intersection of all convex sets in Rn which contain A. That is,

conv(A) =
⋂
{K : A ⊆ K and K is convex set in Rn}.

Proof. For the proof of (i), we must show that if x1 and x2 are convex combinations of
points in A, then so is (1−λ)x1 +λx2 for 0 6 λ6 1. Showing this is a nice algebraic exercise
for the reader (Exercise 6–1).

To prove (ii), assume that K is a convex set in Rn and A ⊂ K. We will proceed by
induction to show that if x1, . . . ,xk ∈ A, then λ1x1 + · · ·+ λkxk ∈ K for all λ1, . . . , λk with
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∑k
i=1 λi = 1 and λi > 0, i = 1, . . . , k. The statement is clearly true if k = 1. (Notice, by

the convexity of K, it is also true for k = 2.) Assume it is true for k − 1. Then, assuming
λ1 6= 1,

λ1x1 + · · ·+ λkxk = λ1x1 + (1− λ1)(
λ2

1− λ1

x2 + · · ·+ λk
1− λ1

xk)

= λ1x1 + (1− λ1)y, where y =
λ2

1− λ1

x2 + · · ·+ λk
1− λ1

xk.

Now
λ2

1− λ1

+ · · ·+ λk
1− λ1

=
1

1− λ1

(λ2 + · · ·+ λk) = 1,

so y is a convex combination of k − 1 elements of A. By our induction hypothesis, it is an
element of K. But λ1x1 + (1− λ1)y has now been shown to be a convex combination of two
elements of K and is also in K. This completes the proof of (ii).

As before, (iii) follows from (i) and (ii).

6.2 Hulls Revisited

We now have the following summary.
If A ⊂ Rn, then

linear hull
affine hull

convex hull

 of A
def
= the set of all


linear
affine
convex

 combinations of finite subsets of A,

and

linear hull
affine hull

convex hull

 of A
Theorem

= the intersection of all


subspaces
flats
convex sets

 containing A.

6.3 Convex Polytopes

A convex polytope is the convex hull of a finite set of points. In R2, a convex polytope is
called a convex polygon.

Example 6–C. In R2 the convex polytopes are points, line segments, and convex polygons.

Example 6–D. The cube in R3 is a familiar example (Exercise 5–4). The 3-dimensional
crosspolytope

C3 = {(x, y, z) : |x|+ |y|+ |z|6 1}

is another example (Exercise 5–5). Note that C3 is the familiar “regular octahedron”.
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Theorem 5 The n–dimensional crosspolytope (Exercise 5–5)

Cn = {x ∈ Rn : |x1|+ · · ·+ |xn|6 1}

is the convex hull of the 2n points ±e1, . . . ,±en, where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
etc.

Proof. Proceed by induction as follows. Clearly the result is true for n = 1. Supposing it
true for dimension n − 1, we show that it is true for dimension n. If x ∈ Cn, consider first
the case where x = (x1, . . . , xn) satisfies 0 6 xn 6 1. If xn = 1, then x = en and there is
nothing to prove. If 0 6 xn < 1, let

y = (
x1

1− xn
, . . . ,

xn−1

1− xn
, 0).

Identifying Rn−1 with {x ∈ Rn : xn = 0}, we have y ∈ Rn−1. But

|y1|+ · · ·+ |yn−1| = |
x1

1− xn
|+ · · ·+ | xn−1

1− xn
| = 1

1− xn
(|x1|+ · · ·+ |xn−1|) 6 1,

since |x1|+ · · ·+ |xn−1|6 1− |xn|6 |1− xn|. Thus y ∈ Cn−1. By our induction assumption,
then y is a convex combination of ±e1, . . . ,±en−1, say

y =
n−1∑
i=1

(λ+
i ei + (λ−i )(−ei)), where λ±i > 0,

n−1∑
i=1

(λ+
i + λ−i ) = 1.

But note that x is a convex combination of y and en:

x = (1− xn)y + xnen (keep in mind that 0 6 xn < 1 ).

Thus x is a convex combination of ±e1, . . . ,±en−1, en. Indeed

x =
n−1∑
i=1

((1− xn)λ+
i ei + (1− xn)λ−i (−ei)) + xnen.

(Check that this really is a convex combination of ±e1, . . . ,±en−1, en.)
The case where −1 6 xn 6 0 can be treated similarly. This proves that any point of Cn

is a convex combination of ±e1, . . . ,±en. In other words

Cn ⊆ conv{±e1, . . . ,±en}.

Since Cn is a convex set (Exercise 5–5) containing ±e1, . . . ,±en, then Cn contains every
convex combination of ±e1, . . . ,±en, hence

Cn ⊇ conv{±e1, . . . ,±en}.

Thus Cn = conv{±e1, . . . ,±en}.
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Remark. It is easy to see directly the “easy part”, namely that

Cn ⊇ conv{±e1, . . . ,±en},

by noting that if x =
∑n
i=1(λ

+
i ei + (λ−i )(−ei)), where λ±i > 0,

∑n
i=1(λ

+
i + λ−i ) = 1, then

x = (λ+
1 − λ−1 , λ+

2 − λ−2 , . . . , λ+
n − λ−n ),

so
|x1|+ · · ·+ |xn| = |λ+

1 − λ−1 |+ · · ·+ |λ+
n − λ−n |6 λ+

1 + λ−1 + · · ·λ+
n + λ−n = 1.

Hence x ∈ Cn by definition of Cn.

6.4 Exercises

6–1 If A ⊂ Rn, and x1 and x2 are convex combinations of points in A, then show that
(1− λ)x1 + λx2 for 0 6 λ6 1 is also a convex combination of points of A.

6–2 Let K ⊆ R3 be the convex hull of the three points {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Sketch
the convex polytope K.

6–3 Let K ⊆ R4 be the convex hull of {e1, e2, e3, e4}, where e1 = (1, 0, 0, 0), etc.
(a) K lies in a hyperplane. What is the equation of that hyperplane?
(b) K is a 3–dimensional convex polytope sitting in R4. What is the 3–dimensional
volume of K?

6–4 Suppose A1, A2 ⊆ Rn, with A1 ⊆ H1, and A2 ⊆ H2, where H1 and H2 are parallel
hyperplanes (i.e. H1 and H2 have the same unit normal). Prove that A1 + A2 is a
subset of a hyperplane parallel to H1 and H2.

6–5 Let K be the convex set in Exercise 6–2. Describe completely K + (−K).

6–6 Let In be the n–dimensional cube described in Exercise 5–4. You are asked in Exer-
cise 5–4 and Exercise 5–9 to show that In is convex. Show in fact that In is a convex
polytope by proving that In is the convex hull of the 2n points of the form (x1, . . . , xn)
where each coordinate xi is either ±1. (For example,

I2 = conv{(1, 1), (−1, 1), (1,−1), (−1,−1)}.)

6–7 In R3 let A = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 2, 2), (0,−2, 2)}. Let P be
the convex polytope P = conv(A).
(a) Sketch P and calculate its volume.
(b) Let k be the smallest integer such that each point of P is a convex combination of
at most k points of A. What is k?
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Figure 10: Set A is contained in a halfspace (Exercise 6–8).

6–8 Suppose A ⊆ Rn and H is a hyperplane in Rn. Suppose A is contained in one of the
halfspaces of H (Figure 10). Prove then that

conv(H ∩ A) = H ∩ conv(A).

[Hint: Suppose H has equation 〈x,u〉 = p and A is contained in H+ = {x ∈ Rn :
〈x,u〉> p}. To show first that H ∩ conv(A) ⊆ conv(H ∩A), suppose x ∈ H ∩ conv(A),
so

〈x,u〉 = p and x =
k∑
i=1

λiai, ai ∈ A,
∑

λi = 1, λi > 0.

Then
k∑
i=1

λi(〈ai,u〉 − p) = 0.

It follows from this that for each i, i = 1, . . . , k, either λi = 0 or 〈ai,u〉 = p, (WHY?),
so for those i such that λi 6= 0, ai ∈ H. Thus x ∈ conv(H ∩ A).

To show that conv(H ∩ A) ⊆ H ∩ conv(A), suppose x ∈ conv(H ∩ A). Then x =∑k
i=1 λibi,bi ∈ H ∩ A,

∑
λi = 1, λi > 0. Thus x ∈ conv(A), and also x ∈ H (WHY?).

That is, x ∈ H ∩ conv(A).]

Remark. Exercise 6–8 has a plausible “physical” interpretation. It shows that if
a distribution of point masses lies in a halfspace, then the center of mass is on the
boundary if and only if all the masses lie on the boundary.

6–9 Show that
conv(A+B) = conv(A) + conv(B).

[Hint: If x =
∑k
i=1 λi(ai + bi), then x =

∑k
i=1 λiai +

∑k
i=1 λibi. The latter two sums

are convex combinations of elements of A and B, respectively. On the other hand, if
x =

∑k
i=1 λiai +

∑`
j=1 µjbj, with

∑k
i=1 λi = 1 and

∑`
j=1 µj = 1, show that

x =
k∑
i=1

∑̀
j=1

λiµj(ai + bj). (1)

Note that λiµj > 0 and
∑k
i=1

∑`
j=1 λiµj = 1, so the sum in (1) is a convex combination

of elements from A+B.]
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6–10 Why does Exercise 6–9 imply that the Minkowski sum of two convex polytopes is again
a convex polytope.

6–11 With the n–cube defined as in Exercise 5–4, consider the six vertices of I4 given by:

a1 = (−1, 1, 1,−1), a2 = (1,−1, 1,−1), a3 = (1, 1,−1,−1), and

b1 = (1,−1,−1, 1) b2 = (−1, 1,−1, 1), b3 = (−1,−1, 1, 1).

(a) Show that these six points are the vertices of a 3–dimensional regular octahedron
C of edge length 2

√
2.

[Hint: Check that the three line segments aibi, i = 1, 2, 3, are mutually orthogonal
and intersect at their midpoints.]

(b) Note that the vertices of the octahedron C belong to the hyperplane H with
equation x1 + x2 + x3 + x4 = 0. Explain why

C ⊆ H ∩ I4.

(c) Show also that C ⊇ H ∩ I4 so we have in conjunction with part (b),

C = H ∩ I4.

[Hint: If x = (x1, x2, x3, x4) ∈ H ∩ I4, then
∑4
i=1 xi = 0 and −1 6 xi 6 1, i = 1, 2, 3, 4.

Note that a1, a2, a3 comprise an orthogonal basis for the 3–dimensional subspace H.
We can assume, without loss of generality, that x belongs to the “positive octant” of
H relative to this basis – that is, x · ai > 0, i = 1, 2, 3. This results in

−x1 + x2 + x3 − x4 = 0,

x1 − x2 + x3 − x4 = 0, (2)

x1 + x2 − x3 − x4 = 0.

Define:

λ1 =
x2 + x3

2
,

λ2 =
x1 + x3

2
,

λ3 =
x1 + x2

2
.

Show that 0 6 λ1 6 1, i = 1, 2, 3, that λ1 + λ2 + λ3 6 1, and

x = λ1a1 + λ2a2 + λ3a3.
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It follows that x belongs to the “positive octant” of C. A similar argument can be
used for the other “octants.” To show 0 6 λ1 6 1, note that from

−x1 + x2 + x3 − x4 > 0 and x1 + x2 + x3 + x4 = 0

we get
x2 + x3 = −(x1 + x4) > − (x2 + x3),

so x2 +x3 > 0. From this follows λ1 > 0. Also λ1 6 1 since x2 6 1 and x3 6 1. To obtain
λ1 + λ2 + λ3 6 1, note that

λ1 + λ2 + λ3 = x1 + x2 + x3 = −x4.]

6–12 (a) Show that the hyperplane H in the preceding exercise is orthogonal to a principal
diagonal of I4, so the preceding exercise shows that a cross-section through the center
of I4 orthogonal to a main diagonal of the cube is a regular octahedron.

(b) What is the analogous result for I3?

7 Open and Closed Sets

Let S ⊆ Rn. Then S is said to be an open set if and only if for each x ∈ S there exists some
ball centered at x completely contained in S.

A set S ⊆ Rn is said to be a closed set if and only if the complement of S is open. By
the complement of S we mean

S c def
= {x ∈ Rn : x 6∈ S}.

Example 7–A. Any open ball is an open set.
Proof. Let B be the open ball of radius r > 0 centered at x0, so

B = {x ∈ Rn : d(x,x0) < r}.

Let x1 ∈ B, so d(x1,x0) = α < r. Then the ball

B1 = {x ∈ Rn : d(x,x1) 6
1

2
(r − α)}

is contained in B. For if x ∈ B1, then

d(x,x0) 6 d(x,x1) + d(x1,x0) 6
1

2
(r − α) + α < r,

so x ∈ B.

Example 7–B. Any closed ball is a closed set (proof?).
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Example 7–C. Any flat in Rn is a closed set (proof?).

Example 7–D. The empty set ∅ is both open and closed. So is Rn.

A boundary point of S is a point x such that every ball centered at x contains both points
belonging to S and also points not belonging to S. The boundary of S, denoted by ∂S, is
the set of all boundary points of S. The interior of S consists of all points of S that are not
boundary points of S. It is denoted by int(S). Thus we have

S = ∂S ∪ int(S) and ∂S ∩ int(S) = ∅.

Example 7–E. If B is the open ball B = {x ∈ Rn : d(x,x0) < r}, then the boundary of B
is the sphere {x ∈ Rn : d(x,x0) = r}.

Example 7–F. The boundary of the closed ball B(x0, r) = {x ∈ Rn : d(x,x0) 6 r} is
the sphere {x ∈ Rn : d(x,x0) = r}. The interior of B(x0, r) is the open ball in
Example 7–E.

Example 7–G. The boundary of a halfspace (open or closed) is the hyperplane determining
that halfspace.

Example 7–H. If H is a k–dimensional flat in Rn, with 0 6 k6 n − 1, then the boundary
of H is H itself. (Try, for instance, the case of a line in R2.)

A useful criterion for closed sets is the following:

Theorem 6 Let S ⊆ Rn. Then S is closed if and only if every boundary point of S belongs
to S.

Proof. First, suppose S is closed. We should like to prove that S contains all its boundary
points. If x is a boundary point of S, then every ball centered at x contains points of S.
Since S c is open, this means x /∈ S c. Hence x ∈ S.

Conversely, suppose S contains all its boundary points. Thus if x ∈ S c, then x is not a
boundary point of S, hence there is a ball B centered at x that is either completely contained
in S or completely contained in S c. But B is not contained in S since x ∈ B and x ∈ S c.
Hence B is contained in S c. Thus we have shown that for each x ∈ S c there is a ball
centered at x completely contained in S c; hence S c is open, so S is closed. This completes
the proof.

A set S ⊆ Rn is said to be bounded if and only if it is contained in some ball.

Theorem 7 Suppose S ⊆ Rn is closed and bounded. Suppose f = f(x) is a continuous real
valued function defined on S. Then f attains a maximum value on S. That is, there exists
x0 ∈ S such that f(x0) > f(x) for all x ∈ S.

Similarly, f attains a minimum value on S.

Remark. It is useful to keep in mind that the preceding theorem is a generalization of
the theorem in calculus asserting that a continuous real valued function defined on a closed
interval I ⊆ R attains both a maximum and a minimum value on I.
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K

H

Figure 11: A supporting hyperplane H “touching” a convex set K.

8 Supporting Hyperplanes

Let K be a closed and bounded convex set in Rn. Then a hyperplane H is called a supporting
hyperplane of K if and only if

(i) K is contained in one of the halfspaces of H, and

(ii) K ∩H 6= ∅.

In other words, H is a hyperplane “touching” K, with K lying to one side of H (Fig-
ure 11). Let K be a closed and bounded convex set in Rn, and let H be a supporting
hyperplane of K. Then H ∩ K is called a face of K. Note that a face of K, being the
intersection of convex sets, is again a convex set.

Example 8–A. Any face of a closed ball is a single point.

