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LINEAR ALGEBRA IS VERY USEFUL

In this course we will try to highlight and discuss applications in
three main areas:

Networks and Graphs
1 Electrical/Mechanical/Transportation networks
2 World Wide Web Searching.

Data Analysis
1 Least Squares and Interpolation
2 Vector Recognition and Machine Learning.

Information Processing
1 Error-correcting codes.
2 Data compression and Noise removal.

In blue appear the possible final projects.
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Networks
and Graphs.
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A graph consists of nodes ( or vertices) and edges (or
connections). A typical example is the street network where
the edges are the streets and the nodes are the intersections
and of course, the internet gives some of the best examples of
graphs! The facebook graph (nodes are people edges
represent friends) or the wikipedia graph (nodes are concepts
and edges represent relations via links).

Graphs and networks are great tools in mathematical research,
electrical engineering, computer programming and networking,
business administration, sociology, economics, marketing,
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If a graph has numeric values on its edges or vertices is called
a network. A graph is called directed or a digraph if its edges
are directed (that means they have a specific direction).
oriented edges are called arcs or arrows Often the edges of
networks are directed.

A walk joining two vertices X and Y of a graph is alternating
sequence of incident nodes and edges (or arcs). A path is a
walk without repeated vertices. A walk starting and ending at
vertex v is called a loop . A loop without repeated nodes is a
cycle or circuit. A graph G is connected if there is a path
connecting any two vertices. Else G is disconnected.
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Matrices are a useful tool for studying graphs, since they turn
the picture into numbers, and then one can use techniques
from linear algebra.
Given a graph G with n vertices v1, . . . , vn, we define the
adjacency matrix of G with respect to the labeling v1, . . . , vn

of the vertices as being the n × n matrix AG = (aij) whose
entry aij = 1 if there is an edge between vertex vi and vj and
zero otherwise.

Note that for an undirected graph, the adjacency matrix is
symmetric (that is it is equal to its transpose), but it is not
necessarily the case for a digraph. Any square matrix with all
entries 0 or 1 and 0’s on the main diagonal determines a
unique digraph. Here is a useful application (EXERCISE):
Theorem: If AG is the adjacency matrix of a graph G (with
vertices v1, . . . vn), the (i, j)-entry of (AG )r represents the
number of distinct walks from vertex vi to vertex vj in the
graph of length r .
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There are important questions one can ask about a graph.
Suppose we have a large graph G and we wish to cut off a
piece of the vertex set by removing as few edges as possible
(e.g., you want to attack an enemy’s communication network).

Let us call a partition of the vertex set V into two subsets A
and V \ A a cut. Denote by E (A,V \ A) the edges going
from one side to the other. We want to minimize the price to
pay given by

p(A,V \ A) =
|V ||E (A,V \ A)|
|A||V \ A|

.

Denote by pG the value attained at the sparsest cut.

To solve this problem one uses the Laplace Matrix. Consider
the degree matrix DG of the graph G which is the diagonal
n× n matrix whose i-th diagonal entry is the number of edges
incident on node i . The Laplace matrix LG of the graph G is
a defined as DG − AG , where AG is the adjacency matrix of
the graph.
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The Laplace matrix LG is very important and it has some nice
properties. It is symmetric and it is positive semidefinite. This
means that xTLGx is non-negative for all real vectors x . So
all eigenvalues of LG are non-negative and real (WHY?
EXERCISE!)

It is interesting to note that the vector 1 = (1, 1, 1, 1, . . . , 1) is
is an eigenvector with eigenvalue zero! (CHECK). Now the
amazing thing is that the second eigenvalue says a lot about
finding a sparse cut:
Theorem If µ is the second smallest eigenvalue and u is an
eigenvector, then one can easily find a cut of price at most
4
√

dmaxµ, where dmax is the maximum degree of the graph.
Moreover the best price pG ≥ µ.

We are going to learn this algorithm and why it works!

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA



Another fascinating application is to count the number of
Spanning trees of a graph: A spanning tree is a subgraph
that is connected but has no cycles. Important for
communications and planning.

How many different spanning trees are there? This is
answered by the following cool theorem
Theorem: Given a graph with n nodes and LG the Laplace
matrix of G then if we denote by L− the (n − 1)× (n − 1)
matrix obtained by deleting the last row and the last column
of LG , then the number of spanning trees of G equals
det(L−).
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Another matrix for graphs is the node-edge incidence matrix
BG . Its columns are labeled by the edges or arcs on the graph
and the rows correspond to the nodes. The entry aik = 1 if
the k-th edge joins node vi to another node. When using arcs,
the value is +1 when vi is at the head of the arrow and −1
when it is the tail of the arrow. For example, the complete
graph K5 has: 26666666664

1 0 1 1 1 0 0 0 0 0

1 0 0 0 0 1 1 1 0 0

0 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 1

37777777775

Often, network problems can be modeled by a systems of
linear equation coming from BG . E.g., Electrical Networks
we have three laws:

1 Ohm ’s Law: The voltage drop across a resistor is the
product of the current and the resistance: V=IR

2 Kirchhoff’s first Law: The sum of the currents flowing into a
node is equal to the sum of the current flowing out.

3 Kirchhoff’s second Law: The sum of the voltage drops
around a closed loop is equal to the total voltage in the loop.
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Example In the network below

