Orthogonality and Least Squares Approximation
QUESTION:

Suppose $Ax = b$ has no solution!!
Then what to do? Can we find an Approximate Solution?
Say a police man is interested on clocking the speed of a vehicle by using measurements of its relative distance. At different times t_i we measure distance b_i.

Assuming the vehicle is traveling at constant speed, so we know linear formula, but errors exist!

Suppose we expect the output b to be a linear function of the input t, $b = \alpha + t\beta$, but we need to determine α, β.

At $t = t_i$, the error between the measured value b_i and the value predicted by the function is $e_i = b_i - (\alpha + \beta t_i)$.

We can write it as $e = b - Ax$ where $x = (\alpha, \beta)$. e is the error vector, b is the data vector. A is an $m \times 2$ matrix.

We seek the line that minimizes the total squared error or Euclidean norm $\|e\| = \sqrt{\sum_{i=1}^{m} e_i^2}$.
KEY GOAL We are looking for x that minimizes $\| b - Ax \|$.
Clearly if \(b \in C(A) \) then we can make the value \(||b - Ax|| = 0 \).

Note that \(||b - Ax|| \) is the distance from \(b \) to the point \(Ax \) which is element of the column space!

The error vector \(e = b - Ax \) is must be **perpendicular to the column space of** \(A \).

Thus for each column \(a_i \) we have \(a_i^T(b - Ax) = 0 \). Thus in matrix notation: \(A^T(b - Ax) = 0 \), This gives

\[
A^T Ax = A^T b
\]

We are going to study this system ALOT!!!

PUNCH LINE If \(A \) has independent columns, then \(A^T A \) is square, symmetric and invertible.
We say vectors x, y are **perpendicular** when they make a 90 degree angle. When that happens the triangle they define is right triangle! (WHY?)

Lemma Two vectors x, y in \mathbb{R}^n are perpendicular if and only if

$$x_1y_1 + \cdots + x_ny_n = xy^T = 0$$

When this last equation holds we say x, y are **orthogonal**.

Orthogonal Bases: A basis u_1, \ldots, u_n of V is orthogonal if $\langle u_i, u_j \rangle = 0$ for all $i \neq j$.

Lemma If v_1, v_2, \ldots, v_k are orthogonal then they are linearly independent.
Definition: We say two subspaces V, W of \mathbb{R}^n are orthogonal if for $u \in V$ and $w \in W$ we have $uw^T = 0$.

Can you see a way to detect when two subspaces are orthogonal?? Through their bases!

Theorem: The row space and the nullspace are orthogonal. Similarly the column space is orthogonal to the left nullspace.

Proof: The dot product between the rows of A^T and the respective entries in the vector y is zero.

Therefore the rows of A^T are perpendicular to any $y \in N(A^T)$.

$$A^T y = \begin{bmatrix} \text{Column 1 of } A \\ \vdots \\ \text{Column n of } A \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $y \in N(A^T)$.
There is a stronger relation, for a subspace \(V \) of \(\mathbb{R}^n \) the set of all vectors orthogonal to \(V \) is the **orthogonal complement** of \(V \), denoted \(V^\perp \).

Warning Spaces can be orthogonal without being complements!

Exercise Let \(W \) be a subspace, its orthogonal complement is a subspace, and \(W \cap W^\perp = 0 \).

Exercise If \(V \subset W \) subspaces, then \(W^\perp \subset V^\perp \).

Theorem (Fundamental theorem part II) \(C(A^T)^\perp = N(A) \) and \(N(A)^\perp = C(A^T) \). Why?

proof: First equation is easy because \(x \) is orthogonal to all vectors of row space \(\leftrightarrow x \) is orthogonal to each of the rows \(\leftrightarrow x \in N(A) \). The other equality follows from exercises.

Corollary Given an \(m \times n \) matrix \(A \), the nullspace is the orthogonal complement of the row space in \(\mathbb{R}^n \). Similarly, the left nullspace is the orthogonal complement of the column space inside \(\mathbb{R}^m \).

WHY is this such a big deal?
Theorem Given an $m \times n$ matrix A, every vector x in \mathbb{R}^n can be written in a unique way as $x_n + x_r$ where x_n is in the nullspace and x_r is in the row space of A.

proof Pick x_n to be the orthogonal projection of x into $N(A)$ and x_r to be the orthogonal projection into $C(A^T)$. Clearly x is a sum of both, but why are they unique?

If $x_n + x_r = x_n' + x_r'$, then $x_n - x_n' = x_r - x_r'$. Thus the must be the zero vector because $N(A)$ is orthogonal to $C(A^T)$.

This has a beautiful consequence: Every matrix A, when we think of it as a linear map, transforms the row space into its column space!!!
Figure 1. The action of A: Row space to column space, nullspace to zero.
Projections onto Subspaces
QUESTION: Given a subspace S, what is the formula for the projection p of a vector b into S?