Example 8–B. The faces of a convex polytope are convex polytopes of lower dimension
(Exercise 8–1). The 0–dimensional faces are called vertices (singular is vertex), the 1–
dimensional faces edges, and the (n−1)–dimensional faces are called facets. The (n−2)–
dimensional faces of an n–dimensional polytope are often referred to as subfacets. For
example,

Number of
vertices edges facets

3-dimensional cube 8 12 6
3-dimensional crosspolytope 6 12 8

Theorem 8 Let K be a closed and bounded convex set in Rn. Let u be given, with ‖u‖ = 1.
Then K has a supporting hyperplane H with equation 〈x, u〉 = p, with K ⊆ H− (Figure 12).
(In other words, K has a supporting hyperplane orthogonal to u, and with u as “outward
pointing” unit normal.)

Proof. The function f(x) = 〈x, u〉, x ∈ K, is a continuous real valued function on the
closed and bounded set K. Hence f attains a maximum value at some point x0 ∈ K. Then
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H

Figure 12: K has a supporting hyperplane orthogonal to u.

f(x0) > f(x) for all x ∈ K; i.e. 〈x0, u〉> 〈x, u〉, for all x ∈ K. Now let H be the hyperplane
with equation 〈x0, u〉 = 〈x, u〉. That is,

H = {x ∈ Rn : 〈x− x0, u〉 = 0}.

Then observe that
(i) K ⊆ H−, since 〈x− x0, u〉6 0 for all x ∈ K, and
(ii) K ∩H 6= ∅, since x0 ∈ K ∩H.

Thus H is the required supporting hyperplane.

Example 8–C. In R3 let K be the crosspolytope, as defined in Exercise 5–5. Then K is
a closed and bounded convex set. Let u = ( 1√

3
, 1√

3
, 1√

3
). The plane H with equation

〈x, u〉 = 1√
3
, that is with equation

x+ y + z = 1,

is a supporting plane of K with “outward normal” u. Note that H ∩K is the triangle
with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), a triangular facet of K.

Remark. Let P be an n–dimensional convex polytope. Let fk(P ) denote the number of
k–dimensional faces of P , for k = 0, 1, 2, . . . , n − 1. In particular, f0(P ) is the number
of vertices, f1(P ) is the number of edges, and fn−1(P ) is the number of facets of P . An
important relationship exists among these numbers, namely,

Euler’s Formula for Polyhedra:

n−1∑
k=0

(−1)kfk(P ) = 1 + (−1)n−1. (3)

For example, in R3, for any 3–dimensional polytope we have

f0(P )− f1(P ) + f2(P ) = 2.

We do not prove this result in these notes, but Exercises 8–12 and 8–13 provide a proof in
case n = 3.
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8.1 Exercises

8–1 Let P be a convex polytope. Prove that
(a) each face of P is a convex polytope, and
(b) P has only finitely many faces [Hint: Exercise 6–8!]

8–2 Let C4 be the 4–dimensional crosspolytope (Exercise 5–5).
(a) How many vertices does C4 have?
(b) Each facet of C4 is a 3–dimensional polytope. Describe what type of 3-polytope
each facet is. How many facets are there?

8–3 Is it true that every closed and bounded convex set K in Rn has at least one 0–
dimensional face? [Hint: Consider a point of K for which ‖x‖ is maximized for x ∈ K.]

8–4 Give an example of a closed and bounded convex set in R3 which has exactly one
1–dimensional face.

8–5 Let A ⊆ R4 be the set of 16 points of the form (x1, x2, x3, x4), where each xi is either
±1, together with the 8 points of the form (±2, 0, 0, 0), (0, ±2, 0, 0), (0, 0, ±2, 0),
(0, 0, 0, ±2). Then A is a set of 24 points in R4, and P=conv(A) is a certain convex
polytope in R4.
(a) Explain why P is centrally symmetric with center at 0.
(b) The hyperplane H with equation x1 + x2 = 2 contains the six points (2, 0, 0, 0),
(0, 2, 0, 0), (1, 1, 1, 1), (1, 1, −1, 1), (1, 1, 1, −1), (1, 1, −1, −1), and no other points
of A. Why is H ∩ P the convex hull of these six points?
(c) Let a1 = (2, 0, 0, 0), b1 = (0, 2, 0, 0), a2 = (1, 1, 1, 1), b2 = (1, 1, −1, −1),
a3 = (1, 1, −1, 1), b3 = (1, 1, 1, −1). Check that the three line segments formed by
joining ai to bi, i = 1, 2, 3, are of equal length, mutually orthogonal, and bisect each
other. In other words they form a “3-dimensional cross”. What do you conclude about
the convex hull of the six points? H ∩ P is a facet of P of what type?
(d) Any of the 24 hyperplanes with equation of the form ±xi ± xj = 2, where 1 6 i <
j 6 4, contains exactly six points of A and intersects P in a facet congruent to that
in part (c). Check this in a couple of cases. (This is the famous “24–cell”, a regular
polytope in R4 having 24 facets, where each facet is a regular octahedron. See Coxeter
(1948) for a discussion of the 24–cell and other interesting regular polytopes. A picture
of a projection of the 24–cell into 3–dimensional space can be found in Hilbert & Cohn-
Vossen (1952, p. 152).)

8–6 If P is the 24–cell in Exercise 8–5, show that f0(P ) = f3(P ) = 24 (page 28) and
f1(P ) = f2(P ) = 96. Also show that eight edges meet at each vertex, three triangles
meet at each edge, and two facets meet at each 2–face.

8–7 Using Exercise 8–6, check that Euler’s formula (3) holds for the 24–cell.
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8–8 Show that

fk(I
n) = 2n−k

(
n

k

)
,

where In is the n–cube (Exercise 5–4), and(
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient “n choose k.”

[Hint: Since In = In−1 × I, where I = [−1, 1], we see that if Fk−1 is a (k − 1)–
dimensional face of In−1, then Fk−1 × I is a k–dimensional face of In. Thus fk(I

n) =
2fk(I

n−1) + fk−1(I
n−1). Use this to argue by induction. Recall that(

n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.]

8–9 Check that Euler’s formula holds for the n–cube In (Exercise 5–4). [Hint: By the
Binomial Theorem,

(2− 1)n = 2n −
(
n

1

)
2n−1 +

(
n

2

)
2n−2 − · · ·+ (−1)n.]

8–10 An n–dimensional simplex S has n + 1 vertices. Each k–face of S is a k–dimensional
simplex, and every k + 1 vertices of S determine one of its k–faces, k = 0, 1, . . . , n.
Check that S satisfies Euler’s formula. [Hint: By the Binomial Theorem,

(1− 1)n+1 =

(
n+ 1

0

)
−
(
n+ 1

1

)
+

(
n+ 1

2

)
− · · ·+ (−1)n+1.]

8–11 The n–dimensional crosspolytope Cn was defined in Exercise 5–5 (see also Theorem 5,
page 21).
(a) Show that

fk(Cn) = 2k+1

(
n

k + 1

)
, k = 0, 1, . . . , n− 1.

(b)Verify Euler’s formula for Cn.

[Hint: Cn is the convex hull of±e1, . . . ,±en, where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . ., en = (0, 0, . . . , 0, 1). Note that the convex hull of ±e1, . . . ,±en−1 is a copy of Cn−1

lying in the subspace xn = 0, and

Cn = conv(−en, en, Cn−1).

If F is a (k − 1)–dimensional face of Cn−1, then conv(en, F ) and conv(−en, F ) are
k–faces of Cn. Thus

fk(Cn) = 2fk−1(Cn−1) + fk(Cn−1).
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this gives us a basis for induction, by showing that

fk(Cn) = 2k+1

(
n

k + 1

)
, k = 0, 1, . . . , n− 1, follows from

fk(Cn−1) = 2k+1

(
n− 1

k + 1

)
, k = 0, 1, . . . , n− 2.]

8–12 Let S2 = ∂B(0, 1) be the unit sphere in R3. That is

S2 = {u ∈ R3 : ‖u‖ = 1}.

A hemisphere of S2 is the intersection of S2 with a closed halfspace of R3 whose
bounding plane passes through 0. That is, for some u with ‖u‖ = 1,

H = {x ∈ S2 : 〈x,u〉6 1}.

In this case we call u the pole of H.

If H1, H2, . . . , Hn are distinct hemispheres of S2 such that no three of their poles lie on
the same great circle, then

P = H1 ∩H2 ∩ · · · ∩Hn

is a spherical convex polygon. P is bounded by n sides, each being the shorter arc of a
great circle. For example, a spherical triangle T has the form T = H1 ∩H2 ∩H3 for
distinct hemispheres H1, H2, H3 not having their poles on the same great circle. T is
bounded by three arcs of great circles.

(a) Suppose H1 and H2 are distinct hemispheres. Define real valued functions gi :
S2 → R, i = 1, 2, by

gi(x) =

{
1 x ∈ Hi

0 x /∈ Hi
for x ∈ S2.

Let L be the lune L = H1 ∩H2, and let α be the angle of the lune, that is, the angle
of intersection of the two semicircles bounding L (note that cosα = −〈u1,u2〉, where
u1,u2 are the poles of H1, H2, respectively).

For a region M ⊂ S2 and g : S2 → R, we let
∫ ∫

M g du denote the integral of g over
M with respect to surface area on S2. Show that∫ ∫

S2
gi du =

∫ ∫
S2

(1− gi) du = 2π, i = 1, 2,

and also that ∫ ∫
S2
g1g2 du =

∫ ∫
S2

(1− g1)(1− g2) du =
∫ ∫

L
du = 2α.
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(b) Given a spherical triangle T = H1 ∩ H2 ∩ H3 and corresponding functions gi,
i = 1, 2, 3, defined as in part (a), show that∫ ∫

T
du =

∫ ∫
S2
g1g2g3 du =

∫ ∫
S2

(1− g1)(1− g2)(1− g3) du.

[Hint: gi(x) + gi(−x) = 1 if x ∈ S2 and x does not belong to any of the three great
circles bounding H1, H2, H3.]

(c) From part (b) deduce that if T is a spherical triangle with angles α, β, γ and area
A, then

A = α + β + γ − π.
Remark. By the angle at the vertex of a spherical polygon, we mean the measure of
the angle formed by the arcs of the great circles for the sides meeting at that vertex as
in the case of a lune in part (a).

[Hint:
∫ ∫

S2 g1 du = 2π,
∫ ∫

S2 g1g2 du = 2α,
∫ ∫

S2 g1g2g3 du = A.]

(d) Let P be a spherical convex polygon on S2 with n sides and vertex angles α1, α2, . . . , αn.
Show that the area of P is

A(P ) = (
n∑
i=1

αi)− (n− 2)π.

[Hint: You may assume that P can be partitioned into n− 2 spherical triangles having
their vertices among the vertices of P .]

8–13 Suppose P is a convex polytope in R3 with 0 interior to P . By the central projection
of ∂P onto S2 = ∂B(0, 1) we mean the mapping of ∂P onto S2 that sends each x ∈ ∂P
to a point y ∈ S2, where the ray through x emanating from 0 intersects S2 at y.

(a) Explain why the image of any edge of P under this mapping is an arc of a great
circle having length less than π.

(b) Explain why the image of any facet of P under this mapping is a convex spherical
polygon (Exercise 8–12) contained in a hemisphere of S2.

(c) The image of ∂P under central projection induces a network of great circle arcs
on S2 partitioning S2 into spherical polygons. The great circle arcs (which are images
of edges of P ) we shall call edges of the network. The points where the edges of the
network meet (which are images of vertices of P ) we shall call vertices of the network.
The spherical polygons of the network (which are images of the facets of P ) we shall
call the faces of the network. If P has v vertices, e edges, and f facets, then this
network clearly has v vertices, e edges, and f faces.

Let pk be the number of spherical k–gons in the network, k = 3, 4, . . .. Then f =
p3 + p4 + p5 + · · ·. Show that

2e = 3p3 + 4p4 + 5p5 + · · · .
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[Hint: If we try to count the total number of edges by counting the edges of each face,
each edge gets counted twice.]

Also show that
p3 + 2p4 + 3p5 + 4p6 + · · · = 2(e− f).

(d) Let Σ be the sum of the angles of all the faces of the network on S2 produced by
the central projection of the polytope P . Show that

Σ = 2πv,

and also (using Exercise 8–12 (d)) that

Σ− π(p3 + 2p4 + 3p5 + 4p6 + · · ·) = 4π.

From this, and part (c) obtain Euler’s formula for P :

v − e+ f = 2.

8–14 Prove that every 3–dimensional convex polytope has at least one facet that is either a
triangle, a quadrilateral, or a pentagon.

[Hint: Using the notation and results of the previous exercise, suppose p3 = p4 = p5 =
0, and show then that

2e = 6p6 + 7p7 + · · · > 6f.

Also, since at least three edges meet at each vertex, deduce that

2e> 3v.

From this deduce that 3e> 3(v + f) and obtain a contradiction to Euler’s formula.]

8–15 In the hint for the previous exercise it was noted that for all 3–dimensional polytopes
we must have

3v6 2e.

Show that we must also have
3v> e+ 6.

[Hint: Explain why 3f 6 2e. Then, if 3v < e+ 6, we have

v − e+ f <
1

3
e+ 2− e+

2

3
e = 2.]

8–16 A tetrahedron (3–dimensional simplex) has 6 edges, and a square based pyramid has
8 edges.

(a) Show that there is no 3–dimensional convex polytope with 7 edges [Hint: From the
previous exercise we have

e+ 6 6 3v6 2e.]

(b) Show that for each integer n> 8 there exists at least one 3–dimensional polytope
with n edges.
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9 The Support Function

9.1 Definition

Let K be a closed and bounded convex set in Rn. The support function of K is a certain
real valued function associated with K, defined for all x ∈ Rn. The definition is:

h(K,x)
def
= max

k∈K
〈k, x〉, x ∈ Rn.

First note that the maximum value of 〈k, x〉, for k ∈ K, is attained at some point
k0 ∈ K, since 〈k, x〉 is a continuous function of k and K is closed and bounded.

The support function h(K,u) of K has an important geometrical interpretation when
‖u‖ = 1. Suppose k0 ∈ K is a point of K maximizing 〈k, u〉 for k ∈ K, so

h(K,u) = max
k∈K
〈k, u〉 = 〈k0, u〉.

Let H be the hyperplane with equation

〈x, u〉 = h(K,u) = 〈k0, u〉.

Then H is the supporting hyperplane of K with outward unit normal u, since

(i) K ⊆ H− (since x ∈ K implies 〈x, u〉6 〈k0, u〉 implies x ∈ H−)

(ii) K ∩H 6= ∅ (since k0 ∈ K ∩H).

But with the equation of H given in the “normal form” 〈x, u〉 = h(K,u) = 〈k0, u〉, we
know that h(K,u) is the (signed) distance from 0 to H. Thus we have

If ‖u‖ = 1, then h(K,u) is the (signed)
distance from 0 to the supporting hyper-
plane of K with outward normal u.

The picture to keep in mind is Figure 13.

Example 9–A. If K = {a}, then

h(K,x) = max
k∈K
〈k, x〉 = 〈a, x〉 = a1x1 + · · ·+ anxn.

Thus h(K,x) is a certain linear function in this case.

Example 9–B. If K = B(0, r), then h(K,x) = r‖x‖ = r(x2
1 + · · ·+ x2

n)
1
2 . To see this, note

that by the Cauchy-Schwarz inequality

〈k,x〉6 ‖k‖‖x‖6 r‖x‖, if ‖k‖6 r.
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Figure 13: The supporting hyperplane H has equation 〈x,u〉 = d, where d = h(K,u).

But if k = rx
‖x‖ ∈ B(0, r) we have

〈k,x〉 = 〈 r

‖x‖
x,x〉 =

r

‖x‖
〈x,x〉 = r‖x‖.

Thus
h(K,x) = max

k∈K
〈k,x〉 = r‖x‖.

Example 9–C. Suppose K is a line segment with endpoints a and −a (line segment bisected
by the origin). Then

k ∈ K if and only if k = (1− λ)a + λ(−a) = (1− 2λ)a, 0 6 λ6 1.

For fixed x ∈ Rn

〈k,x〉 = 〈(1− 2λ)a,x〉 = (1− 2λ)〈a,x〉.

