Vectors and Matrices (1.1-1.3).
CHAPTER 1
Vectors and Linear Combinations 1.1

Fig. 3. Parallelogram of forces.
We can think of VECTORS, as ordered \(n \)-tuples of real numbers. Each entry is a **component**. We often write them vertically! They are points in \(\mathbb{R}^n \).

\[
U = \begin{pmatrix} 1 \\ 12 \\ -7 \end{pmatrix} \quad U^T = (1 \quad 12 \quad -7)
\]

- **Vectors can be added** Get a vector again!!
- **Vector can be multiplied by a number** Get a vector again!!
- **Definition** For a finite set of vectors \(v_1, v_2, \ldots, v_k \), and numbers \(\lambda_1, \lambda_2, \ldots, \lambda_k \) a **linear combination** is the vector obtained as

\[
\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k
\]

The result is obtained **operating one component** at a time!!

\[
\begin{pmatrix} 1 \\ 12 \\ -7 \end{pmatrix} + 7 \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 12 \\ -7 \end{pmatrix} + \begin{pmatrix} 21 \\ -7 \\ 7 \end{pmatrix} = \begin{pmatrix} 22 \\ 5 \\ 0 \end{pmatrix}
\]
Addition of vectors is then a commutative operation:
\[A + B = B + A. \]

There is a geometric interpretation of adding two vectors:

What is \(A - B \) in the picture?
Addition of vectors is then a commutative operation: \(A + B = B + A \).

There is a geometric interpretation of adding two vectors:

What is \(A - B \) in the picture?
Addition of vectors is then a commutative operation:
\[A + B = B + A. \]

There is a geometric interpretation of adding two vectors:

What is \(A - B \) in the picture?
QUESTION What happens if we take ONE vector \(A \) and compute all its linear combinations \(\lambda A \)? What is the picture?

QUESTION Take two vectors \(A, B \) in the plane, compute all its linear combinations \(\lambda A + \mu B \) with coefficients \(0 \leq \lambda, \mu \leq 1 \). What is the resulting picture?

QUESTION Think of the 12 vectors that go from the center of a clock to the hours 1:00, 2:00, \ldots, 12:00. What is the sum of these vectors?

QUESTION Take two vectors \(A, B \) in the plane all its linear combinations \(\lambda A + \mu B \) with coefficients \(\lambda, \mu \) INTEGER numbers, how the linear combinations look like?

QUESTION Take two vectors \(A, B \) in the plane all its linear combinations \(\lambda A + \mu B \) with coefficients \(\lambda, \mu \) any real numbers? What is the end result?
QUESTION Take three vectors A, B, C in the SPACE all its linear combinations $\lambda A + \mu B + \gamma C$ with coefficients $0 \leq \lambda, \mu, \gamma \leq 1$, what is the picture?

QUESTION Take three vectors A, B, C in the SPACE all its linear combinations $\lambda A + \mu B + \gamma C$ with coefficients $0 \leq \lambda, \mu, \gamma \leq 1$, what is the picture?

QUESTION What do all linear combinations of the vectors
\[
\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\] in 3-D generate ??

QUESTION What happens if you add the vector $\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$, How does your answer change?
- **Wish:** to measure the length of a vector, or the angle between two vectors

- **Definition** The dot product of two vectors

\[p = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}, \quad q = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix} \]

equals

\[p \cdot q = p_1q_1 + p_2q_2 + \cdots + p_nq_n = q \cdot p \]

- **Definition** The length of a vector is defined as

\[||v|| = \sqrt{v \cdot v} \]
Proposition 1: When \(v, u \) are perpendicular vectors, their dot product equals zero. **WHY?** Give a justification!!

We can use the dot product to compute the angle between two vectors (**WHY?**):

\[
A \cdot B = ||A|| ||B|| \cos(\theta)
\]

In other words, \(A \cdot B = ||A|| ||B|| \cos(\theta) \).

- Dot product is NEGATIVE angle is above \(90^\circ \).
- Dot product is POSITIVE angle is below \(90^\circ \).

