S TTET T RS T"“'?i\

M$

Counting and Recounting
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Hap ol as the number of allocations of h tennis courts to 2n
Jounting numbers’”’, aren’t they! players.

“rou italt not rush without compunction On the left side, we assign 2 players out of 2 to the
aat iranscendental function first court, 2 out of the remaining 2n — 2 to the second

yplain the situation one, and so on.
Vi chey are in that equation. In the middle, we begin with any of the players,
Tewshalt try to get a gleaning choose his opponent out of 21 — 1, continue with any
- hat simple real meaning. one of the remaining players, choosing his opponent
“ryomnd shall turn pictorial out of 2n — 3 and continue in this fashion to obtain
SNIHIT (2n ~ 1) 2n - 3)...5.3.1 pairings. Next we assign the
' courts to the n pairs in n! ways.

v arge collection of algebraic formulae and identities On the right side, we simply line up the players and

tews with a finite number of integers or rational num-  lead them in pairs to the courts. The lining up can be
s While powerful techniques of algebra and anal- done in (2n)! ways. Since we do not fix the allocation
i3 wre available to establish such identities, there of the north and south ends of the courts, we divide
*mains a driving compulsion to give “natural” inter-  this number by 27

Jretations to relations dealing with “natural” num- Now let’s tackle something more sophisticated:
v Such a compulsion produced an “elementary”’ .
reor of the prime number theorem, even though ana- (=1 (Zn + 1): 210y 4 1)( 2 )
¢l methods had proved it much earlier with ele- . n n+1

uat ericiency. It s always a challenge to take out a ) .
mtinatorial relation from its formula deep freeze We first take it to the form
< testore it to physical life: this procedure is the
“mhalof what we do in the usual mathematical
" fem sclving course. Here are some nice examples,

(i”)n! =2135. .. (n -1

Some Product Formulae
—

R Marta Sved I
"¢ O Mmeoinatorial meanings of n/, n'’ = n(y — ... |
-, W) =nll n - r)!, m" are presented in |

7 introduction to combinatorics, but treating
~TPmarions of these expressions, we let this com- (
M-“d?.urmi Teaning retreat. It is easy enough to show |
‘ "' “HUis more than (k!Y" whenever k is more than 1, ;’
U he best way to show that (k/) is in fact a proper |
T Ot in! s to think of (km)!/(k")" as the number J
s of dividing kn people into n sets. For k = 4, j
™ the number of ways to allocate 1 bridge tables

Teders,

™M Pridge to tennis: We can interpret the iden-
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and then consider the outcome of the first round of
our tennis tournament.

The right hand side of the identity shows that the
first round was organized in 2n — 1) 2n — 3) ...3.1
ways, (as in the previous identity), with 2 outcomes

' possible for each pair of opponents.

For the left hand side we notice that, whatever the
pairings will be, there will be (%) ways in which the
winners can emerge. For each set of winners there are
n! ways in which the losing opponents are distributed.

Chess instead of tennis? In this case the first round
may end with some draws. By the same reasoning we
obtain the rather formidable identity:

o\ 2\ 2
,;,(52)( . )k! ,Bl 2 - 1) +( :)n!

=3.135...2n - 1)

where the k index of the summation means the num-
ber of decisive games.

This last identity, however, belongs to the class of
combinatorial formulae sampled in the next paragraph.

2. Identities Involving Summations

Here are a few examples of the inexhaustible number
of summation identities.

The basic identity involving binomial coefficients is
the Pascal triangle relation

)=t

The combinatorial interpretation of this is well known,
so we begin with two of its immediate consequences:
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+ ... +(Z B :)forr <k. ()

Both these identities can be interpreted as selection
procedures of k children out of a class of n.

For (1) we proceed by first ordering the class in al-
phabetical order: A;,A. . . . A, and calling the selected
set in alphabetical order. A, can head (}Z}) sets. When
these are exhausted, we consider the (}73) sets headed
by A: and so on until we get finally to the single possi-
ble set headed by A, ;..

In (2) we do the selections by paying special atten-
tion to the r girls in the mixed class of n children
(at the risk of being called sexist). If we are sufficiently
prejudiced not to want any of them on the team, we
can make (";") choices out of the n — r boys in the
class. If we admit one girl who can be selected in (})
ways, we choose the boys in (;=}) ways. Finally we
give full preference to the girls, selecting all of them,
and select k — r boys in (}Z7) ways.