But note that

if 〈a,x〉> 0, then max
0 6 λ6 1

(1− 2λ)〈a,x〉 = 〈a,x〉, and

if 〈a,x〉6 0, then max
0 6 λ6 1

(1− 2λ)〈a,x〉 = −〈a,x〉.

Thus
h(K,x) = max

k∈K
〈k,x〉 = |〈a,x〉| = |a1x1 + · · ·+ anxn|.

Important properties of h(K,x):

(i) h(K,0) = 0,
(ii) h(K,λx) = λh(K,x), if λ > 0,
(iii) h(K,x + y) 6 h(K,x) + h(K,y).

Proof of (ii). If λ > 0, then
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K2
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d d1 2+

u

Figure 14: The support function of K1 +K2 in direction u is d1 + d2, Theorem 9.

h(K,λx) = max
k∈K
〈k, λx〉 = max

k∈K
λ〈k,x〉 = λmax

k∈K
〈k,x〉 = λh(K,x).

Proof of (iii).

h(K,x + y) = maxk∈K〈k,x + y〉 = maxk∈K(〈k,x〉+ 〈k,y〉)
6 maxk∈K〈k,x〉+ maxk∈K〈k,y〉 = h(K,x) + h(K,y).

It is a useful and illuminating exercise to check directly that the support functions in
examples A - C, above, and in the applications to ellipsoids (Section 9.3 below) satisfy these
properties.

Theorem 9 Let K1 and K2 be closed and bounded convex sets in Rn. Then

h(K1 +K2,x) = h(K1,x) + h(K2,x).

Proof.

h(K1 +K2,x) = max
k∈K1+K2

〈k,x〉

= max
k1∈K1,k2∈K2

〈k1 + k2,x〉

= max
k1∈K1,k2∈K2

(〈k1,x〉+ 〈k2,x〉)

= max
k1∈K1

〈k1,x〉+ max
k2∈K2

〈k2,x〉

= h(K1,x) + h(K2,x).

See Figure 14 for a geometric interpretation.
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w K( , )u

Figure 15: The width of a convex set.

9.2 The Width Function

Let ‖u‖ = 1. The width of K in direction u is

w(K,u)
def
= h(K,u) + h(K,−u).

The function w(K,u), ‖u‖ = 1, is the width function of K. w(K,u) is simply the distance
between the supporting hyperplanes of K orthogonal to the direction u (Figure 15).

Theorem 10 If ‖u‖ = 1, then h(K + (−K),u) = w(K,u).

In other words, the support function of K + (−K), restricted to the unit sphere, is the
width function of K.

Proof.

h(K + (−K),u) = h(K,u) + h(−K,u) = h(K,u) + h(K,−u) = w(K,u)

We say that K is a set of constant width if and only if w(K,u) = constant.

Theorem 11 K has constant width if and only if K + (−K) is a ball.

Proof. It will later be shown in Exercise 10–6(d), that for closed and bounded convex sets
in Rn, we have K1 = K2 if and only if h(K1,u) = h(K2,u) for all u with ‖u‖ = 1. If
B = B(0, 1), this implies K + (−K) = rB if and only if

h(K + (−K),u) = h(rB,u) = r for all u with ‖u‖ = 1.

That is, K + (−K) is a ball of radius r if and only if w(K,u) = r for all u with ‖u‖ = 1.

Example 9–D. Of course, a ball of radius r in Rn is a set of constant width 2r. An example
of a set of constant width that is not a ball follows (Figure 16). In R2, consider an
equilateral triangle of side b and vertices x1, x2, x3. Let K be the intersection of the
three circular disks of radius b centered at x1, x2, x3 respectively. It is a good exercise
for the reader to verify that K is a plane convex set of constant width b. This particular
set is known as the Reuleaux Triangle.
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Figure 16: A Reuleaux triangle circumscribed about an equilateral triangle.

Remark. An important result which we do not prove here, is that every bounded set
A ⊂ Rn is a subset of a convex body K of constant width having the same diameter as
A. This is proved in Eggleston (1969, Theorem 54). The result is of great convenience in
establishing results about universal covers, which we consider in § 13.1.

9.3 Ellipsoids and Superellipsoids

Example 9–E. Let E by the n–dimensional ellipsoid (Exercise 5–6),

E = {x ∈ Rn :
n∑
i=1

x2
i

a2
i

6 1}.

If y ∈ E, then
∑n
i=1

y2i
a2

i
6 1 and (applying the Cauchy-Schwarz inequality),

〈y,x〉 =
∑

yixi =
∑

(
yi
ai

)(aixi) 6 (
∑ y2

i

a2
i

)
1
2 (
∑

a2
ix

2
i )

1
2 6 (

∑
a2
ix

2
i )

1
2 .

But if we choose yi =
a2

i xi

(
∑

a2
i x

2
i )

1
2

, i = 1, . . . , n, if x 6= 0, then y ∈ E (check this) and

〈y,x〉 = (
∑
a2
ix

2
i )

1
2 (check this too). Thus

h(E,x) = max
y∈E
〈y,x〉 = (a2

1x
2
1 + · · ·+ a2

nx
2
n)

1
2 .

This example has interesting geometrical implications. Consider the case n = 2, with

E = {(x, y) ∈ R2 :
x2

a2
+
y2

b2
6 1}.

With x = u = (cos θ, sin θ) we have

h(E,u) = (a2 cos2 θ + b2 sin2 θ)
1
2 .

But h(E,u) is the distance from (0, 0) to the tangent line orthogonal to (cos θ, sin θ),
since ‖u‖ = 1 (Figure 17). The boundary of E is the ellipse with equation

x2

a2
+
y2

b2
= 1.
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d

!
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a

Figure 17: The ellipse in Example 9–E where d = (a2 cos2 θ + b2 sin2 θ)
1
2 .

See Exercise 9–2 for an interesting consequence of this form of the support function of
an ellipse.

Example 9–F. Now we investigate Piet Hein’s Superellipsoids, see Gardner (1975, Chap.
18). Let p > 1, a1 > a2 > · · · > an > 0 and let

K = {x ∈ Rn :
|x1|p

ap1
+ · · ·+ |xn|

p

apn
6 1}.

Then K is a closed and bounded convex set (Exercise 9–3). K is said to be a superellipse
when n = 2, and for n > 2 a superellipsoid. Using Hölder’s inequality,

y ∈ K ⇒
∑ |yi|p

api
6 1⇒

〈y,x〉 =
∑

(
yi
ai

)(aixi) 6 (
∑ |yi|p

api
)

1
p (
∑

aqi |xi|q)
1
q 6 (

∑
aqi |xi|q)

1
q ,

where 1
p

+ 1
q

= 1, i.e. q = p
p−1

. Let

εi =

{
+1 if xi > 0
−1 if xi < 0

and define, for x 6= 0,

yi =
εia

q
i |xi|

q
p

(
∑
aqi |xi|q)

1
p

, i = 1, . . . , n.

Then y ∈ K (check this) and 〈y,x〉 = (
∑
aqi |xi|q)

1
q (check this too). Hence

h(K,x) = max
y∈K
〈y,x〉 = (

∑
aqi |xi|q)

1
q .

Remarks on Example 9–F.
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a

Figure 18: The superellipse in Example 9–F where d = (aq| cos θ|q + bq| sin θ|q)
1
q .

(i) p = 2 gives the case of the ellipsoid.

(ii) As p → 1, note that K → crosspolytope. We would therefore expect that
h(K,x) → the support function of the crosspolytope. But q → ∞ as p → 1.
Thus we need to know the value of

lim
q→∞

(
∑

aqi |xi|q)
1
q .

(iii) On the other hand, as p → ∞, then K → some convex set C. What is C?
Since q → 1 as p→∞, we expect that

h(C,x) =
∑

ai|xi|.

Make some sketches and conjectures!

(iv) Another special case to note is where a2 = a3 = · · · an = 0. Then K is just
the line segment joining (−a1, 0, . . . , 0) to (a1, 0, . . . , 0), and we obtain

h(K,x) = a1|x1|

in this case. But this is to be expected, in view of Example C!

(v) In case n = 2, with p > 1, and a > b > 0, let

K = {(x, y) ∈ R2 :
|x|p

ap
+
|y|p

bp
6 1}.

With x = u = (cos θ, sin θ) we have then

h(K,u) = (aq| cos θ|q + bq| sin θ|q)
1
q , where q =

p

p− 1
.
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!

2d

d

Figure 19: The “parabolic lens” for d =
√

2/2 (Exercise 9–1).

9.4 Exercises

9–1 Let K ⊆ R2 be defined by

K = {(x, y) ∈ R2 : |y|6 1√
2

(1− x2

2
)}.

(a) Verify that K is a “parabolic lens” as indicated in Figure 19.
(b) Check that for 45◦6 θ6 135◦ the normal form for the tangent line to the upper
parabolic arc is

x cos θ + y sin θ =
1√

2 sin θ
.

(c) Show that if u = (cos θ, sin θ) then

h(K,u) =


1√

2| sin θ| 45◦6 θ6 135◦ or − 135◦6 θ6 − 45◦,

√
2| cos θ| −45◦6 θ6 45◦ or 135◦6 θ6 225◦.

Describe h(K,x) for any x = (x, y).
(d) Show that the circumscribed rectangles of K all have the same area.
(e) Give other examples of closed and bounded convex sets in R2 with the property
that all the circumscribed rectangles have the same area.

9–2 (a) Using the expression for the support function of the ellipse (in R2) in Example 9–E,
page 38, show that all the circumscribed rectangles of an ellipse have their vertices on
a fixed circle (the “director circle” of the ellipse).
(b) Can you find a generalization of part (a)?
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Figure 20: D = diam(K) (Exercise 9–8).

9–3 Let K ⊆ Rn be given by

K = {x ∈ Rn :
|x1|p

ap1
+ · · ·+ |xn|

p

apn
6 1}, where p> 1, ai > 0, i = 1, . . . n.

Prove that K is a convex set. [Hint: Use Minkowski’s inequality.]

9–4 Check the details mentioned in Example 9–F, page 39.

9–5 In R2 let σ1 be the line segment joining (−a, 0) to (a, 0), and σ2 the line segment from
(0,−b) to (0, b).
(a) Describe σ1 + σ2.
(b) Letting x = (x, y), express h(σ1,x) and h(σ2,x) as functions of x and y (Example
9–C, page 35).
(e) Give the support function of σ1 + σ2 as a function x and y.

9–6 In R3 let σi be the line segment joining −ei to ei, i = 1, 2, 3, where e1 = (1, 0, 0), etc.
(a) Check that C = σ1 + σ2 + σ3 is the cube with vertices at the 8 points of the form
(±1,±1,±1).
(b) Find h(C,x).

9–7 This exercise, in a series of steps, will establish the continuity of the support function.
This is an important property which we will need later.
Let K be a closed and bounded convex set in Rn, and choose M such that ‖k‖ < M
for all k ∈ K.
(a) Show that |h(K,x)| < M‖x‖ for all x ∈ Rn. [Hint: By definition, h(K,x) =
max{〈k,x〉 : k ∈ K}. The Cauchy-Schwarz inequality gives |〈k,x〉|6 ‖k‖‖x‖.]
(b) Show that

|h(K,x1)− h(K,x2)|6M‖x1 − x2‖ for all x1 and x2 ∈ Rn.
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[Hint: From property (iii) on page 35 we obtain

h(K,x + y)− h(K,x) 6 h(K,y), so

h(K,x1)− h(K,x2) 6 h(K,x1 − x2)

6 M ||x1 − x2‖.]

(c) Recall that a function f(x) is continuous at x0 if for each ε > 0 there exists δ > 0
such that

|f(x)− f(x0)| < ε for all x satisfying ‖x− x0‖ < δ.

Use part (b) to show that h(K,x), as a function of x, is continuous at each point
x0 ∈ Rn. [Hint: From part (b), |h(K,x)− h(K,x0)|6M‖x− x0‖. Given ε > 0, what
choice of δ > 0 will do the trick?]
Remark. (i) h(K,x) is not only continuous, but in fact uniformly continuous (that
is, our choice of δ > 0 can be chosen independent of x0.
(ii) Part (b) shows that h satisfies a so-called Lipschitz condition.

9–8 If A is a closed and bounded subset of Rn, then the diameter of A, denoted by diam(A),
is the maximum distance between any pair of points of A. That is

diam(A)
def
= max

x,y∈A
d(x,y).

Suppose now that K is a closed and bounded convex set and suppose x1, x2 are a pair
of points of K at a maximum distance apart, so diam(K) = d(x1,x2) (Figure 20).
(a) Prove that the hyperplane Hi orthogonal to x2−x1 and containing xi is a supporting
hyperplane of K, i = 1, 2.
(b) Prove that K ∩Hi = {xi}, i = 1, 2.
(c) Conclude that if K is a closed and bounded convex set in Rn and K contains more
than one point, then K has at least two 0–dimensional faces.

9–9 Let K be a closed and bounded convex set in Rn and let D = diam(K).
(a) Suppose H1 and H2 are parallel supporting hyperplanes of K which are distance D
apart; in other words, suppose they are supporting hyperplanes orthogonal to direction
u, ‖u‖ = 1, and w(K,u) = D. Prove then that K ∩ Hi = {xi}, i = 1, 2, with
d(x1,x2) = D and x1 − x2 orthogonal to H1 and H2.
(b) Prove that

diam(K) = max
‖u‖=1

w(K,u).

9–10 Let T be a triangle in R2.
(a) Show that max‖u‖=1w(T,u) is the length of the longest side of T . [Hint: See
Exercise 9–9.]
(b) Show that min‖u‖=1w(T,u) is the length of the shortest altitude of T .
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9–11 Suppose K is a set of constant width in Rn. Prove that for each pair H1, H2 of parallel
supporting hyperplanes of K
(a) K ∩Hi = {xi}, i = 1, 2, and
(b) the line segment joining x1 to x2 is orthogonal to H1 and H2.

9–12 Suppose K1 and K2 are sets of constant width in Rn. Prove that K1 + K2 is a set of
constant width.

9–13 Suppose A is a closed and bounded subset of Rn. Prove

diam(conv(A)) = diam(A).

9–14 Show that a fishing pole 1 mile long can be placed inside an n–dimensional cubical box
with edges 1 inch long (without bending the pole), if n is sufficiently large.

9–15 Show that an elephant can be packed inside a cubical n–dimensional box with edges 1
inch long (without killing the elephant) if n is sufficiently large.

[Hint: The 4k–dimensional cube I4k has among its vertices the points x1, x2, x3, x4,
where x1 has its first k coordinates equal to −1 and the rest 1, x2 has the next k
coordinates −1 and all others 1, and so forth.]

10 Distance from a Point to a Set

Let K be a closed and bounded convex set in Rn. For each x0 ∈ Rn we define “the distance
from x0 to K” by

d(x0, K)
def
= min

x∈K
d(x0,x).

Using the fact that K is closed and bounded, and d(x0,x) is continuous as a function of
x, it can be shown that there indeed is a point x1 ∈ K where the minimum is achieved, so

d(x0,x1) = d(x0, K),

and in fact (using the convexity of K), x1 is unique. This point x1 is called the nearest point
of K to x0.

Theorem 12 (Easier Supporting Theorem) Let K be a closed and bounded convex set
in Rn and x0 /∈ K. Let x1 be the nearest point of K to x0. Then the hyperplane H through
x1 orthogonal to x0 − x1 is a supporting hyperplane of K (in Figure 21, H has equation
〈x− x1,x0 − x1〉 = 0).

Proof. The idea is that if there were a point x of K on the same side of H as x0, then some
point of the segment x1x (which is contained in K) would be closer to x0 than x1 is.
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Figure 21: The Easier Supporting Theorem, Theorem 12.

In detail, since we know x1 ∈ H it only remains to prove K ⊂ H− (when we write the
equation of H in the form 〈x− x1,x0 − x1〉 = 0). If x ∈ K and x /∈ H−, then we have

〈x− x1,x0 − x1〉 = α > 0.