Key idea of LEAST SQUARES for regression analysis

Think of b as data from experiments, b is not in S, due to error of measurement.

Projection p is the best choice to replace b.

How to do this projection for a line?

b is projected into the line L given by the vector a. (PICTURE!).

The projection of vector b onto the line in the direction a is

$$p = \frac{a^T b}{a^T a}.$$

$w=b-p$
GENERAL CASE

- Suppose the subspace $S = C(A)$ is the column space of A. Now b is a vector that is outside the column space!!
- We want x that minimizes $\|b - Ax\|$. Then $p = Ax$ is the projection of b onto $C(A)$
- Note that $\|b - Ax\|$ is the distance from b to the point Ax which is element of the column space!
- The vector $w = b - Ax$ must be perpendicular to the column space (picture!!!).
- For each column a_i we have $a_i^T(b - Ax) = 0$.
- Thus in matrix notation: $A^T(b - Ax) = 0$, This gives the normal equation or least-squares equation:

\[
A^T Ax = A^T b
\]
Theorem The solution \(x = (A^T A)^{-1} A^T b \) gives the coordinates of the projection \(p \) in terms of the columns of \(A \). The projection of \(b \) into \(C(A) \) is

\[
p = A((A^T A)^{-1} A^T) b
\]

Theorem The matrix \(P = A((A^T A)^{-1} A^T) \) is a projection matrix. It has the properties \(P^T = P \), and \(P^2 = P \).

Lemma \(A^T A \) is a symmetric matrix. \(A^T A \) has the same Nullspace as \(A \).

Why? if \(x \in N(A) \), then clearly \(A^T A x = 0 \). Conversely, if \(A^T A x = 0 \) then \(x^T A^T A x = \| A x \| = 0 \), thus \(A x = 0 \).

Corollary If \(A \) has independent columns, then \(A^T A \) is square, symmetric and invertible.

Example 1 We wish to project the vector \(b = (2, 3, 4, 1) \) into the subspace \(x + y = 0 \). What is the distance?
Example 2 Consider the problem $Ax = b$ with

$$A = \begin{bmatrix}
1 & 2 & 0 \\
3 & -1 & 1 \\
-1 & 2 & 1 \\
1 & -1 & -2 \\
2 & 1 & -1
\end{bmatrix} \quad b^T = (1, 0, -1, 2, 2).$$

We can see that there is no EXACT solution to $Ax = b$, use NORMAL EQUATION!

$$A^T A = \begin{bmatrix}
16 & -2 & -2 \\
-2 & 11 & 2 \\
-2 & 2 & 7
\end{bmatrix} \quad A^T b = \begin{bmatrix}
8 \\
0 \\
-7
\end{bmatrix}$$

Solving $A^T Ax = A^T b$ we get the least square solution $x^* \approx (0.4119, 0.2482, -0.9532)^T$ with error $\|b - Ax^*\| \approx 0.1799$.
Example 3 A sample of lead-210 measured the following radioactivity data at the given times (time in days). Can YOU predict how long will it take until one percent of the original amount remains?

<table>
<thead>
<tr>
<th>time in days</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg</td>
<td>10</td>
<td>8.8</td>
<td>7.8</td>
<td>7.3</td>
<td>6.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

A linear model does not work here!!

There is an exponential decay on the material \(m(t) = m_0 e^{\beta t} \), where \(m_0 \) is the initial radioactive material and \(\beta \) the decay rate.

Taking logarithms

\[
y(t) = \log(m(t)) = \log(m_0) + \beta t
\]

We can use \textbf{usual} least squares to fit on the logarithms \(y_i = \log(m_i) \) of the radioactive mass data.
In this case we have

\[A^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 4 & 8 & 10 & 14 & 18 \end{bmatrix} \]

In this case we have

\[A^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 4 & 8 & 10 & 14 & 18 \end{bmatrix} \]

\[y(t) = b^T = [2.30258, 2.17475, 2.05412, 1.98787, 1.856297, 1.85629] \]

Thus \(A^T A = \begin{bmatrix} 6 & 54 \\ 54 & 700 \end{bmatrix} \).

Solving the NORMAL system we get \(\log(m_0) = 2.277327661 \) and \(\beta = -0.0265191683 \)

The original amount was 10 mg. After 173 days it will be below one percent of the radioactive material.
Orthogonal Bases and Gram-Schmidt
Not all bases of a vector space are created equal! Some are better than others!!

A basis u_1, \ldots, u_n of a vector space V is **orthonormal** if it is orthogonal and each vector has unit length.

Observation If the vectors u_1, \ldots, u_n are orthogonal basis, their normalizations $\frac{u_i}{\|u_i\|}$ form an orthonormal basis.

Example Of course the standard unit vectors are orthonormal.

Example The vectors
\[
\begin{pmatrix}
1 \\
2 \\
-1
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
2
\end{pmatrix}
\begin{pmatrix}
5 \\
-2 \\
1
\end{pmatrix}
\]
are an orthogonal basis of \mathbb{R}^3.
Why do we care about orthonormal bases?