WHY IS THIS TRUE? Basic trigonometry!!
The quantity $|\frac{A \cdot B}{||A||||B||}|$ never exceeds ONE, because the cosine never does!! thus

Schwarz Inequality: $|A \cdot B| \leq ||A||||B||$

The **Triangle inequality** Length of $(A + B)$ is less than or equal to the length of A plus length of B

\[
||A + B||^2 = (A + B) \cdot (A + B) = A \cdot A + A \cdot B + A \cdot B + B \cdot B = ||A||^2 + 2(A \cdot B) + ||B||^2 \quad \text{because } A \cdot B = B \cdot A
\]

\[
\leq ||A||^2 + 2(||A|| ||B||) + ||B||^2 = (||A|| + ||B||)^2 \quad \text{Schwarz Ineq.}
\]

Thus $||A + B||^2 \leq (||A|| + ||B||)^2$. Taking (positive) square root gives

\[
||A + B|| \leq ||A|| + ||B||
\]
The Law of Cosines: Justify with vectors!!!

\[c^2 = a^2 + b^2 - 2ab \cos(\gamma) \]

HOW CAN YOU SHOW THE LAW OF COSINES IS CORRECT USING VECTOR PROPERTIES?
LAST EPISODE OF THIS ADVENTURE WE SAW....
Lines, Planes, and HYPER-planes, a first taste!!

- Two points define a line (ONE dimensional object)
 - in \mathbb{R}^2 given by a single equation $ax + by = q$, but needs more in higher dimension!!

- Three non-collinear points define a plane (TWO dimensional object)
 - in \mathbb{R}^3 is given by a single equation $ax + by + cz = q$, again, you needs more equations to describe the same object in higher dimension!!

- Four non-collinear or co-planar points in 4-dimensions or more define a 3-hyperplane (THREE dimensional object)
 - inside \mathbb{R}^4 given by one equation $ax + by + cz + dw = q$!!

Challenge: Given the points how do you find the equation of the line, plane or hyperplane that contains them?

- NEED to find the coefficients a,b,d,c,q, etc.
You are given points (2,3,−4) and (3,−2,5) find the parametric line equations that describe the line $x = 2 + t, \ y = 3 - 5t, \ z = -4 + 9t$.

You are given points (2,−2,1), (−1,0,3), and (5,−3,4) what is the equation of the plane that contains them?

We are looking for $ax + by + cz = d$ that contains those points! Need to find a, b, c, d. HOW? Learn this in 21D!!

You can use cross-product

But suppose instead I give you (7,2,−3,9), (3,4,1,−2), (1,0,3,−5), (1,1,0,2). How to find $ax + by + cz + dw = q$??

KEY IDEA Each point must satisfy the equation $ax + by + cz + dw = q$, each point gives ONE linear equation!! Set up a system of linear equations with variables a, b, c, d, q and then solve it the system.

The system is now:

$$7a + 2b - 3c + 9d - q = 0,$$
$$3a + 4b + c - 2d - q = 0,$$
$$a + 3c - 5d - q = 0,$$
$$a + b + 2d - q = 0.$$
NOTE: This is the same as saying: there are numbers a, b, c, d such that

$$
a \begin{bmatrix} 7 \\ 3 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 4 \\ 0 \\ 1 \end{bmatrix} + c \begin{bmatrix} -3 \\ 1 \\ 3 \\ 0 \end{bmatrix} + d \begin{bmatrix} 9 \\ -2 \\ -5 \\ 2 \end{bmatrix} = \begin{bmatrix} q \\ q \\ q \\ q \end{bmatrix}
$$

If the 4 points $(7, 2, -3, 9), (3, 4, 1, -2), (1, 0, 3, -5), (1, 1, 0, 2)$ are in a hyperplane the vector $(q, q, q, q)^T$ is a linear combination of the 4 vectors you get by looking at the first, second, third, fourth entries of the original points!!!
• To find a non-trivial solution we can add the condition that $q = 1!!$ The new system is

\[
\begin{align*}
7a + 2b - 3c + 9d - q &= 0, \\
3a + 4b + c - 2d - q &= 0, \\
a + 3c - 5d - q &= 0, \\
a + b + 2d - q &= 0, \quad \text{AND} \quad q = 1.
\end{align*}
\]