The distance squared from a point (1− λ)x1 + λx, on the segment x1x, to x0 is

‖(1− λ)x1 + λx− x0‖2 = ‖x1 − x0 + λ(x− x1)‖2

= ‖x1 − x0‖2 − 2λ〈x− x1,x0 − x1〉+ λ2‖x− x1‖2

= ‖x1 − x0‖2 − 2λα + λ2‖x− x1‖2.

But if 0 < λ < 2α
‖x1−x0‖2 , then the r.h.s. is less than ‖x1 − x0‖2, giving a point of K closer

than x1 to x0. This contradiction shows that 〈x− x1,x0 − x1〉6 0, so K ⊂ H−.

Theorem 13 (Harder Supporting Theorem) Let K be a closed and bounded convex set
in Rn and b a boundary point of K. Then there exists at least one supporting hyperplane of
K containing b.

Proof. Let S be the sphere of radius 1 centered at b, that is

S = {x ∈ Rn : d(x,b) = 1}.

Let s0 ∈ S be a point of S “farthest” from K, in the sense that

d(s0, K) = max
s∈S

d(s, K).

We now show that
d(s0, K) = d(s0,b) = 1.

To see this, let ε > 0 and choose x1 /∈ K with d(x1,b) < ε. Let H be a hyperplane through
x1 with K ⊂ H− (H exists, using the previous theorem). Let H have equation

〈x− x1,u〉 = 0, ‖u‖ = 1.
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Figure 22: H “separates” K1 and K2.

Then x ∈ K implies:

d(b + u,x) = ‖b + u− x‖
> 〈b + u− x,u〉, by the Cauchy-Schwarz Inequality
= 〈b,u〉+ 〈u,u〉 − 〈x,u〉
> 〈b,u〉+ 〈u,u〉 − 〈x1,u〉, since K ⊂ H−

= 〈b− x1,u〉+ 1
> 1− ε, since |〈b− x1,u〉|6 ‖b− x1‖ < ε.

Thus d(b + u, K) > 1− ε. Since b + u ∈ S, this means that maxs∈S d(s, K) > 1− ε. Hence

d(s0, K) > 1− ε.

But since this is true for any ε > 0, we have d(s0, K) > 1. But note that also d(s0, K) 6 1,
since d(s0,b) = 1. Thus

d(s0, K) = d(s0,b) = 1,

as we wanted to show. Thus b is the nearest point of K to s0; hence the hyperplane through
b orthogonal to s0 − b is a supporting hyperplane through b.

Theorem 14 (Separation Theorem) Let K1 and K2 be a closed and bounded convex sets
in Rn with K1 ∩K2 = ∅. Then there exists a hyperplane H with K1 ⊂ H+ and K2 ⊂ H−.
H “separates” K1 and K2 (Figure 22).

Proof. Let x1 ∈ K1, x2 ∈ K2 with

d(x1,x2) = min
ki∈Ki, i=1,2

d(k1,k2).

Then note that any hyperplane orthogonal to the line segment connecting x1 and x2, and
intersecting this segment, is a separating hyperplane.

Remark. It is worth noting that the “Easier Supporting Theorem” is essentially a special
case of the above “Separation Theorem”.

Theorem 15 If K is a closed and bounded convex set in Rn, then K is equal to the inter-
section of all its closed supporting halfspaces.



10 DISTANCE FROM A POINT TO A SET 47

Proof. Let M be the intersection of the supporting halfspaces of K.
If x ∈ K, then x belongs to each supporting halfspace of K; hence x ∈M . Thus K ⊆M .
If x /∈ K, then there exists a supporting halfspace of K not containing x (by the Easier

Supporting Theorem), hence x /∈M . Thus M ⊆ K.
Thus K = M .

Remark. This theorem is useful, since it enables one to show that a point x belongs to K
by showing that x belongs to every supporting halfspace of K.

10.1 Exercises

10–1 For a convex set K ⊂ Rn, we define the polar dual of K, denoted by K*, by

K* = {y ∈ Rn : 〈x,y〉6 1 for all x ∈ K}.

The following parts provide a proof that if K is a bounded convex set in Rn having
non-empty interior, with 0 in the interior of K, then K* is again a bounded convex
set with 0 in its interior.
(a) Let B = B(0, r). Show that B* = B(0, 1

r
).

(b) Prove that if K is a convex set in Rn, then so is K*. [Hint: If 〈x,y1〉6 1 and
〈x,y2〉6 1, show that

〈x, (1− λ)y1 + λy2〉6 1, for 0 6 λ6 1.]

(c) Prove that if K1 and K2 are convex sets in Rn with 0 ∈ K1 ⊆ K2, then 0 ∈ K2* ⊆
K1*. [Hint: Why is it true that if 〈y,x〉6 1 for all x ∈ K2, then 〈y,x〉6 1 for all
x ∈ K1?]
(d) If K is a bounded convex set in Rn having 0 in the interior of K, show that K* is
a bounded convex set having 0 as an interior point. [Hint: 0 is an interior point of K
if there is a ball B1 centered at 0 with B1 ⊂ K, and K is bounded if there is a ball B2

centered at 0 with K ⊂ B2. With B1 ⊂ K ⊂ B2 we must have B2* ⊂ K* ⊂ B1*.]

10–2 Suppose K is a closed and bounded convex set in Rn, and 0 is an interior point of K.
Let K** denote (K*)*. Show that K** = K.

[Hint: If x ∈ K, then each y ∈ K* satisfies 〈x,y〉6 1. Why does this imply x ∈ K**,
so K ⊆ K**? Showing K** ⊆ K requires more work. For this, assume x0 /∈ K and
show that x0 /∈ K**. As in Figure 21, if x0 /∈ K and x1 is the nearest point of K to x0,
there is a supporting hyperplane H of K through x1 with equation 〈x−x1,x0−x1〉 = 0.
Assuming 0 is an interior point of K, show that the equation of H can be put in the
form 〈x, a〉 = 1 for some a. Then we have 〈x, a〉6 1 for all x ∈ K (implying that
a ∈ K*), while 〈x0, a〉 > 1 (implying that x0 /∈ K**).]

10–3 Find all convex sets K ⊂ Rn with 0 ∈ K and K* = K. [Hint: Show that if K* = K,
then 〈x,x〉6 1 for all x ∈ K, so B(0, 1) ⊆ K.]
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10–4 Let p > 1 and a1 > a2 > · · · > an > 0. Let K be the superellipsoid in Rn given by

K = {x ∈ Rn :
|x1|p

ap1
+ · · ·+ |xn|

p

apn
6 1}.

Prove that if q is such that 1
p

+ 1
q

= 1, then

K* = {x ∈ Rn : aq1|x1|q + · · ·+ aqn|xn|q 6 1}.

[Hint: We want to find those y such that 〈x,y〉6 1 for all x ∈ K. If

n∑
i=1

aqi |yi|q 6 1 and
n∑
i=1

|xi|p

api
6 1,

then

〈x,y〉 =
n∑
i=1

(
xi
ai

)(aiyi) 6 (
n∑
i=1

|xi|p

api
)

1
p (

n∑
i=1

aqi |yi|q)
1
q 6 1,

showing that 〈x,y〉6 1 for all x ∈ K, if y satisfies
∑n
i=1 a

q
i |yi|q 6 1. On the other hand,

given y such that
∑n
i=1 a

q
i |yi|q > 1, to construct x ∈ K such that 〈x,y〉 =

∑n
i=1 a

q
i |yi|q >

1, examine the construction in Example 9–F.]

10–5 In Rn, let In be the n–dimensional cube in Exercise 5–4, and Cn the n–dimensional
crosspolytope in Exercise 5–5. Show that (In)* = Cn.

[Hint: To show that Cn ⊆ (In)*, suppose
∑n
i=1 |yi|6 1 and show that

∑n
i=1 xiyi 6 1 for

all x ∈ In. To show that (In)* ⊆ Cn, suppose that
∑n
i=1 |yi| > 1 (if y /∈ Cn) and find

some x ∈ In such that
∑n
i=1 xiyi =

∑n
i=1 |yi| > 1 (so y /∈ (In)*).]

10–6 (a) If K is a closed and bounded convex set in Rn and x0 /∈ K, let x1 be the nearest
point of K to x0. Then Theorem 12, page 44, tells us that the hyperplane, H, with
equation

〈x− x1,x0 − x1〉 = 0

is a supporting hyperplane of K through x1, and H separates x0 from K. Let u =
x0−x1

‖x0−x1‖ . Show that

〈x0,u〉 > h(K,u).

[Note that h(K,u) = 〈x1,u〉.]
(b) From part (a) deduce that if x ∈ Rn is such that 〈x,u〉6 h(K,u) for all u with
‖u‖ = 1, then x ∈ K.
(c) Use part (b) to show that if K1 and K2 are closed and bounded convex sets in Rn,
then

K1 ⊆ K2 if and only if h(K1,u) 6 h(K2,u) for all u with ‖u‖ = 1.

(d) From part (c) deduce that

K1 = K2 if and only if h(K1,u) = h(K2,u) for all u with ‖u‖ = 1.
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x

K

Figure 23: x is an extreme point of K which is not a 0–dimensional face.

11 Extreme Points

Let K be a closed and bounded convex set in Rn. A point x ∈ K is an extreme point of K if
and only if x is not “between” two points of K, i.e. there do not exist x1, x2 ∈ K, x1 6= x2

with
x = (1− λ)x1 + λx2, with 0 < λ < 1.

Lemma 1 Any 0–dimensional face of K is an extreme point.

Proof. Suppose x is a 0–dimensional face of K, so {x} = H ∩ K for some supporting
hyperplane H of K, with K ⊂ H−. If x = (1 − λ)x1 + λx2, with x1, x2 ∈ K, x1 6= x2 and
0 < λ < 1, then by Exercise 6–8 (since x1, x2 ∈ H−) we must in fact have x1, x2 ∈ H . But
that contradicts H ∩K = {x}.

However, the converse of the preceding is not true (Figure 23).

Lemma 2 Suppose F is a face of K and x ∈ F . Then x is an extreme point of F if and
only if x is an extreme point of K.

Proof. See Exercise 11–1.

Examination of some examples makes plausible the following theorem of Minkowski,
extended later to infinite dimensional spaces by Krein and Milman.

Theorem 16 (Krein-Milman Theorem in Rn) Let K be a closed and bounded convex
set in Rn, and let E be the set of extreme points of K. Then

K = conv(E).

Proof. Since E ⊆ K, it is clear, by Theorem 4, that conv(E) ⊆ K. What we have to prove
then is that K ⊆ conv(E). In other words, we have to show that if x ∈ K, then x is a convex
combination of a finite number of extreme points x1, . . .xk of K. To do this, we proceed by
induction on the dimension n. The result is obvious in dimension n = 1. Suppose we know
it is true in all dimensions less than n, and suppose x ∈ K.

If x is a boundary point of K, then x belongs to a face F of K (by the “Harder Supporting
Theorem”!). By our induction hypothesis, since F is contained in a hyperplane, x is a convex



11 EXTREME POINTS 50

x

z

y

Figure 24: x is on a line segment with endpoints y and z.

combination of extreme points of F . But each extreme point of F is an extreme point of K,
by Lemma 2; hence x is a convex combination of extreme points of K, as required.

If x is not a boundary point of K, then x is on a line segment with endpoints y and z
where y and z are boundary points of K (Why? See Figure 24.). Then y and z are each
convex combinations of extreme points of K. Hence x is a convex combination of extreme
points of K (Why?).

11.1 Extreme Points of Polytopes

We will prove, in fact, that the extreme points of a polytope are precisely the vertices of the
polytope. Before doing this, we prove

Theorem 17 Let P be a convex polytope in Rn and let V be the set of vertices (i.e. 0–
dimensional faces) of P . Then

P = conv(V).

Proof. P is by definition the convex hull of a finite set of points of Rn. We may assume
this set is minimal in the sense that no element of the set is a convex combination of the
others. So, suppose

P = conv{x1, . . . ,xk},
where no xi is a convex combination of the others.

Let P ′ = conv{x2, . . . ,xk}. Then x1 /∈ P ′. Let x′1 be the nearest point of P ′ to x1 and
H ′ the (supporting) hyperplane through x′1 orthogonal to x1−x′1. Let H be the hyperplane
through x1 parallel to H ′ (Figure 25).

Then

(i) P ⊂ H±, that is, P is contained in a halfspace of H, and

(ii) H ∩P = H ∩ conv{x1, . . . ,xk} = conv(H ∩ {x1, . . . ,xk}) = conv{x1} = {x1}.

Thus x1 ∈ V . Similarly x2, . . . ,xk ∈ V . This shows that

{x1, . . . ,xk} ⊆ V .
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Figure 25: Illustration of the proof of Theorem 17.

On the other hand, if x ∈ V , then H ∩ P = {x} for some supporting hyperplane of P ,
and so

{x} = H ∩ {x1, . . . ,xk} = conv(H ∩ {x1, . . . ,xk}),

so in fact x = xi for some i. [Note that the equation says that the convex hull of those points
of x1, . . . ,xk which belong to H is just {x}.] Thus

V ⊆ {x1, . . . ,xk}.

Thus V = {x1, . . . ,xk} and

P = conv{x1, . . . ,xk} = conv(V).

Theorem 18 Let P be a convex polytope in Rn. Let V be the set of vertices of P and E the
set of extreme points of P . Then

V = E .

Proof. If x ∈ V , then since x is a 0–dimensional face, x ∈ E . Thus

V ⊆ E .

If x /∈ V , then we have

x =
k∑
i=1

λixi, λi > 0,
∑

λi = 1,

where {x1, . . . ,xk} = V and some λi satisfies 0 < λi < 1. If, for example, 0 < λ1 < 1, then
we can write

x = λ1x1 + (1− λ1)(
λ2

1− λ1

x2 + · · ·+ λk
1− λ1

xk),
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x

Figure 26: E need not be closed.

exhibiting x as “between” two points of P , so x /∈ E . Similarly for any λi with 0 < λi < 1.
Thus

E ⊆ V .

Thus, V = E .

In the following examples A ∼ B, read “A not B”, is the set of points of A which are
not in B. That is,

A ∼ B
def
= {x : x ∈ A and x /∈ B}.

The closure of a set A, denoted by cls(A), is the intersection of all closed sets that contain
A. This can be shown to be the same as A ∪ ∂A.

Example 11–A. The set of extreme points of a compact convex body need not be closed.
The convex body sketched in Figure 26 is the convex hull of a circular disk and a line
segment orthogonal to the disk. The point x is interior to the line segment and on the
circumference of the disk. Since x is interior to the segment, x /∈ E , but x is the limit
of the points on the circumference, which do belong to E .

Example 11–B. Klee (1958) gives an example of a 3–dimensional convex set K such that
E and ∂K ∼ E are both dense in ∂K!

Example 11–C. Collier (1976) proves: Let K be a convex body in R3. Let E be the set of
extreme points of K. Then each component of cls(E) ∼ E is a subset of a 1–dimensional
face of K (Figure 26).

11.2 Exercises

11–1 Let K be a closed and bounded convex set in Rn. Suppose F is a face of K and x ∈ F .
Prove that x is an extreme point of F if and only if x is an extreme point of K. (Recall
this was used in proving the Krein-Milman Theorem in Rn.)

11–2 Let D = {(x, y, z) ∈ R3 :
√
x2 + y2 + |z|6 1}.

(a) Prove that D is convex.
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[Hint: Show that
|λz1 + (1− λ)z2|6 λ|z1|+ (1− λ)|z2|,

where λ, z1 and z2 are real numbers and 0 6 λ6 1. Also use Minkowski’s inequality
(Exercise 2–6) to show√

(λx1 + (1− λ)x2)2 + (λy1 + (1− λ)y2)2 6 λ
√
x2

1 + y2
1 + (1− λ)

√
x2

2 + y2
2,

where x1, x2, y1 and y2 are real numbers.]
(b) Describe the extreme points of D.
(c) Use a picture to give an “intuitive” geometric description of how D satisfies the
Krein-Milman Theorem, Theorem 16.

11–3 Radon’s Theorem.

(a) Suppose we have x1, . . . ,xk ∈ Rn with k> n + 2. Then we know there exist
µ1, . . . , µk not all 0 with

k∑
i=1

µi = 0,
k∑
i=1

µixi = 0 (see Exercise 4–1 (a)).