- **Theorem** Let u_1, \ldots, u_n be an orthonormal basis for a vector space with inner product V. The one can write any element $v \in V$ as a linear combination $v = c_1 u_1 + \cdots + c_n u_n$ where $c_i = \langle v, u_i \rangle$, for $i = 1, \ldots, n$. Why?

- **Example** Let us rewrite the vector $v = (1, 1, 1)^T$ in terms of the orthonormal basis

 \[
 u_1 = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}} \right)^T, \quad u_2 = \left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right), \quad u_3 = \left(\frac{5}{\sqrt{30}}, -\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}} \right)
 \]

 Computing the dot products $v^T u_1 = \frac{2}{\sqrt{6}}$, $v^T u_2 = \frac{3}{\sqrt{5}}$, and $v^T u_3 = \frac{4}{\sqrt{30}}$. Thus

 \[
 v = \frac{2}{\sqrt{6}} u_1 + \frac{3}{\sqrt{5}} u_2 + \frac{4}{\sqrt{30}} u_3
 \]

- A key reason to like matrices that have orthonormal vectors: The least-squares equations are even nicer!!!
Lemma If Q is a rectangular matrix with orthonormal columns, then the normal equations simplify because $Q^T Q = I$:

- $Q^T Q x = Q^T b$ simplifies to $x = Q^T b$
- Projection matrix simplifies $Q(Q^T Q)^{-1}Q^T = QQ^T = QQ^T$.
- Thus the projection point is $p = QQ^T b$, thus

 $$p = (q_1^T b)q_1 + (q_2^T b)q_2 + \cdots + (q_n^T b)q_n$$

So how do we compute orthogonal/orthonormal bases for a space?? We use the GRAM-SCHMIDT ALGORITHM.
So how do we compute orthogonal/orthonormal bases for a space? We use the GRAM-SCHMIDT ALGORITHM.

input Starting with a linear independent vectors a_1, \ldots, a_n,

output: orthogonal vectors q_1, \ldots, q_n.

- Step 1: $q_1 = a_1$
- Step 2: $q_2 = a_2 - (a_2^T q_1)q_1$
- Step 3: $q_3 = a_3 - (a_3^T q_1)q_1 - (a_3^T q_2)q_2$
- Step 4: $q_4 = a_4 - (a_4^T q_1)q_1 - (a_4^T q_2)q_2 - (a_4^T q_3)q_3$

...

- Step j: $q_j = a_j - (a_j^T q_1)q_1 - (a_j^T q_2)q_2 - \ldots - (a_j^T q_{j-1})q_{j-1}$

At the end NORMALIZE all vectors if you wish to have unit vectors!! (DIVIDE BY LENGTH).
Consider the subspace W spanned by $(1, -2, 0, 1)$, $(-1, 0, 0, -1)$ and $(1, 1, 0, 0)$. Find an orthonormal basis for the space W.

ANSWER:

$\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, 0, \frac{1}{6} \right), \left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, 0, \frac{-1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{2}}, 0, 0, \frac{-1}{\sqrt{2}} \right)$
In this way, the original basis vectors a_1, \ldots, a_n can be written in a “triangular” way!

If q_1, q_2, \ldots, q_n are orthogonal Just think of $r_{ij} = a_j^T q_i$

\begin{align*}
 a_1 &= r_{11}(q_1/q_1^T q_1), \\
 a_2 &= r_{12}(q_1/q_1^T q_1) + r_{22}(q_2/q_2^T q_1) \\
 a_3 &= r_{13}(q_1/q_1^T q_1) + r_{23}(q_2/q_2^T q_2) + r_{33}(q_3/q_3^T q_3) \\
 \vdots \\
 a_n &= r_{1n}(q_1/q_1^T q_1) + r_{2n}(q_2/q_2^T q_2) + \cdots + r_{nn}(q_n/q_n^T q_n).
\end{align*}

Where $r_{ij} = a_j^T q_i$.

Write this equations in matrix form! we obtain $A = QR$
where $A = (a_1 \ldots a_n)$ and $Q = (q_1 \ q_2 \ldots q_n)$ and $R = (r_{ij})$.

Where $A^T A = R R^T$.
Theorem (QR decomposition) Every $m \times n$ matrix A with independent columns can be factor as $A = QR$ where the columns of Q are orthonormal and R is upper triangular and invertible.

NOTE: A and Q have the same column space. R is an invertible and upper triangular.

The simplest way to compute this decomposition is simply:

1. Use Gram-Schmidt to get the q_i orthonormal vectors.
2. Matrix Q has columns q_1, \ldots, q_n.
3. The matrix R is filled with the dot products $r_{ij} = a_j^T q_i$.

NOTE: Every matrix has two decompositions LU and QR.

They are both useful for different reasons!! One is for solving equations, the other good for least-squares.