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Least Squares
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We do a series of experiments, collecting data. We wish to
see patterns!!
We expect the output b to be a linear function of the input t
b = α + tβ, but we need to determine α, β.
At different times ti we measure a quantity bi .
EXAMPLE: A police man is interested on clocking the speed
of a vehicle by using measurements of its relative distance.
Assuming the vehicle is traveling at constant speed, so we
know linear formula, but errors exist.
At t = ti , the error between the measured value bi and the
value predicted by the function is ei = bi − (α + βti ).
We can write it as e = b − Ax where x = (α, β). e is the
error vector, b is the data vector. A is an m × 2 matrix.
We seek the line that minimizes the total squared error or

Euclidean norm ‖e‖ =
√∑m

i=1 e2
i .

GOAL: Given m × n matrix A and m-vector b, Find x that
minimizes ‖b − Ax‖.
We assume m ≥ n.
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Distance and projection are closely related to each other!!!

Fundamental question: If we have a subspace S , is there a
formula for the projection p of a vector b into that subspace?

Imaging b as data from experiments, b is not in S , due to
error of measurement, its projection p is the best choice to
replace b. Key idea of LEAST SQUARES for regression
analysis

Let us learn how to do this projection for a line! b is projected
into the line L given by the vector a. (PICTURE!).

The projection of vector b onto the line in the direction a is
p = aT b

aT a
a.
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Note: ‖b − Ax‖ is the distance from b to the point Ax which
is element of the column space!

Key point: The optimal solution is x that minimizes that
distance!

Theorem The smallest error vector e = b − Ax is must be
perpendicular to the column space (picture!).

Thus for each column ai we have aT
i (b − Ax) = 0. Thus in

matrix notation: AT (b − Ax) = 0, This gives the normal
equations ATAx = ATb.

Theorem The best estimate is given by x = (ATA)−1ATb.
and its projection is p = A((ATA)−1AT )b.

Lemma ATA is a symmetric matrix. ATA has the same
Nullspace as A.
Why? if x ∈ N(A), then clearly ATAx = 0. Conversely, if
ATAx = 0 then xTATAx = ‖Ax‖ = 0, thus Ax = 0.

Corollary If A has independent columns, then ATA is square,
symmetric and invertible.
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Example Consider the problem Ax = b with

A =



1 2 0

3 −1 1

−1 2 1

1 −1 −2

2 1 −1


bT = (1, 0,−1, 2, 2).

We can see that there is no EXACT solution to Ax = b, use
NORMAL EQUATION!

ATA =


16 −2 −2

−2 11 2

−2 2 7

 ATb =


8

0

−7


Solving ATAx = ATb we get the least square solution
x∗ ≈ (0.4119, 0.2482,−0.9532)T with error
‖b − Ax∗‖ ≈ 0.1799.
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Example A sample of lead-210 measured the following
radioactivity data at the given times (time in days). Can YOU
predict how long will it take until one percent of the original
amount remains?

time in days 0 4 8 10 14 18

mg 10 8.8 7.8 7.3 6.4 6.4

A linear model does not work. There is an exponential decay
on the material m(t) = m0e

βt , where m0 is the initial
radioactive material and β the decay rate. By taking
logarithms

y(t) = log(m(t)) = log(m0) + βt

Thus we can now use linear least squares to fit on the
logarithms yi = log(mi ) of the radioactive mass data. In this
case we have

AT =

[
1 1 1 1 1 1

0 4 8 10 14 18

]
bT = [2.302585093, 2.174751721, 2.054123734, 1.987874348, 1.856297990, 1.856297990]

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA Least-Squares



Thus ATA =

[
6 54

54 700

]
. Solving the NORMAL form

system we get log(m0) = 2.277327661 and
β = −0.0265191683
Thus the original amount was 10 mg. After 173 days it will
below one percent of the radioactive material.

There is nothing special about polynomials or exponential
functions in the application. We can deal with approximating
function is al linear combination of some prescribed functions
h1(t), h2(t), . . . , hn(t). Then we receive data yi at time ti and
the matrix A has entry Aij = hi (tj).

The least squares method can be applied when the
measurement of error is not can be applied to situations when
not all observations are trusted the same way!