Applying Kirchhoff’s first Law to either of the nodes B or C,
we find I1 = I2 + I3 or I1 − I2 − I3 = 0.
Applying Kirchhoff’s second Law to the loops BDCB and
BCAB, we obtain −10I1 + 10I2 = 10 and 20I1 + 10I2 = 5.
This gives a linear system of three equations: I1 − I2 − I3 = 0,
−10I1 + 10I2 = 10 and 20I1 + 10I2 = 5 whose solution gives
the current in each channel of the system. This is easy to
solve, but in general?? HOW SOLVE LARGE SYSTEMS
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Information Processing
Error-Correction
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Transmitted messages, like data from a DVD, are always
subject to noise. It is important to be able to encode a
message in such a way that after noise scrambles it, it can be
decoded back to its original form.
This is done sometimes by repeating the message two or three
times, something very common in human speech. However,
copying data stored on a compact disk, or a floppy disk once
or twice requires extra space to store.
Messages are sent as sequences of 0’s and 1’s, such as 10101
or 1010011. Assume we want to send the message 1011. This
binary word may stand for a real word, such as COOL, or a
sentence such as MATH IS COOL.
To encode 1011 we could attach a binary tail, so if the
message gets distorted to, say, 0011, we can detect the error.
Such tail could be a 1 or 0, depending on whether we have an
odd or an even number of 1’s in the word.
This way all encoded words will have an even number of 1’s.
So 1011 will be encoded as 10111. If this is distorted to
00111 we know that an error has occurred (and two digits?).
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In the 1950’s, R.H. Hamming introduced an interesting single
error-correcting code that became known as the Hamming
code. The key of the method is to use linear algebra not over
the real numbers but over a finite field of two elements Z2.
Z2 = 0, 1 and has operations 0 + 1 = 1, 0 + 0 = 0, 1 + 1 = 0,
0 · 0 = 0, 1 · 0 = 0, 1 · 1 = 1. Using the field Z2 we can
construct the vector space (Z2)n. A big difference between
the real vector space Rn and (Z2)n is that the latter is finite,
it has only 2n possible vectors!
Given two integers k ≤ n a subspace of (Z2)n. of dimension k
is called an (n, k)-linear code. The elements of the linear
code are the encoded words. Consider for example, the
matrix H over Z2 whose columns are the non-zero vectors of
(Z2)3:

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .
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The nullspace of H, N(H) is called a Hamming code. In this
case this is a (7, 4) code (WHY?). We say that H is a parity
check matrix for the code N(H). Using Gaussian elimination
we get the a basis for the code
B =
{(1, 0, 0, 0, 0, 1, 1), (0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1)}
If ei is the standard vector in (Z2)7 it is not a member of
N(H), thus if v ∈ N(H) then v + ei is not in N(H). Also if
Hv = ci then note v + ei ∈ N(H). and v + ej is not in N(H)
for j 6= i .

The matrix G whose rows are the elements of the basis B is
called the generator matrix of the Hamming (7,4)-code.
Using these matrices and vector spaces we have an algorithm
for error-correction.
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Say we want to send a word u consisting of four binary digits
u1u2u3u4. Assume the encoded word might get distorted by noise
changing no more than one of its components. Let w be the
received word.

To encode u, form the linear combination v of the elements of
the basis B above with the four digits of u as coefficients.
Note that v = [u1u2u3u4]G , where G is the generator matrix.
By construction, the vector v is in N(H). Note also that v
would give a seven digit vector whose first four digits
represent the original word.
Compute Hw , where H is the matrix above.
If Hw = 0, then w is in N(H). A single error would mean w is
not in N(H) by the first part. We conclude that there is no
distortion, and u is the first four digits of w .
If Hw = ci for some i , then v + ei is a vector of N(H), and
v + ej is not in N(H) for all j 6= i . Thus changing the i-th
component of w (from 0 to 1 or from 1 to 0) and get a new
vector w ′. The first four digits of w ′ represent the original
word u.
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Suppose we received w = 1100011. The procedure gives Hw
is (0, 1, 0)T . Since Hw is equal to the second column of H,
changing the second component of w give the word originally
encoded. We conclude that the original message was 1000.

Suppose we received w = 0101010. Since in this case
Hw = 0, there was no error of transmission, thus the original
word was 0101.

The words we sent are small but in real life the words have
many more digits. There are many other kinds of codes that
have better performance.

LINEAR ALGEBRA IS VERY POWERFUL AND USEFUL....
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Regression
Least Squares
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One of the important topics we will discuss is the so called method
of regression or curve fitting. The process tries to find equations of
approximating curves to a set of raw data. We desire to have a
curve with minimal deviation from all data points.
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Suppose that the data points are (x1, y1), (x2, y2), . . . , (xn, yn)
where x is the independent variable and y is the dependent
variable the fitting curve f (x) has a deviation error for each
point of di = yi − f (xi ). We are looking for the curve f (x)
that minimizes

d2
1 + d2

2 + d2
3 + · · ·+ d2

n

The approximation by a polynomial f (x) will depend on the
degree of the polynomial but as we will see this is done via
system of linear conditions. This is related to minimizing
quadratic constraints over the points inside a linear space.

We will learn how and why this method works so well.
Invented by Legendre Gauss back in the 1800’s

Jesús De Loera, UC Davis MATH 167: APPLIED LINEAR ALGEBRA