Some of the µi are positive and some are not. With an appropriate relabeling we may
assume

µ1, µ2, . . . , µr > 0 and µr+1, µr+2, . . . , µk 6 0.

Then
µ1 + · · ·+ µr = −µr+1 − · · · − µk > 0.

Let

x =
µ1

µ1 + · · ·+ µr
x1 + · · ·+ µr

µ1 + · · ·+ µr
xr

= − µr+1

µ1 + · · ·+ µr
xr+1 − · · · −

µk
µ1 + · · ·+ µr

xk.

Show that
x ∈ conv{x1, . . . ,xr} ∩ conv{xr+1, . . . ,xk}.

(b) Prove

Theorem 19 (Radon’s Theorem) If X ⊂ Rn contains at least n + 2 points, then
X can be partitioned into two disjoint subsets X1 and X2 such that

conv(X1) ∩ conv(X2) 6= ∅.

11–4 Suppose P is a convex polytope in Rn. For each j, j = 0, . . . , n − 1, prove that each
point of a j–dimensional face of P is a convex combination of at most j + 1 vertices of
P .
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11–5 Let A ⊂ R3. Let σ(A) be the set of all points x ∈ R3 such that x belongs to a line
segment with endpoints in A. Let A1 = σ(A) and Ai+1 = σ(Ai), i = 2, . . .. Prove that

A2 = A3 = A4 = · · · .

11–6 Find all α > 0 for which

{x ∈ Rn :
n∑
i=1

|xi|α 6 1}

is a convex set.

11–7 Suppose K is the cube in Rn with vertices at the 2n points of the form (x1, . . . , xn)
with xi = 0 or 1, i = 1, . . . , n. Prove that

diam(K) =
√
n.

12 Carathéodory’s Theorem

If x ∈ conv(A), then x is a convex combination of a finite number of points of A. The
following theorem tells us that, in fact, in Rn, x is a convex combination of no more than
n+ 1 points of A, that is, x belongs to an at most n–dimensional simplex whose vertices are
in A.

Theorem 20 (Carathéodory’s Theorem) If A ⊆ Rn and x ∈ conv(A), then x is a
convex combination of at most n+ 1 points of A.

First Proof. (By induction on dimension.) It is obvious in dimension n = 1.
Suppose we know it is true for all dimensions less than n, and let x ∈ conv(A), A ⊆ Rn.

Then x ∈ P = conv{a1, . . . , ak} for some a1, . . . , ak ∈ A. If x is a boundary point of P , let
H be a supporting hyperplane of P through x. Then

x ∈ H ∩ P = H ∩ conv{a1, . . . , ak} = conv(H ∩ {a1, . . . , ak}),

the latter equality following from Exercise 6–8. Thus x belongs to the convex hull of H ∩
{a1, . . . , ak} ⊂ H, and since H is (n− 1)–dimensional, x is a convex combination of at most
n points of H ∩ {a1, . . . , ak}, in particular of at most n points of A. If x ∈ P , but x is not
boundary point of P , and if x 6= a1, then the ray

→
a1x intersects the boundary of P in a point

b. Since b is a convex combination of at most n points of A, then x is a convex combination
of at most n+ 1 points of A (since x is on the line segment joining a1 to b).

Second Proof. (Algebraic proof utilizing “affine dependence”.) Suppose x ∈ conv(A),
A ⊆ Rn. Then

x =
k∑
i=1

λiai, with λi > 0 and
k∑
i=1

λi = 1,
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for some a1, . . . , ak ∈ A. We may assume that the integer k has been chosen as small as
possible in this representation. If k> n+ 2, then a1, . . . , ak are affinely dependent, so there
exist real numbers µ1, . . . , µk, not all zero, with

k∑
i=1

µi = 0 and
k∑
i=1

µiai = 0

(Exercise 4–1(a), page 16).
Now suppose µj

λj
is the largest in absolute value of the numbers µ1

λ1
, . . . , µk

λk
. Observe that

x = (λ1 −
λj
µj
µ1)a1 + · · ·+ (λk −

λj
µj
µk)ak.

One now sees (Exercise 12–1, below) that this gives x as a convex combination of less than
k elements of A, contradicting our choice of k. Hence k < n+ 2.

12.1 Exercises

12–1 In the course of the proof of Carathéodory’s Theorem, given

x =
k∑
i=1

λiai, with λi > 0 and
k∑
i=1

λi = 1, and also

k∑
i=1

µiai = 0, with
k∑
i=1

µi = 0 and not all µi = 0, we chose

an index j such that |µj

λj
|> |µi

λi
| for all i 6= j (why is µj 6= 0?), and formed

(λ1 −
λj
µj
µ1)a1 + · · ·+ (λk −

λj
µj
µk)ak. (4)

(a) Show that (4) is in fact equal to x.
(b) Show that the coefficients of a1, . . . , ak in (4) are all non-negative and sum to 1,
with the coefficient of aj equal to 0, so (4) indeed represents x as a convex combination
of fewer than k elements of {a1, . . . , ak}. [Hint: Using λi > 0, from |µj

λj
|> |µi

λi
| derive

λi
λj

>

∣∣∣∣∣µiµj
∣∣∣∣∣ , and thence λi −

λj
µj
µi > 0.]

13 Helly’s Theorem and its Applications

Note that if [a1, b1], . . . , [an, bn] are pairwise intersecting intervals in R, then there is a point
x common to them all. Indeed since max{ai : 1 6 i6 n}6 min{bj : 1 6 j 6 n}, any x
satisfying

max{ai : 1 6 i6 n}6 x6 min{bj : 1 6 j 6 n}
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(in the case of closed intervals) will serve. Helly’s Theorem generalizes this to families of
convex sets in Rn.

Theorem 21 (Helly’s Theorem) Given a finite number of convex sets in Rn, suppose
each n+ 1 of them have a point in common. Then they all have a point in common.

First proof in the case of closed and bounded convex sets. (This proof is similar to
Helly’s original proof.) Suppose the statement of Theorem 21 is not true. Then there exists
a family of closed and bounded convex sets K1, . . . , Kr in Rn, for some n, such that each
n + 1 intersect but not all intersect. Suppose that n has been chosen as small as possible.
Then we know n> 2. The theorem fails for some family of r sets in Rn, and suppose next
that r has been chosen as small as possible. We have r> n + 2 and K1, . . . , Kr ⊆ Rn such
that each n+ 1 intersect and K1 ∩ · · · ∩Kr = ∅. Moreover any r − 1 of the Ki do intersect
(since otherwise r would not be as small as possible).

Since (K1 ∩ K2 ∩ · · · ∩ Kr−1) ∩ Kr = ∅, K1 ∩ · · · ∩ Kr−1 6= ∅, and Kr 6= ∅, there is a
hyperplane H strictly separating K1 ∩ · · · ∩Kr−1 from Kr (Theorem 14).

We claim the following: Each r − 2 of K1 ∩ H, . . . ,Kr−1 ∩ H intersect. To see this, let
Ki1 , . . . , Kir−2 be any r − 2 of K1, . . . , Kr−1. Note that

(Ki1 ∩ · · · ∩Kir−2) ∩ (K1 ∩ · · · ∩Kr−1) = K1 ∩ · · · ∩Kr−1 6= ∅

and
(Ki1 ∩ · · · ∩Kir−2) ∩Kr 6= ∅ (“each r − 1 intersect”).

Thus
(Ki1 ∩ · · · ∩Kir−2) ∩H 6= ∅ (H separates K1 ∩ · · · ∩Kr−1 and Kr).

That is,
(Ki1 ∩H) ∩ · · · ∩ (Kir−2 ∩H) 6= ∅

as we claimed.
Hence by Helly’s Theorem “in H” (n was the smallest dimension where it fails!) we have

(K1 ∩H) ∩ · · · ∩ (Kr−1 ∩H) 6= ∅,

i.e.
(K1 ∩ · · · ∩Kr−1) ∩H 6= ∅,

contradicting the choice of H. This completes the proof in the case of closed and bounded
convex sets.

Remark. It might help in understanding the next proof to draw a picture and follow the
situation through in case n = 2, r = 4.

Second proof of Helly’s Theorem. (This proof uses Radon’s Theorem, Exercise 11–3,
page 53, and is valid for any finite number of convex sets, not necessarily closed or bounded.
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The proof is due to Radon. The proof is by induction on the number r of sets in the family
in Rn.)

The theorem is trivially true for any family of n+ 1 convex sets in Rn. Suppose we know
Helly’s Theorem is true for any family of r− 1 convex sets in Rn, where r> n+ 2. We show
then that it is true for r convex sets K1, . . . , Kr.

By hypothesis, for each i = 1, . . . , r, there exists xi such that

xi ∈ K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kr−1.

By Radon’s Theorem, since r> n+ 2, we can partition the set of indices as

{1, 2, . . . , r} = I ∪ J

where I ∩ J = ∅ and

conv{xi : i ∈ I} ∩ conv{xj : j ∈ J} 6= ∅.

Now note that if i ∈ I, then xi ∈
⋂
j∈J Kj, and if j ∈ J , then xj ∈

⋂
i∈I Ki. Hence

conv{xi : i ∈ I} ⊆
⋂
j∈J

Kj and conv{xj : j ∈ J} ⊆
⋂
i∈I
Ki.

Thus
(
⋂
j∈J

Kj) ∩ (
⋂
i∈I
Ki) 6= ∅,

so K1 ∩ · · · ∩Kr 6= ∅ as we wanted to prove. Helly’s Theorem follows for any finite number
of convex sets by induction.

Theorem 22 Let x1, . . . ,xn ∈ R2 and suppose each three of these points can be covered by
a circular disk of radius r. Then they all can be covered by a circular disk of radius r.

Proof. Let B = B(0, 1) and Bi = xi + rB, i = 1, . . . , n. Then each three of the Bi intersect
(Why?). Hence there exists x ∈ ⋂ni=1Bi, by Helly’s Theorem. Then x + rB contains all the
xi (Why?).

Lemma 3 If T ⊂ R2 is a triangle with all sides of length less than or equal to 1, then T
can be covered by a circular disk of radius 1√

3
.

Proof. If AB is the longest side of triangle ABC, and d = d(A,B), note that C belongs to
the intersection of the circular disks of radius d centered at A and B, respectively. One sees
that triangle ABC is a subset of a Reuleaux Triangle of width d6 1 (Example 9–D), which
in turn is inside a circle of radius 1√

3
.
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Theorem 23 (Jung’s Theorem in R2) If A ⊂ R2 has diameter less than or equal to 1,
then A can be covered by a circular disk of radius 1√

3
.

Proof. Each 3 points of A can be covered by a circular disk of radius 1√
3
, by Lemma 3,

hence all can be covered by such a disk, by Theorem 22.

Remark. The proof is incomplete since we used a theorem that was proved only for finite
sets A. However, everything can be pushed through with a more general version of Helly’s
Theorem which is valid for infinite families of closed and bounded convex sets.

13.1 Universal Covers in R2

A convex set S ⊂ R2 is a universal cover if every plane set of diameter 1 can be covered by a
congruent copy of S. (In other words, every set of diameter 1 is a subset of some congruent
copy of S.)

Example 13–A. Jung’s Theorem, Theorem 23, shows that a circular disk of radius 1√
3

is a
universal cover. Indeed, it is easy to see that it is the smallest circular universal cover.

Example 13–B. A square of side 1 is the smallest square universal cover.

Theorem 24 (Pál’s Theorem) A regular hexagon of side 1√
3

is a universal cover.

Proof. Let A ⊂ R2 have diameter 1. By the Remark in §9.2, page 38, A is a subset of a
convex set K of constant width 1. It suffices to prove that K admits a circumscribed regular
hexagon of side 1√

3
. To do this, first consider a pair of parallel supporting lines, `1 and `2, of

K, in some direction. One sees that there are exactly two equilateral triangles, T1 and T2,
each circumscribed about K, with T1 having a side contained in `1 and T2 a side contained
in `2. (In what follows, we consider Ti as a triangular region, rather than the union of three
segments.) If T1 and T2 happen to be the same size, then H = T1 ∩ T2 is a regular hexagon
circumscribed about K. (This can be deduced from the fact that T1 and T2 have parallel
corresponding sides at distance 1 from each other.) Then H is the circumscribed regular
hexagon of side 1√

3
we want. On the other hand, if T1 and T2 are of different sizes, then

a continuous rotation of the parallel supporting lines `1 and `2 through 180◦ interchanges
their positions and also interchanges T1 and T2. But then the sizes of T1 and T2 have also
been interchanged, so one sees by continuity that the triangles were the same size in some
intermediate position, where their intersection yields the hexagon we seek.

See Pál (1920) and Croft, Falconer & Guy (1991, pp. 125–127), for this theorem and
related problems.

Remark. The circular disk of radius 1√
3

is a universal cover having area π
3
≈ 1.05, while the

square of side 1 is a universal cover of area 1. The regular hexagon of side 1√
3

is a universal

cover having area
√

3
2
≈ 0.866. The Lebesgue Covering Problem asks:
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A

H

Figure 27: H partitioned into 3 sets (Theorem 25, Proof).

What is the minimum possible area of any universal cover?

This is still an unsolved problem. Exercise 13–14, below, shows that the Pál Hexagon
can be truncated to yield a universal cover having area < 0.866. It is known that there exist
universal covers having area at most 0.844, and that every universal cover has area at least
0.832. For a discussion of this and related questions, see Brass, Moser & Pach (2005).

13.2 Applications of Hexagons

Theorem 25 Any plane set A of diameter 1 can be partitioned into 3 sets, each having
diameter less than 1.

Proof. Appealing to Pál’s Theorem, cover A with a regular hexagon H of side 1√
3
. Note that

H can be partitioned into 3 sets, each having diameter
√

3
2
< 1 (Figure 27 and Exercise 12).

Hence A can be partitioned into three sets of diameter less than 1.

Remark. A long-standing conjecture of Borsuk, generalizing Theorem 25, was that if A ⊂
Rn has diameter 1, then A can be partitioned into n + 1 sets, each having diameter less
than 1. This is known to be true for n = 2 and n = 3. However, as was proved by Kahn &
Kalai (1993) the result is false for sufficiently large n. For more information on this, and on
related unsolved problems, see Brass et al. (2005).

Theorem 26 Suppose D1, . . . , Dn are pairwise intersecting congruent circular disks in R2.
Then there exist three points a, b, c such that each Di contains at least one of a, b or c.

Proof. Assume each Di has radius 1, and let S be the set of centers of disks. Then
diam(S) 6 2 (since each two Di intersect). Hence S can be covered by a regular hexagon of
side 2√

3
.

If a, b, c are as indicated in Figure 28, then each point of the hexagon is within distance
1 of one of a, b or c. (Check that the circle of radius 1 centered at a passes through b, c,
and two vertices of H. Similarly for b and c.) Thus every disk of radius 1 with center inside
the hexagon contains at least one of a, b or c.
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a

b c

H

Figure 28: Each point of H is within distance 1 of one of a, b or c (Theorem 26, Proof).

Remark. The following result, generalizing Theorem 26, and conjectured by Grünbaum
(1959) (see Eckhoff (1993)), was proved by Karasev (2000):

Suppose K is a closed and bounded convex set in R2, and suppose K1, . . . , Kn is a
pairwise intersecting family of translates of K. Then there exist 3 points a, b, c such that
each Ki contains at least one of a, b or c.

13.3 Exercises

13–1 (a) Given convex sets K1, . . . Kn ⊂ R2, suppose that for each three of K1, . . . Kn there
exists a circular disk of radius r intersecting all three. Prove then that there is a circular
disk of radius r intersecting all of K1, . . . Kn. [Hint: Consider Ki + rB, i = 1, . . . , n
where B = B(0, 1).]
(b) If each Ki is a point, what familiar result does part (a) reduce to?

13–2 Given convex sets K1, . . . Kn ⊂ R2, suppose that the intersection of each 3 of the Ki

contains a circle of radius r. Prove then that there is a circle of radius r contained in
K1 ∩ · · · ∩Kn.