Now the error is
√

(b − Ax)TC (b − Ax). Then the weighted
least square error is given by the new equations

ATCAx = ATCb, and x = (ATCA)−1ATCb.
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Review of Orthogonal Vectors
and Subspaces .
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In real life vector spaces come with additional METRIC
properties!! We have notions of distance and angles!!
You are familiar with the Euclidean vector space Rn:

Since kindergarden you know that the distance between two
vectors x = (x1, . . . , xn) y = (y1, . . . , yn) is given by

dist(x , y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

We say vectors x , y are perpendicular when they make a 90
degree angle. When that happens the triangle they define is
right triangle! (WHY?)

Lemma Two vectors x , y in Rn are perpendicular if and only if

x1y1 + · · ·+ xnyn = xyT = 0

When this last equation holds we say x , y are orthogonal.

Orthogonal Bases: A basis u1, . . . , un of V is orthogonal if
〈ui , uj〉 = 0 for all i 6= j .

Lemma If v1, v2, . . . , vk are orthogonal then they are linearly
independent.

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA Least-Squares



The Orthogonality of the Subspaces

Definition We say two say two subspaces V ,W of Rn are
orthogonal if for u ∈ V and w ∈W we have uwT = 0.

Can you see a way to detect when two subspaces are
orthogonal?? Through their bases!

Theorem: The row space and the nullspace are orthogonal.
Similarly the column space is orthogonal to the left nullspace.

proof: The dot product between the rows of AT and the
respective entries in the vector y is zero.

Therefore the rows of AT are perpendicular to any y ∈ N(AT )

AT y =

 Column 1 of A
...

Column n of A


 y1

...
yn

 =

 0
...
0


where y ∈ N(AT ).
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There is a stronger relation, for a subspace V of Rn the set of
all vectors orthogonal to V is the orthogonal complement of
V , denoted V⊥.

Warning Spaces can be orthogonal without being
complements!

Exercise Let W be a subspace, its orthogonal complement is
a subspace, and W ∩W⊥ = 0.

Exercise If V ⊂W subspaces, then W⊥ ⊂ V⊥.

Theorem (Fundamental theorem part II) C (AT )⊥ = N(A)
and N(A)⊥ = C (AT ). Why?

proof: First equation is easy because x is orthogonal to all
vectors of row space ↔ x is orthogonal to each of the rows ↔
x ∈ N(A). The other equality follows from exercises.

Corollary Given an m × n matrix A, the nullspace is the
orthogonal complement of the row space in Rn. Similarly, the
left nullspace is the orthogonal complement of the column
space inside Rm

WHY is this such a big deal?
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Theorem Given an m × n matrix A, every vector x in Rn can
be written in a unique way as xn + xr where xn is in the
nullspace and xr is in the row space of A.

proof Pick xn to be the orthogonal projection of x into N(A)
and xr to be the orthogonal projection into C (AT ). Clearly x
is a sum of both, but why are they unique?

If xn + xr = x ′n + x ′r , then xn − x ′n = xr − x ′r Thus the must be
the zero vector because N(A) is orthogonal to to C (AT ).

This has a beautiful consequence: Every matrix A, when we
think of it as a linear map, transforms the row space into its
column space!!!
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An important picture

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA Least-Squares



Orthogonal Bases and
Gram-Schmidt
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A basis u1, . . . , un of a vector space V is orthonormal if it is
orthogonal and each vector has unit length.

Observation If the vectors u1, . . . , un are orthogonal basis,
their normalizations ui

‖ui‖ form an orthonormal basis.

Examples Of course the standard unit vectors are
orthonormal.
Consider the vector space of all quadratic polynomials
p(x) = a + bx + cx2, using the L2 inner product of integration:

〈p, q〉 =

∫ 1

0
p(x)q(x)dx

The standard monomials 1, x , x2 form a basis, but do not
form an orthogonal basis!

〈1, x〉 = 1/2, 〈1, x2〉 = 1/3, 〈x , x2〉 = 1/4

An orthonormal basis is given by

u1(x) = 1, u2(x) =
√

3(2x−1), u3(x) =
√

5(6x2−6x +1).
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Why do we care about orthonormal bases?

Theorem Let u1, . . . , un be an orthonormal bases for a vector
space with inner product V . The one can write any element
v ∈ V as a linear combination v = c1u1 + · · ·+ cnun where
ci = 〈v , ui 〉, for i = 1, . . . , n. Moreover the norm

‖v‖ =
√∑

c2
i .