• We can solve any system of linear equations using MATLAB. Create a MATRIX for the system:

\[
\begin{bmatrix}
7 & 2 & -3 & 9 & -1 \\
3 & 4 & 1 & -2 & -1 \\
1 & 0 & 3 & -5 & -1 \\
1 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

• The right-hand side vector we want to solve for is $b = (0, 0, 0, 0, 1)^T$. Solution is $(0, 1/5, 1, 2/5, 1)$.

Jesús De Loera, UC Davis MATH 22A: LINEAR ALGEBRA Chapter 1
• **Question:** If given two vectors in the plane, \((a, b)\) and \((c, d)\), when are they giving the same line through the origin? \((a, b)\) must be a multiple of \((c, d)\): \((a, b) = \lambda(c, d)\) or \((a, b) - \lambda(c, d) = 0!\)

• **Question:** Two vectors \((p, q, r)\) \((u, v, w)\) in \(\mathbb{R}^3\) define a plane \(P\) through the origin \((0, 0, 0)\), if I give you a new vector \((e, f, g)\) **How do I know when \((e, f, g)\) is in \(P\)?**

• Say the plane has equation \(aX + bY + cZ = 0\), for some unknown numbers, \(a, b, c\) (not all zero!!) then it must be the case that

\[
\begin{bmatrix}
 p \\
 u \\
 e
\end{bmatrix} + b\begin{bmatrix}
 q \\
 v \\
 f
\end{bmatrix} + c\begin{bmatrix}
 r \\
 w \\
 g
\end{bmatrix} = 0
\]
Definition We say that vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are **linearly dependent** if there are numbers $\lambda_1, \ldots, \lambda_k$, not all zero, such that

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_k \mathbf{v}_k = 0$$

There is a linear combination that gives the zero vector!!!

If such numbers are impossible to find then we say the vectors are **linearly independent** E.g., $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$.

We just saw that vectors are all in the same line or plane precisely when they are linearly dependent!!

HOW to find such numbers λ_i? again we are solving a system of linear equations!
A **MATRIX** is an $m \times n$ array of numbers. It has m **rows** and n **columns**

\[
\begin{bmatrix}
1 & 3 & 2 & -1 & 0 \\
2 & 6 & 1 & 4 & 3 \\
-1 & -3 & -3 & 3 & 1 \\
3 & 9 & 8 & -7 & 2
\end{bmatrix}
\]

NOTE: Vectors are matrices ($n \times 1$ matrices).

Matrices can be thought of as groups of vectors! E.g., the above matrix is made of FIVE vectors inside 4-dimensional space.
What is a linear combination in terms of matrices?
Multiplication of a matrix and a vector!!

We think of \(\lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_n p_n \) as a matrix with columns \(A = [p_1 \; p_2 \; \ldots \; p_n] \) multiplied by the vector.

Define \(Ax = \lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_n p_n \)

Example:

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\begin{pmatrix}
9 \\
8 \\
7
\end{pmatrix}
\]

final matrix will be 2x1

2x3 \hspace{0.5cm} 3x1

3=3 so proceed
Now we can use this to multiply two matrices A, B. Clearly some things must match!!

Key Point Multiplication of two matrices can be done vector by vector!! IF the sizes of the matrices match!!

For a $m \times n$ matrix A and an $n \times p$ matrix B HOW TO MULTIPLY THEM?

Say B has column vectors $B = [v_1 \ v_2 \ v_3 \ \ldots \ v_p]$ The new matrix AB is a matrix with columns (matching the right size for A).

$$AB = [Av_1 \ Av_2 \ Av_3 \ \ldots \ Av_p]$$

Example

NO! we cannot multiply any pair of matrices AND AB not always equal to BA