13–3 Let Q = {(x, y) ∈ R2 : |x| + |y|6
√

2
2

and x6 1
2
, y6 1

2
}. One observes that Q is

a square circumscribed about a circle with unit diameter, with two adjacent corners
truncated tangent to the circle. Prove that Q is a universal cover.

13–4 Let Q = {(x, y) ∈ R2 : x2 + y2 6 1, (x− 1)2 + y2 6 1, and y6 1
2
}. Observe that Q is

a truncated “lens”. Prove that Q is a universal cover.
Remark. By the Remark on page 38, it suffices to show that Q covers every plane
convex set K of constant width 1. Given such a K, from Exercise 9–11 we know that
for each pair `1, `2 of parallel supporting lines of K we have `i ∩ K = xi, i = 1, 2,
where the segment joining x1 to x2 is orthogonal to `1 and `2. Then K is contained
in the “lens” L formed by intersecting the two unit disks centered at x1 and x2. The
two supporting lines `3 and `4 orthogonal to `1 and `2 bound, with `1 and `2, a unit
square S containing K. If the center of S coincides with the center of L, we see that
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S ∩ L is congruent to Q. If not, use a continuity argument to show that there is some
choice of `1 and `2 such that the centers do coincide.

13–5 Prove that every universal cover in R2 has area greater than 0.78.

13–6 A paper products manufacturing company wants to manufacture semicircular paper
napkins having the property that any soup stain of diameter less than or equal to 6
inches can be covered by one of their napkins. How can they do this most economically?
Remark. Clearly a semicircle of radius at least 6 inches is required to cover a circular
disk of diameter 6. How do we know that such a semicircle will cover every set of
diameter 6?

13–7 Given 300 points in R2, prove that there exists a point p such that each closed halfplane
determined by each line through p contains at least 100 of the given points.

[Hint: Let D be a large closed disk containing all the points. For each closed halfplane
H containing at least 200 points, consider H ∩D. This gives an infinite collection of
closed and bounded convex sets. Show that each three of them intersect. Also note
that if a line ` through a point p has fewer than 100 points on one side, then a slight
perturbation of ` can be made to yield a halfplane not containing p and containing at
least 200 points of the given set.]

13–8 Suppose P is a convex polygon in R2 with 0 in the interior. If u = (cos θ, sin θ), we
abbreviate the support function of P by writing

h(P, θ) = h(P,u).

If L(P ) denotes the perimeter of P , prove that

L(P ) =
∫ 2π

0
h(P, θ) dθ.

[Hints: (a) In Figure 29, αi denotes the angle from the positive x–axis to the perpen-
dicular from the origin to the i–edge of the polygon. For ri and θi as shown in the
figure, and αi 6 θ6αi+1, show that

h(P, θ) = ri cos(θi − θ).

(b) Show that ∫ αi+1

αi

h(P, θ) dθ = ri sin(θi − αi) + ri sin(αi+1 − θi).

(c) Then ∫ 2π

0
h(P, θ) dθ =

∑
edges

ri sin(θi − αi) + ri sin(αi+1 − θi).

Show that the right-hand side is the perimeter of P .
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Figure 29: In Exercise 13–8 the i-th vertex of the polygon is vi, ‖vi‖ = ri.

13–9 By using the result in Exercise 13–8 and the fact that

h(a +K,u) = 〈a,u〉+ h(K,u),

show that for any convex polygon P in R2

L(P ) =
∫ 2π

0
h(P, θ) dθ.

(In other words, the origin need not be interior to P .)

13–10 If P and Q are convex polygons in R2, prove that

L(P +Q) = L(P ) + L(Q).

[Hint: Use Exercise 13–9.]

13–11 The integral formula for perimeter in Exercise 13–9 is actually valid for any closed
and bounded plane convex set K, as can be shown by approximation arguments. In
other words,

L(K) =
∫ 2π

0
h(K, θ) dθ. (5)

Assuming (5), prove (a) – (d):
(a)

L(K) =
1

2

∫ 2π

0
w(K, θ) dθ, (6)

where w(K, θ) is the width function of K.
(b)
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Theorem 27 (Barbier’s Theorem) All plane convex sets of constant width b have
the same perimeter πb.

(c)
L6 πD,

where L and D are the perimeter and diameter of K, respectively.
(d) If K has perimeter L, then some equilateral triangle circumscribed about K has

side length
√

3
π
L.

13–12 Show that the three (irregular) pentagons in the partition of H in Figure 27 have

diameter
√

3
2

. [Hint: Use the fact that the diameter of a polygon is attained as the
distance between some pair of its vertices.]

13–13 Show that Theorem 23 is a simple and direct consequence of Theorem 24.

13–14 (a) Let H = ABCDEF be a regular hexagon of side 1√
3

circumscribed about a
convex set K of constant width 1. Let ` be the line closer to the vertex A which is
perpendicular to the diagonal AD and tangent to the inscribed circle of H. Let H ′ be
the “truncated hexagon” obtained by cutting off a corner of H with the line `. Show
that H ′ is a universal cover.

[Hint: Suppose H is circumscribed about a set K of constant width 1. If there are
points of K inside the corner piece of H that we truncated with line `, show that
there are then no points of K inside the opposite corner of H obtained by similarly
truncating with a line parallel to `.]

(b) Show that the polygon obtained by truncating two adjacent corners of H, each in
the manner of part (a), is a universal cover.

13–15 Show that if K1 and K2 are closed and bounded plane convex sets with K1 ⊆ K2,
then L(K1) 6L(K2), and L(K1) = L(K2) only if K1 = K2.

[Hint: Use Exercise 10–6 (c) and (d), page 48, and (5), page 62, to establish

L(K1) 6L(K2) if K1 ⊆ K2.

Next show that if K1 6= K2, then for some θ0 we have h(K1, θ0) − h(K2, θ0) > 0. We
have shown, Exercise 9–7, page 42, that h(K, θ) is a continuous function of θ. Thus
we must have h(K1, θ)− h(K2, θ) > 0 for θ varying over some interval centered at θ0.
Then ∫ 2π

0
h(K1, θ)− h(K2, θ) dθ > 0.]
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Figure 30: K2 ⊆ K1 + r1B and K1 ⊆ K2 + r2B

14 The Distance between Convex Sets

We now define a notion of “distance” between convex sets in Rn. In other words, we define
a metric, or distance function, d(K1, K2) for closed and bounded convex sets K1, K2 in Rn,
having the fundamental properties:

(i) d(K1, K2) > 0, and d(K1, K2) = 0 if and only if K1 = K2,
(ii) d(K1, K2) = d(K2, K1),
(iii) d(K1, K2) + d(K2, K3) > d(K1, K3) (The Triangle Inequality).

Once we have done this, we will have made the set of all closed and bounded convex
sets in Rn into a metric space. (See page 65 for the proof that d(K1, K2) satisfies the three
properties above.)

Let K1, K2 be closed and bounded convex sets in Rn. We define the distance from K1

to K2, denoted d(K1, K2), by

d(K1, K2)
def
= min{r> 0 : K2 ⊆ K1 + rB, K1 ⊆ K2 + rB, where B = B(0, 1)}.

Remark. K + rB is the outer parallel set of K at distance r. It is the union of all balls
of radius r centered in K. Alternatively, one can see that K + rB is the set of all points
x ∈ Rn whose distance from K is less than or equal to r. Thus d(K1, K2) is the smallest r
such that the outer parallel set at distance r of each set contains the other. In Figure 30,

r1 = min{r> 0 : K2 ⊆ K1 + rB} and r2 = min{r> 0 : K1 ⊆ K2 + rB},

then
d(K1, K2) = max{r1, r2}.

Example 14–A. If K1 = {x1} and K2 = {x2}, then d(K1, K2) = ‖x1 − x2‖.
Example 14–B. If Bi is the ball of radius ri centered at ai, i = 1, 2, then

d(B1, B2) = ‖a1 − a2‖+ |r1 − r2|.
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Figure 31: d = |h(K1,u)− h(K2,u)|

The following lemma gives an interpretation of the distance function between convex sets
in terms of their support functions.

Lemma 4 If K1, K2 are closed and bounded convex sets in Rn, then

d(K1, K2) = max
‖u‖=1

|h(K1,u)− h(K2,u)|.

Proof. Figure 31 illustrates the following:

K2 ⊆ K1 + rB if and only if

h(K2,x) 6 h(K1 + rB,x) = h(K1,x) + r‖x‖, for all x, and

K1 ⊆ K2 + rB if and only if h(K1,x) 6 h(K2,x) + r‖x‖, for all x.

Thus d(K1, K2) is the smallest r such that

|h(K1,x)− h(K2,x)|6 r‖x‖, for all x.

This is the smallest r such that |h(K1,u)− h(K2,u)|6 r for all ‖u‖ = 1.

Proof that d(K1, K2) is a metric.
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(i) Clearly d(K1, K2) > 0, and d(K1, K2) = 0
if and only if h(K1,u) = h(K2,u), for all ‖u‖ = 1,
if and only if K1 = K2.

(ii) Clearly d(K1, K2) = d(K2, K1).

(iii) By Lemma 4

d(K1, K3) = max
‖u‖=1

|h(K1,u)− h(K3,u)|

= max
‖u‖=1

|h(K1,u)− h(K2,u) + h(K2,u)− h(K3,u)|

6 max
‖u‖=1

|h(K1,u)− h(K2,u)|+ max
‖u‖=1

|h(K2,u)− h(K3,u)|

= d(K1, K2) + d(K2, K3).

14.1 Definition of Convergence of Convex Sets

Given a sequence K1, K2, K3, . . . of closed and bounded convex sets in a Euclidean space, we
shall say that the sequence converges to a closed and bounded convex set K if and only if

d(Ki, K)→ 0 as i→∞.

We shall denote this by Ki → K, or limi→∞Ki = K.
Remark. Ki → K if and only if for each ε > 0 there exists N such that

Ki + εB ⊇ K and K + εB ⊇ Ki for all i > N.

Theorem 28 Ki → K if and only if for each ε > 0 there exists N such that |h(Ki,u) −
h(K,u)| < ε, for all ‖u‖ = 1 and for all i > N .

Remark. The condition expressed in the theorem is that the sequence of functions {h(Ki,u)}
converges uniformly to h(K,u) on the unit sphere {u ∈ Rn : ‖u‖ = 1}.

Example 14–C. If Ki = {xi}, i = 1, 2, . . ., then convergence of {Ki} is the same as conver-
gence of a sequence of points in the usual sense.

Example 14–D. If Bi is a ball of radius ri centered at ai, i = 1, 2, . . ., and if Bi → K, then
K is either a ball or a point.

Example 14–E. If m is a fixed integer and each Ki is a polytope with at most m vertices,
and if Ki → K, then K is a polytope with at most m vertices. (Note, however, that if
we place no bound on the number of vertices, then the limit of a sequence of polytopes
need not be a polytope!)
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Remark. The proofs of the results in Examples 14–A and 14–C are very elementary exercises
for the reader. We assign Example 14–B as Exercise 14–3 and Example 14–D as Exercise 14–
4. However we do not prove the result of Example 14–E in these notes, but refer the reader
to Grünbaum (2003, §5.3) for this and more general results about the limits of sequences of
polytopes.

Theorem 29 (The Blaschke Selection Principle) Suppose K1, K2, . . . is an infinite se-
quence of closed and bounded convex sets in Rn, all contained in some fixed ball. Then there
exists a subsequence Ki1 , Ki2 , . . . converging to a closed and bounded convex set K.

Remark. This may be viewed as a generalization of the Bolzano-Weierstrass Theorem,
which asserts that a bounded sequence of points has a convergent subsequence. A proof of
the Blaschke Selection Principle is given in Schneider (1993, pp. 49–50).

Given a sequence {Ki} of closed and bounded convex sets in Rn, the condition that the
sequence converge to K, stated as d(Ki, K) → 0 as i → ∞, is more precisely defined as
follows:
The sequence {Ki} converges to K if and only if for each ε > 0 there exists N such that

d(Ki, K) < ε for all i>N.

We say that {Ki} is a Cauchy sequence if it satisfies the following Cauchy criterion:

For each ε > 0 there exists N such that d(Ki, Kj) < ε for all i, j >N.

Theorem 30 Any convergent sequence is a Cauchy sequence.

Proof. Let K1, K2, . . . be a sequence such that Ki → K as i→∞. If ε > 0 is given, choose
N such that

d(Ki, K) <
ε

2
for all i>N.

Then, if i, j >N , we have

d(Ki, Kj) 6 d(Ki, K) + d(K,Kj) 6
ε

2
+
ε

2
= ε.

Thus the sequence satisfies the Cauchy criterion.

So every convergent sequence is a Cauchy sequence. But is every Cauchy sequence a
convergent sequence?

A metric space is said to be complete if every Cauchy sequence is a convergent sequence.
It can be shown from the Blaschke Selection Principle that the metric space of closed and
bounded convex sets in Rn we are discussing is in fact complete. That is, if {Ki} is a Cauchy
sequence of closed and bounded convex sets in Rn, then there exists a closed and bounded
convex set K such that Ki → K as i→∞.
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14.2 Exercises

14–1 If K is a closed and bounded convex set in Rn, B = B(0, 1), and r > 0, prove that

K + rB = {x ∈ Rn : d(x, K) 6 r}.

14–2 Given closed and bounded convex sets K and L in Rn, let Kr and Lr denote the outer
parallel sets of K and L, respectively, at distance r> 0 (Remark, page 64). Show that

d(Kr, Lr) = d(K,L).

14–3 Prove the result in Example 14–B. [Hint:h(B(a, r),u) = h(B(0, r)+a,u) = r+ 〈a,u〉.]

14–4 Prove the result in Example 14–D.

[Hint: If Bi → K, then {Bi} is a Cauchy sequence. Deduce from this that {ai} is a
Cauchy sequence in Rn and {ri} is a Cauchy sequence in R. Since Rn is a complete
metric space for n = 1, 2, 3, . . ., there exist a0 ∈ Rn and r0 ∈ R such that

ai → a0 as i→∞ and ri → r0 as i→∞.

Show then that Bi → B(a0, r0) as i→∞.]

14–5 If {Ki} and {Li} are sequences of closed and bounded convex sets in Rn, with Ki → K
as i→∞ and Li → L as i→∞, show that

Ki + Li → K + L as i→∞.

[Hint: Show max‖u‖=1 |h(Ki + Li,u)− h(K + L,u)|

6 max
‖u‖=1

|h(Ki,u)− h(K,u)|+ max
‖u‖=1

|h(Li,u)− h(L,u)|.]

14–6 Suppose {Ki} is a sequence of closed and bounded convex sets of constant width in
Rn, with Ki → K as i→∞. Prove then that K has constant width (or is a point).

[Hint: Show that −Ki → −K as i → ∞. Then from the previous exercise we have
Ki + (−Ki)→ K + (−K) as i→∞.]

15 Approximation Theorems

Theorem 31 Suppose K is a closed and bounded convex set in Rn, and ε > 0. Then there
exist convex polytopes P , Q with P ⊆ K ⊆ Q and d(P,K) 6 ε and d(Q,K) 6 ε.
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Proof. (a) To construct Q, cover K with finitely many cubes of edge length ε√
n
. The convex

hull of the set of all vertices of these cubes is a convex polytope Q with K ⊆ Q. Since each
vertex of each cube is distance less than or equal to ε from K (discard cubes not intersecting
K!) we have K + εB ⊇ Q. Since obviously also Q+ εB ⊇ K, we have d(Q,K) 6 ε.

(b) To construct P , cover K with finitely many ball of radius ε with centers in K. The
convex hull of the set of all centers of these balls is a convex polytope P ⊆ K. Clearly
P + εB ⊇ K. Also K + εB ⊇ P , so d(P,K) 6 ε.

Corollary 1 Let K be a closed and bounded convex set in Rn. Then there exists a sequence
of convex polytopes {Pi} with Pi ⊆ K, i = 1, 2, . . ., and Pi → K. Similarly there exists a
sequence of convex polytopes {Qi} with K ⊆ Qi, i = 1, 2, . . ., and Qi → K.

