THEORY OF NUMBERS, Math 115 B

Homework

1. For which positive integers a is the congruence $ax^4 \equiv 2 \mod 13$ solvable?

2. Let p be an odd prime. Show that the congruence $x^4 \equiv -1 (mod \ p)$ has a solution if and only if p is of the form $8k + 1$.

3. Using the previous exercise prove that there are infinitely many primes of the form $8k + 1$.

4. Use the index system modulo 60 to find the solutions of $11x^7 \equiv 43 (mod 60)$.

5. Encrypt the message DO NOT PASS GO using the ElGamal cryptosystem with the public-key $(p,r,b) = (2251,6,33)$. Show how the resulting ciphertext can be decrypted using the private key $a=13$.

6. Find all the quadratic residues of the following integers: a) 7, b) 8, c) 15, d) 18.

7. Find the values of the Legendre symbols $(\frac{4}{p})$ for $j = 1, 2, 3, 4, 5$

8. Show that that there are infinitely many primes of the form $4k + 1$.

9. What is the law of quadratic reciprocity?

10. Evaluate the Legendre symbols of $(\frac{3}{11}) (\frac{11}{59}) (\frac{31}{841})$

11. Show that there are infinitely many primes of the form $5k + 4$.

12. Find the solution to the following quadratic congruence $x^2 + 5x + 1 \equiv 0 (mod \ 7)$.