Example Let us rewrite the vector v = (1, 1, 1)T in terms of
the orthonormal basis

u1 = (
1√
6
,

2√
6
,− 1√

6
)T , u2 = (0,

1√
5
,

2√
5

), u3 = (
5√
30
,
−2√

30
,

1√
30

)

Computing the dot products vTu1 = 2√
6
, vTu2 = 3√

5
, and

vTu3 = 4√
30

. Thus

v =
2√
6
u1 +

3√
5
u2 +

4√
30

u3

Challenge: Figure out the same kind of formulas if the
vectors are just orthogonal!!!

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA Least-Squares



A key reason to like matrices that have orthonormal vectors:
The least-squares equations are even nicer!!!

Lemma If Q is a rectangular matrix with orthonormal
columns, then the normal equations simplify because
QTQ = I :

QTQx = QTb simplifies to x = QTb
Projection matrix simplifies Q(QTQ)−1QT = QIQT = QQT .
Thus the projection point is p = QQTb, thus

p = (qT
1 b)q1 + (qT

2 b)q2 + · · ·+ (qT
n b)qn

So how do we compute orthogonal/orthonormal bases for a
space?? We use the GRAM-SCHMIDT ALGORITHM.

Input Starting with a linear independent vectors a1, . . . , an,
Output: orthonormal vectors q1, . . . , qn.
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So how do we compute orthogonal/orthonormal bases for a
space?? We use the GRAM-SCHMIDT ALGORITHM.

Here is the geometric idea:
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input Starting with a linear independent vectors a1, . . . , an,
output: orthogonal vectors q1, . . . , qn.

Step 1: q1 = a1

Step 2: q2 = a2 − (
aT

2 q1

qT
1 q1

)q1

Step 3: q3 = a3 − (
aT

3 q1

qT
1 q1

)q1 − (
aT

3 q2

qT
2 q2

)q2

Step 4: q4 = a4 − (
aT

4 q1

qT
1 q1

)q1 − (
aT

4 q2

qT
2 q2

)q2 − (
aT

4 q3

qT
3 q3

)q3

...
...

...
...

Step j: q4 = aj − (
aT

j q1

qT
1 q1

)q1 − (
aT

j q2

qT
2 q2

)q2 − . . . (
aT

j qj−1

qT
j−1qj−1

)qj−1

At the end NORMALIZE all vectors if you wish to have unit
vectors!! (DIVIDE BY LENGTH).
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EXAMPLE

Consider the subspace W spanned by (1,−2, 0, 1), (−1, 0, 0,−1)
and (1, 1, 0, 0). Find an orthonormal basis for the space W .
ANSWER:

(
1√
6
,
−2√

6
, 0,

1

6
), (
−1√

3
,
−1√

3
, 0,
−1√

3
), (

1√
2
, 0, 0,

−1√
2

)
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In this way, the original basis vectors a1, . . . , an can be written
in a “triangular” way!
If q1, q2, . . . , qn are orthogonal Just think of rij = aT

j qi

a1 = r11(q1/q
T
1 q1), (1)

a2 = r12(q1/q
T
1 q1) + r22(q2/q

T
1 q1) (2)

a3 = r13(q1/q
T
1 q1) + r23(q2/q

T
2 q2) + r33(q3/q

T
3 q3) (3)

...
... (4)

an = r1n(q1/q
T
1 q1) + r2n(q2/q

T
2 q2) + · · ·+ rnn(qn/q

T
n qn).

(5)

Where rij = aT
j qi .

Write this equations in matrix form! we obtain A = QR
where A = (a1 . . . an) and Q = (q1 q2 . . . qn) and
R = (rij).
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Theorem (QR decomposition) An m × n matrix A with
independent columns can be factor as A = QR where the
columns of Q are orthonormal and R is upper triangular and
invertible.

NOTE: A and Q have the same column space. R is an
invertible and upper triangular

The simplest way to compute the QR decomposition:
1 Use Gram-Schmidt to get the qi orthonormal vectors.
2 Matrix Q has columns q1, . . . , qn

3 The matrix R is filled with the dot products rij = aT
j qi .

Key Point: Every matrix has two decompositions LU and QR.

They are both useful for different reasons!! One is for solving
equations, the other good for least-squares.
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