Theorem 32 Let K be a closed and bounded convex set in Rn, and suppose K contains a
ball centered at the origin. Let λ > 1. Then there exists a convex polytope P with

P ⊆ K ⊆ λP.

Proof. Let B = B(0, 1). Choose r > 0 so small that 2rB ⊂ K. Then there exists ε > 0
such that

0 < ε < (λ− 1)r, and h(K,u) > r + ε, for all ‖u‖ = 1.

Let P be a polytope with P ⊆ K and d(P,K) 6 ε. Then

h(K,u) < h(P,u) + ε, so r < h(K,u)− ε < h(P,u).

Hence

h(K,u) 6 h(P,u) + ε

6 h(P,u) + (λ− 1)r

< h(P,u) + (λ− 1)h(P,u)

= λh(P,u)

= h(λP,u).

That is,
h(K,u) < h(λP,u), for all ‖u‖ = 1.

Hence, by Exercise 10–6 (c), page 48,

K ⊆ λP.

Let K be a closed and bounded convex set in Rn. We denote the volume of K by vol(K).
In R2 the area of K is denoted by A(K) and the perimeter by L(K).
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Theorem 33 If Ki → K, then vol(Ki) → vol(K). (In other words, the volume of K is a
continuous functional of K.)

Proof in case vol(K) > 0. In this case, assume 2rB ⊆ K, r > 0, where B = B(0, 1). Let
0 < ε < r. We have then h(Ku) > r for ‖u‖ = 1. If d(Ki, K) < ε, then

h(Ki,u) < h(K,u) + ε < h(K,u) +
ε

r
h(K,u) = h((1 +

ε

r
)K,u).

Hence
Ki ⊆ (1 +

ε

r
)K,

So we have
vol(Ki) 6 (1 +

ε

r
)nvol(K) (7)

Next observe that
h(K,u) < h(Ki,u) + ε < h(Ki,u) +

ε

r
h(K,u).

Hence
(1− ε

r
)h(K,u) < h(Ki,u).

Since 1− ε
r
> 0, this implies that

h((1− ε

r
)K,u) < h(Ki,u).

Hence
(1− ε

r
)K ⊆ Ki,

So we have
vol(Ki) > (1− ε

r
)nvol(K) (8)

Equations 7 and 8 together give

(1− ε

r
)nvol(K) 6 vol(Ki) 6 (1 +

ε

r
)nvol(K).

From this it follows that

vol(Ki)→ vol(K) as d(Ki, K)→ 0.

Remark. In the case of R2 the preceding theorem tells us that if Ki → K, then A(Ki) →
A(K). Note that the proof could have been carried through in an analogous fashion for
perimeter, rather than area. So for plane convex sets we also have

if Ki → K, then L(Ki)→ L(K).

This can also be proved directly from the formula

L(K) =
∫ 2π

0
h(K, θ) dθ,

once the formula has been proved for all closed and bounded K ⊂ R2.
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Figure 32: The outer parallel set of a polygon in R2.

16 The Outer Parallel Set of a Convex Set in R2

If P is a convex polygon in R2 (the conventional term for a convex polytope in R2!) then,
recall from page 64, the outer parallel set at distance λ > 0 is P + λB, where B = B(0, 1).
One has for the area Steiner’s Formula

A(P + λB) = A(P ) + λL(P ) + πλ2.

Here λL(P ) is the sum of the areas of rectangles and πλ2 is the sum of the areas of sectors
of circles (Figure 32).

The next theorem extends Steiner’s Formula to any closed and bounded convex set in
R2.

Theorem 34 Let K be a closed and bounded convex set in R2. Then the area of the outer
parallel set of K at distance λ satisfies

A(K + λB) = A(K) + λL(K) + πλ2.

Proof. Let {Pi} be a sequence of convex polygons with Pi → K. Then A(Pi)→ A(K) and
L(Pi)→ L(K), so

A(Pi + λB) = A(Pi) + λL(Pi) + πλ2 → A(K) + λL(K) + πλ2.

But also
A(Pi + λB)→ A(K + λB), since Pi + λB → K + λB.

Thus
A(K + λB) = A(K) + λL(K) + πλ2.
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16.1 Exercises

16–1 The ellipse E in Example 9–E has support function

h(E,u) = (a2 cos2 θ + b2 sin2 θ)
1
2 ,

where u = (cos θ, sin θ). For convenience, we denote this function by

F (a, b, θ) = (a2 cos2 θ + b2 sin2 θ)
1
2 .

(a) Use your trigonometric powers to show that

(F (a, b, θ) + F (b, a, θ))2 = a2 + b2 + 2
√
a2b2 + (a2 − b2)2 cos2 θ sin2 θ.

(b) From part (a) deduce that

a+ b6F (a, b, θ) + F (b, a, θ) 6
√

2(a2 + b2) (9)

for all 0 6 θ6 2π. Show also that if 0 6 θ6 2π, with θ 6= 0, π
2
, 3π

2
, or 2π, and a 6= b,

then
F (a, b, θ) + F (b, a, θ) > a+ b.

[Hint for the proof of (9): For the lower bound a+ b, observe that

(a2 − b2)2 cos2 θ sin2 θ> 0.

For the upper bound
√

2(a2 + b2), show that (a2 − b2)2 cos2 θ sin2 θ has a maximum

value of (a2−b2)2

4
.]

(c) Show that ∫ 2π

0
F (a, b, θ) dθ =

∫ 2π

0
F (b, a, θ) dθ.

(d) Use the above to show that the perimeter of the ellipse E satisfies

π(a+ b) 6L(E) 6 π
√

2(a2 + b2),

and that, in fact, if a 6= b, then

π(a+ b) < L(E) < π
√

2(a2 + b2).

16–2 Let E be the plane convex set bounded by the ellipse x2

a2 + y2

b2
= 1, where a > b > 0.

Steiner’s formula, Theorem 34, for area gives us for the outer parallel set of E at
distance λ,

A(E + λB) = A(E) + λL(E) + πλ2.
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Show that this parallel set cannot be an ellipse (if a > b and λ > 0) by using the fact
that A(E) = πab and that L(E) > π(a+ b) (from Exercise 16–1, part (d)). Note that
if E + λB were an ellipse, then it would have semi-axes a+ λ and b+ λ.

Remark. The perimeter of E has the form

L(E) =
∫ 2π

0

√
a2 cos2 θ + b2 sin2 θ dθ,

which turns out not to be expressible in terms of elementary functions. The integral
is a so-called elliptic integral.

17 Inner Parallel Sets

Let K be a closed and bounded convex set in Rn. In Section 14 the outer parallel set of
K at distance λ, which we shall denote by Kλ, was defined as K + λB, where λ> 0 and
B = B(0, 1). Exercise 4–1 tells us that

Kλ = K + λB = {x ∈ Rn : d(x, K) 6 λ}.

This is easily shown to be the same as the locus of the centers of all closed balls of radius λ
which intersect K. That is

Kλ = {x ∈ Rn : B(x, λ) ∩K 6= ∅}.

We wish to extend the idea of outer parallel sets to inner parallel sets by defining K−λ, λ> 0.
For this, let r be the radius of the largest ball contained in K, so

r = max{λ> 0 : B(x, λ) ⊆ K for some x ∈ Rn}.

We call r the inradius of K. Then, if 0 6 λ6 r, the inner parallel set of K at distance λ,
which we shall denote by K−λ, is the subset of K defined by

K−λ = {x ∈ K : B(x, λ) ⊆ K}.

K0 is understood to be K itself.
A useful alternate characterization of inner parallel sets is as follows.

Theorem 35 Let K be a closed and bounded convex set in Rn with 0 ∈ K and inradius
r > 0. For each direction u, with ‖u‖ = 1, let Lu be the supporting hyperplane of K with
equation

h(K,u)− 〈x,u〉 = 0,

and let Hu be the halfspace determined by Lu containing K, with

Hu = {x ∈ Rn : h(K,u)− 〈x,u〉> 0}.
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K K
-¸

K
-¸ t-
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t

¸

Figure 33: Theorem 37 K−λ−t + tB ⊆ K−λ.

Let 0 < λ6 r. For each direction u, with ‖u‖ = 1, let Hλ
u be the halfspace defined by

Hλ
u = {x ∈ Rn : h(K,u)− 〈x,u〉> λ}.

Then K−λ is the intersection of all the Hλ
u, that is,

K−λ =
⋂
‖u‖=1

Hλ
u.

Remark. Hλ
u is simply the halfspace obtained by translating the supporting halfspace Hu

“inward” through a distance λ.
The proof of the theorem is Exercise 17–1.
By translating the supporting halfspaces of K inward through distance λ, we obtain K−λ.

If we now translate the supporting halfspaces of K−λ inward through distance t, we obtain
(K−λ)−t as their intersection, and we would expect this to be the same as K−λ−t = K−(λ+t).
This is the content of the next lemma.

Lemma 5 Let K be a closed and bounded convex set in Rn with inradius r > 0. If λ > 0,
t > 0 and λ+ t < r, then

K−λ−t = (K−λ)−t.

The proof is left as an exercise.

Theorem 36 Let K be a closed and bounded convex set in Rn with inradius r > 0. Then,
if 0 < t6 r, we have

(K−t)t ⊆ K,

that is, if B = B(0, 1), then K−t + tB ⊆ K.

Proof. Since K−t is the intersection of the halfspaces H t
u (statement of Theorem 35), we

have h(K,u)− 〈x,u〉> t, for each u, and all x ∈ K−t. That is

〈x,u〉6 h(K,u)− t for all x ∈ K−t.
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Figure 34: The inner parallel sets of a polygon K may have fewer edges than K.

Thus h(K−t,u) = maxx∈K−t〈x,u〉6 h(K,u)− t, so

h(K−t + tB,u) = h(K−t,u) + t6 h(K,u) for all u.

It follows from Exercise 10–6 (c), page 48, that K−t + tB ⊆ K.

Theorem 37 Let K be a closed and bounded convex set in Rn with inradius r > 0. Then,
given t > 0 and t6 λ6 r + t, we have

K−λ ⊇ K−λ−t + tB,

(Figure 33).

The proof is left as an exercise.

17.1 Inner Parallel Sets of Convex Polygons

Recall that A(K) and L(K) represent the area and perimeter, respectively, of a plane convex
set K (page 69).

Theorem 38 Let K be a convex polygon in R2, with inradius r > 0. Then

A(K) =
∫ r

0
L(K−λ) dλ. (10)

Proof. By Exercise 13–15 we see that L(K−λ) is a decreasing function of λ on the interval
[0, r], so, by standard theorems of real analysis, L(K−λ) is Riemann integrable on [0, r]. (In
fact, it can be shown that L(K−λ) is a continuous function of λ on [0, r].)

Furthermore, the integral can be calculated by choosing subdivisions of [0, r] of the form
0 = λ0 < λ1 < · · · < λm−1 < λm = r with λi = i

m
r, i = 0, 1, . . . ,m, and taking the limit of

the corresponding Riemann sums as m→∞.
For simplicity of notation, let Ai = A(K−λi

) and Li = L(K−λi
), i = 0, 1, . . . ,m. Observe

that
Ai−1 = Ai + (λi − λi−1)Li +

∑
j

(λi − λi−1)
2 tan(

αij
2

), (11)
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Figure 35: The region between parallel polygons partitioned as in (11).

where αij = π − θij, and θij ranges over the angles of K−λi
(Figure 35). From (11) we have

|
m∑
i=1

(Ai−1 − Ai)−
m∑
i=1

Li(λi − λi−1)| = |
m∑
i=1

∑
j

(λi − λi−1)
2 tan(

αij
2

)|.

But
m∑
i=1

(Ai−1 − Ai) = A0 − Am = A(K)− A(K−r) = A(K),

since A(K−r) = 0 (Exercise 17–5), so we have

|A(K)−
m∑
i=1

Li(λi − λi−1)| = |
m∑
i=1

∑
j

(λi − λi−1)
2 tan(

αij
2

)|.

Next we observe that the angles of K−λi
are formed by pairs of lines parallel to nonparallel

sides of K (not necessarily adjacent sides!) (Figure 34) and there are only finitely many
such sides. Thus there exists a θ0 such that θij > θ0 > 0, for all ij. So αij < π − θ0 and
αij/2 <

π
2
− θ0/2 <

π
2
. It follows that there is a constant M such that∑

j

| tan(
αij
2

)|6M

for all i = 0, 1, . . . ,m. So we have

|A(K)−
m∑
i=1

Li(λi − λi−1)|6M
m∑
i=1

(λi − λi−1)
2.

But with our choice of subdivisions of [0, r], we have λi − λi−1 = r
m

, so

|A(K)−
m∑
i=1

Li(λi − λi−1)|6M
r2

m
.

The righthand side tends to 0 as m→∞, so the Riemann sums approach A(K) as m→∞,
proving (10).

Remark. It can be shown that formula (10) for area is valid for any closed and bounded
plane convex set, and we shall apply it with this generality, particularly in a proof of the
Isoperimetric Inequality in the next section.
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17.2 Exercises

17–1 Prove Theorem 35 as follows.
(a) Show that K−λ ⊆

⋂
‖u‖=1H

λ
u. [Hint: If k ∈ K−λ, then k + λu ∈ K for all u with

‖u‖ = 1.]
(b) Next show that K−λ ⊇

⋂
‖u‖=1H

λ
u. [Hint: If k ∈ ⋂‖u‖=1H

λ
u use Exercise 10–6 (c)

to show that B(x, λ) ⊆ K.]

17–2 Prove Lemma 5.

17–3 Prove Theorem 37. [Hint: In Theorem 36 substitute K−λ for K and use the fact that
K−λ−t = (K−λ)−t.]

17–4 Let F1, F2, . . . , Fm be the facets of a convex polytope K in Rn. Then Fi is contained in
a hyperplane Li with equation h(K,ui)− 〈x,ui〉 = 0, where ‖ui‖ = 1, i = 1, 2, . . . ,m,
and K is the intersection of the halfspaces

Hi = {x ∈ Rn : h(K,ui)− 〈x,ui〉> 0}, i = 1, 2, . . . ,m.

Let r be the inradius of K and 0 6 λ6 r. Show that K−λ is the intersection of the
halfspaces

Hλ
i = {x ∈ Rn : h(K,ui)− 〈x,ui〉> λ}, i = 1, 2, . . . ,m,

and therefore K−λ is a convex polytope for 0 6 λ6 r.

17–5 Let K be a closed and bounded convex set in Rn with inradius r > 0. Prove that K−r
has dimension less that n, so vol(K−r) = 0. [Hint: Show that if K−r contains a ball
B(x, ε), ε > 0, then K contains B(x, ε) + rB(0, 1) = B(x, r + ε).]

18 The Isoperimetric Theorem

The classic Isoperimetric Theorem asserts that of all simple closed curves (closed curves
without self-intersection) in R2 having the same perimeter, the circle encloses that largest
area. In this section we consider this theorem for convex sets.

We can reformulate the result in the form of an inequality. Let K be a closed and
bounded convex set in R2, having perimeter L(K) and area A(K). A circle of the same

perimeter has radius ρ = L(K)
2π

and area πρ2 = π(L(K)
2π

)2 = L(K)2

4π
. The fact that the area of

the circle is at least that of K can then be expressed as the following inequality, called the
Isoperimetric Inequality:

L(K)2

4π
>A(K).

This can equivalently be stated in the following form (keep in mind that we are restricting
ourselves to convex sets, although the result holds for a wider class of regions.)
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Theorem 39 Let K be a closed and bounded convex set in R2 with perimeter L and area
A. Then

L2 − 4πA> 0,

and equality holds if and only if K is a circular disk.

Remark. The last clause in the theorem tells us that the circle is the unique curve that
maximizes enclosed area among all curves of the same perimeter.

Proof. Let r > 0 be the inradius of K, and B = B(0, 1). We have

K ⊇ K−λ + λB, for 0 6 λ6 r.

Therefore (using Exercises 13–10 and 13–15)

L(K) >L(K−λ + λB) >L(K−λ) + L(λB) = L(K−λ) + 2πλ.

Thus
L(K−λ) 6L(K)− 2πλ, for 0 6 λ6 r.

Therefore
A = A(K) =

∫ r

0
L(K−λ) dλ6 rL(K)− πr2 = rL− πr2, or

−A+ rL− πr2 > 0.

This last inequality is known as Bonnesen’s inequality, and it immediately implies the Isoperi-
metric inequality, because

L2 − 4πA = (L− 2πr)2 + 4π(−A+ rL− πr2) > 0.

Thus we have L2 − 4πA> 0, and L2 − 4πA = 0 only if both

L = 2πr and − A+ rL− πr2 = 0.

In particular, if L = 2πr, then K coincides with its inscribed circle (Exercise 13–15).

18.1 Exercises

18–1 (a) Let P be a convex polygon circumscribed about a circle of radius r (so each edge
of P is tangent to the circle). If P has perimeter L and area A, show that

A =
1

2
rL.

(b) Use (a) to directly check that P satisfies the Isoperimetric inequality.
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18–2 Suppose K is such that
−A+ rL− πr2 = 0.

(a) From the proof of the Isoperimetric inequality, deduce that

L(K−λ) = L(K)− 2πλ, for 0 6 λ6 r,

and in particular,
L(K) = L(K−r) + 2πr = L(K−r + rB).

(b) From (a) deduce that
K = K−r + rB.

(c) SinceK−r is either a point or a line segment (Exercise 17–5), deduce that if−A(K)+
rL(K) − πr2 = 0, then either K is either a circular disk or the outer parallel set of a
line segment.

18–3 Let E be an ellipse with semi-axes a and b. From Exercise 16–1 (d) we have

L(E) > π(a+ b).

Use this to show that if A(E) is the area of E, then

L(E)2 − 4πA(E) > π2(a− b)2 > 0,

with equality if and only if E is a circle.

18–4 If R is a rectangle with sides a and b, then

L(R) = 2(a+ b) and A(R) = ab.

The Isoperimetric inequality tells us that

L(R)2 > 4πA(R).

Show that we, in fact, have a stronger inequality

L(R)2 > 16A(R),

with equality if and only if R is a square.

18–5 Bonnesen’s inequality for a plane convex set of area A, perimeter L and inradius r is

−A+ rL− πr2 > 0.

Show that for a rectangle (previous exercise) we have

−A+ rL− 4r2 > 0.
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18–6 (a) Let P be any plane convex quadrilateral with consecutive sides of lengths, a, b, c, d,
so L(P ) = a+ b+ c+d. Let α, β, γ, δ be the consecutive angles of P , with α the angle
between the sides of lengths a and b, β the angle between the sides of lengths b and c,
and so forth. Show that

4A(P ) = ab sinα + bc sin β + cd sin γ + da sin δ,

and from this deduce
4A(P ) 6 (a+ c)(b+ d), (12)

with equality if and only if P is a rectangle.

(b) From part (a) and the Arithmetic-Geometric Mean inequality, derive

L(P )2 > 16A(P ),

with equality if and only if P is a square.

Remark. Inequality (12) is the Isoperimetric inequality for quadrilaterals. It is
equivalent to the statement that among all plane quadrilaterals of the same perimeter,
the square has the largest area. The above argument was made for convex quadrilat-
erals, but the result holds for all plane quadrilaterals, as can be seen by applying the
inequality to the convex hull of any plane quadrilateral.

18–7 The Isoperimetric inequality for n–gons (which we do not prove here) asserts that any
plane n–gon with area A and perimeter L satisfies

L2 > 4n tan(
π

n
)A.

Explain why this is equivalent to the statement that a regular n–gon encloses area at
least as large as any n–gon of the same perimeter.

18–8 Let K be a closed and bounded plane convex set with inradius r > 0. Define

f(λ) = (L(K−λ))
2, for 0 6 λ6 r.

For the purposes of this exercise, assume f is differentiable at all but a countable
number of points in [0, r].

(a) Using Theorem 37, show that

f(λ) > f(λ+ t) + 4πt(L(K−λ−t)),

and deduce from this that for those values of λ such that the derivative f ′(λ) exists,
we have

−f ′(λ) > 4πL(K−λ).

(b) Deduce from part (a) that

L(K)2 − (L(K−r))
2 > 4πA(K).

That is, we have a strengthening of the Isoperimetric inequality in the form

L(K)2 − 4πA(K) > (L(K−r))
2 > 0.
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Figure 36: Partitioning P and P +Q to illustrate A(P,Q).

19 Mixed Areas in R2

In this section we define a functional called the mixed area of two plane convex sets which
assigns to K1 and K2 a real number A(K1, K2). It will turn out that for any planar convex

set K, A(K,K) = A(K) and A(K,B) = L(K)
2

when B is the circular disk of radius 1.
There are several avenues open to us for introducing the concept of mixed area. We

choose to start with the case where P and Q are convex polygons. The properties we derive
will be extended to general closed and bounded plane convex sets using approximation by
polygons.

In Figure 36 we see that the polygon P +Q can be partitioned into pieces:

• Q (dark shading),

• parallelograms (light shading), and

• a dissection of P (polygons labeled 1, 2, 3 and 4 in the figure),

giving
A(P +Q) = A(Q) + (sum of area of parallelograms) + A(P ).

The sum of the area of the parallelograms is

n∑
i=1

h(P, θi)`(Q, θi),

where Q has n edges, the outer normal to the i-th edge is (cos θi, sin θi), `(Q, θi) is the length
of the i-th edge of Q, and h(P, θi) is the support function of P in direction (cos θi, sin θi),
i = 1, 2, . . . , n.
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We define the mixed area of two polygons A(P,Q) to be

A(P,Q)
def
=

n∑
i=1

h(P, θi)`(Q, θi). (13)

With this definition we have

A(P +Q) = A(P ) + 2A(P,Q) + A(Q).

19.1 Extension of Mixed Areas to General Convex Sets

Let K1 and K2 be closed and bounded plane convex sets, not necessarily polygons, and
choose any sequences of convex polygons {Pn} and {Qn}, such that

Pn → K1 and Qn → K2 as n→∞.

The Corollary to Theorem 31, page 68, guarantees the existence of such sequences. From
Exercise 14–5, we also have (Pn +Qn)→ (K1 +K2). Then, by the definition above,

A(Pn, Qn) =
mn∑
i=1

h(Pn, θi)`(Qn, θi),

where polygon Qn has mn edges. We now define the mixed area of K1 and K2 by

A(K1, K2)
def
=

1

2
(A(K1 +K1)− A(K1)− A(K2)). (14)

Since

A(Pn)→ A(K1), A(Qn)→ A(K2), and A(Pn +Qn)→ A(K1 +K2) as n→∞,

by Theorem 33, page 70, we have

A(Pn, Qn) =
1

2
(A(Pn+Qn)−A(Pn)−A(Qn))→ 1

2
(A(K1+K1)−A(K1)−A(K2)) = A(K1, K2).

19.2 Exercises

Prove the properties in Exercises 19–1 to 19–8 for all closed and bounded plane convex sets.
Each property may be established for polygons using (13) and then extending it to closed
and bounded plane convex sets using approximation, as in the previous section, or using
(14), which applies to all sets.

19–1 A(K1, K2) = A(K2, K1) (symmetry).

19–2 A(K,K) = A(K).
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Figure 37: P and Q are convex polygons with parallel edges (Exercise 19–9).

19–3 A(a +K1,b +K2) = A(K1, K2) (translation invariance).

19–4 A(K,B) = 1
2
L(K), where B = B(0, 1).

19–5 A(λK1, K2) = λA(K1, K2) = A(K1, λK2), for all λ > 0 (homogeneous of degree 1 in
each variable).

19–6 If K1 ⊆ K2, then A(K1, K3) 6A(K2, K3), and similarly in the second variable (mono-
tonicity).

19–7 A(K1 +K2, K3) = A(K1, K2) + A(K2, K3).

19–8 A(λ1K1 + λ2K2) = λ2
1A(K1) + 2λ1λ2A(K1, K2) + λ2

2A(K2).

19–9 Let P and Q be convex n–gons in R2, with P ⊂ Q and the sides of P parallel to
corresponding sides of Q. If xixi+1 is a side of P and yiyi+1 the corresponding parallel
side of Q, choose any point zi ∈ yiyi+1, with zn ∈ yny1 (Figure 37). Let R be the
(nonconvex) polygon with vertices

x1, z1, x2, z2, x3, z3, . . . ,xn−1, zn−1, xn, zn, x1.

Show that the area enclosed by R is A(P,Q).

19–10 Suppose {Kn} and {Ln} are sequences such that Kn → K as n→∞ and Ln → L as
n→∞. Prove that

A(Kn, Ln)→ A(K,L) as n→∞.

[Hint: 2A(Kn, Ln) = A(Kn + Ln)− A(Kn)− A(Ln). Recall Exercise 14–5.]

19–11 Suppose {Kn} is a sequence such that Kn → K as n → ∞. Use Exercise 19–10 to
prove that L(Kn)→ L(K) as n→∞. [Hint: See Exercise 19–4.]

19–12 Of all plane convex sets of constant width 1, explain why a circular disk of diameter
1 has maximum area. [Hint: Recall Barbier’s Theorem, Exercise 13–11 (b).]
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19–13 The previous exercise might bring to mind the question of what figure has minimum
area among all plane convex sets of constant width 1. The answer is the Reuleaux
triangle of constant width 1, page 37. This result is called the Blaschke-Lebesgue
Theorem, whose proof is developed in this exercise. (However, we do not prove a
major clause of this theorem, namely, that the Reuleaux triangle is the unique figure
that minimizes area among all plane convex sets of the same constant width.)

So, let K be a convex set of constant width 1 in R2. Let H be a regular hexagon of
side length 1√

3
circumscribed about K, as constructed in our proof of Pál’s Theorem,

Theorem 24, page 58. Assume K and H are positioned so that 0 is the center H, hence
−H = H.

(a) Check that A(H) =
√

3
2

.

(b) Explain why A(K,−K) 6A(H,H) = A(H) =
√

3
2

. [Hint: See Exercise 19–6.]

(c) Show that A(K + (−K)) = π, and deduce from this that

A(K) >
π −
√

3

2
.

Why does this show that K has area at least that of a Reuleaux triangle of constant
width 1?

20 Minkowski’s Inequality for Plane Convex Sets

Minkowski’s inequality for convex sets in R2 (not the algebraic inequality derived in Exer-
cise 2–6) gives a generalization of the Isoperimetric inequality.

Theorem 40 (Minkowski’s Inequality for Planar Convex Sets) Let K1 and K2 be closed
and bounded convex sets in R2. Then

A(K1, K2)
2 >A(K1)A(K2), (15)

and equality holds if and only if K1 is a homothet to K2, that is, K2 is a translate of λK1

for some λ > 0.

Remark. If K1 = K and K2 = B = B(0, 1), then A(K1, K2) = A(K,B) = L(K)/2,
A(K1) = A(K), and A(K2) = π. Then Minkowski’s inequality reduces to

L(K)2 > 4πA(K),

with equality if and only if K is a circular disk.

We give a proof of the inequality using the method of inner parallel bodies, but do not
treat the case of equality.
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Proof part (i). Assume K1 and K2 have the same inradius r > 0. For notational conve-
nience, denote K1 = K and K2 = M provisionally. Let B = B(0, 1). For λ > 0, t > 0,
λ+ t < r, recall that

K−(λ+t) + tB ⊆ K−λ and M−(λ+t) + tB ⊆M−λ

(Section 17). By the monotonicity of mixed area (Exercise 19–6), applied to each variable,
we have

A(K−(λ+t) + tB,M−(λ+t) + tB) 6A(K−λ,M−λ).

This yields

A(K−λ,M−λ) >A(K−(λ+t),M−(λ+t)) + t(A(K−(λ+t), B) + A(M−(λ+t), B)) + πt2.

But A(K,B) = L(K)/2 and πt2 > 0, so we obtain

A(K−λ,M−λ)− A(K−(λ+t),M−(λ+t)) >
t

2
(L(K−(λ+t)) + L(M−(λ+t))).

Now let 0 = λ0 < λ2 < · · · < λm−1 < λm = r be a partition of the interval [0, r], Apply the
last inequality with λ = λi−1 and t = λi − λi−1 to get

A(K−λi−1
,M−λi−1

)− A(K−λi
,M−λi

) >
1

2
(L(K−λi

) + L(M−λi
))(λi − λi−1),

i = 1, 2, . . . ,m. Sum this for i = 1, 2, . . . ,m and note that the lefthand side is a telescoping
sum reducing to

A(K0,M0)− A(K−r,M−r) = A(K,M)− A(K−r,M−r).

The righthand side is a Riemann sum, and we have

A(K,M)− A(K−r,M−r) >
1

2

m∑
i=1

(L(K−λi
) + L(M−λi

))(λi − λi−1).

As we let the mesh of the partition approach 0, the righthand side approaches the Riemann
integral, so we have

A(K,M)− A(K−r,M−r) >
1

2

∫ r

0
L(K−λ) + L(M−λ) dλ.

Using (10) and the Remark on page 76, we have

A(K,M) >A(K−r,M−r) +
1

2
(A(K) + A(M)).

Reverting back to our notation K1 and K2, and using A(K−r,M−r) > 0, we have

A(K1, K2) >
1

2
(A(K1) + A(K2)), (16)
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P

Figure 38: Q is circumscribed about K, P ⊂ K (Exercise 20–1).

when K1 and K2 have the same inradius.

Part (ii). Given any closed and bounded plane convex sets K1 and K2 with inradii r1 and
r2 respectively, ( 1

r1
)K1 and ( 1

r2
)K2 have the same inradius r = 1, so (16) gives

A(
1

r1
K1,

1

r2
K2) >

1

2
(A(

1

r1
K1) + A(

1

r2
K2)).

Using homogeneity (Exercise 19–5), this implies

1

r1r2
A(K1, K2) >

1

2
(

1

r2
1

A(K1) +
1

r2
2

A(K2)).

From this we get

A(K1, K2) >
1

2
(
r2
r1
A(K1) +

r1
r2
A(K2))

=
1

2

(√
r2
r1
A(K1)−

√
r1
r2
A(K2)

)2

+
√
A(K1)A(K2),

giving us the required Minkowski inequality (15).

20.1 Exercises

20–1 Let K be a closed and bounded 2–dimensional convex set in R2. Suppose P is a convex
n–gon with P ⊂ K, and Q a convex n–gon circumscribed about K with sides parallel
to those of P (Figure 38). Show that

A(K) >
√
A(P )A(Q).

[Hint: Use Exercise 19–9 to show that A(P,Q) 6A(K); then apply Minkowski’s in-
equality for convex sets.]
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20–2 Suppose K1 and K2 are closed and bounded convex sets in R2, and

K = λ1K1 + λ2K2,

where λ1 > 0 and λ2 > 0. Show that√
A(K) > λ1

√
A(K1) + λ2

√
A(K2),

with equality if and only if K1 is homothetic to K2. [Hint: Use Exercise 19–8.]

Remark. This is known as the Brunn-Minkowski theorem for plane convex sets. It is
equivalent to Minkowski’s inequality for plane convex sets.

20–3 Suppose P is a plane convex n–gon, and Q is a convex n–gon of the same perimeter
with sides parallel to corresponding to sides of P and circumscribed about a circle.
Show that

A(Q) >A(P ).

[Hint: If Q is circumscribed about a circle of radius r, show that

A(Q) = rL(Q)/2 = rL(P )/2.

Also show that A(P,Q) = rL(P )/2. Apply Minkowski’s inequality.]

20–4 From the previous exercise deduce that among all rectangles of the same perimeter, the
square has largest area. (This is, of course, a much weaker result than Exercise 18–6
(b), page 80.)
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lune, 31

mass, center, 11
metric, 64
midpoint

convex, 6
line segment, 11

Minkowski sum, 5
Minkowski’s inequality, 9

for plane convex set, 84
mixed area, 82

polygon, 82
multiplication point by scalar, 4

network, 32
edges, 32
face, 32
vertex, 32



INDEX 94

norm, 7

origin, 4

Pál’s
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Blaschke selection, 67
Easier Supporting, 44
Harder Supporting, 45
Separation, 46

theorem of
Barbier, 63
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