Identity (2) is perhaps better known in the more
symmetrical form where the number of boys is de-
noted by n,, the number of girls by n,, obtaining

k
ne + sl N nl) Ny
( k )_.i/:(l)(i/(k—i)

(Vandermonde convolution)

In particular for n, = n, = k =n we obtain

(2}1 _{I‘ n)( n )__{*(n)2
n —I.:,i n—i) =\i)




This last formula can be given a little twist to obtain
N !
—-‘(i) —n(n -1/

Here’s our story: Two schools, A and B, send a com-
Jined team for an interstate competition. The team
must consist of n members, but the captain must come
‘rom school A. Assuming that each school provides a
oreselection of n students, we want to determine the
numbers of possible final selections. The left hand
side shows the arrangements when i members of the
‘eam come from school A, n ~ i from B and then
‘he captain is selected from amongst the i team-mates
Tom A, where i runs from 1 to n. On the right hand
side we do the selection by first choosing the captain
‘rom the A side and then choosing the remaining
Members,
We move on to the dancing class to obtain

Sl )=z

“his particular class has n + 1 children, but only
"X = 1 are needed for a certain dance. The ballet mas-
©rlines them up (keeping the better dancers near
‘he centre), and then chooses the child to dance at the
“P're. x on her left and k on her right. If the centre
ancer is the (r + 1)-st child, then r > k andn ~r =k;
e runs from k ton ~ k.
A beautiful identity known as Riordan’s identity,

s -\;(Z : });1"’%.’

‘()k,h,
difey

15 back to the children ALAy A, (of Ade-
vho are offered—as penfriends—children 8,8, . . .

B, (of Budapest). The ideal case, of course, is a bijec-
tive arrangement with ample choice of n! selections
if each child is given a different penfriend; but the
left-hand side of our identity represents no such re-
striction. Sdppose now that 4,4, . . . A, select differ-
ent penfriends, but A, ., chooses one who has already
been selected by one of the first k, and that there are
no restrictions on the choices made by Acsa, .., A,.
This gives n(fz1)k! pr—*-1 = (F=Dn"*k! possibili-
ties, since there are n choices for the penfriend of
Ay, (i=1k! for the penfriends of {A, ... A} and
n"~*=1 for the remaining ones. The formula can be
generalized to

n—t
it = Y‘(”’ -1

D n—k ! n)

= k-l)m k! + mw,

the number of potential penfriends being m, not nec-
essarily equal to n.

Can we treat sums of the squares, or cubes, or gen-
erally k-th powers of successive integers in a similar
way? Consider a certain patient who is to be hos-
pitalized for n + 1 days. If we go for the sum of the
cubes of the first n natural numbers, then we make
our patient undergo 4 medical tests, A, B, C and D,
under the following conditions: A must precede all the
other tests and take a full day. There is no restriction
on B, C or D tests—they can be done in any order with
any number of them on the same day. The hospital
can schedule the tests by selecting the day for A first.
If this is to take place on the k-th day, there are
(n + 1 — k)* choices for the days of the other tests.
Hence the number of choices is
S+l -k =N g

— a—

k=1 . k=1
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Alternatively we must consider 3 cases:

(1) B, C and D are done on different days after A:
31(";") choices;

(2) Two of B, C, D done the same day: 2.3(*%')
choices;

(3) B, C, D on the same day: ("%') choices;
altogether 3!(*%!) + 6(*%") + (*3') = n*(n + 1)°/4.

Similar reasoning, with only three tests, A, B and C,
gives

: 2 n+1 n+1}_@n+1)(n +Dn
2 =2( 3 )*( 2 )‘ 5 '

Making our patient undergo r + 1 tests inn + 1 days
yields an identity for »}-k", but the expression on
the right-hand side involves Stirling numbers.

With a little variation we can obtain identities

such as

1. (n — 1)? + 2(n — 2)*> + 3(n — 3)*

+.o M- = ——‘——n-("iz— 1)

(The patient is subjected to tests A, B, C and D but this
time both A and B take a full day, A is to precede B.)
Varying the torture of our patient will produce further
fanciful formulae of the convolutory type.

3. Alternating Sums

All the sums discussed up to this point contain posi-
tive terms only. There is, however, an abundance of
combinatorial formulae involving sums, strictly alter-
nating in sign. The main feature of all of these identi-
ties is the Inclusion-Exclusion Principle (1-E).

Let N be the number of objects endowed with some
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of the properties a;,&; ... o,. Denote by N, the
number of objects having property o, ( =1, . . ., p),
not to the exclusion of some other properties) N,
the number of objects having both properties «;, ¢4
(atleast) (i,j =1,...,p)and soon, Nyap - - - @ be-
ing the number of objects having all the properties.
Then the number of objects having none of the listed

properties is:

+ .o F (1P Nypy - - - .

As a first example we turn again to the n Adelaide
children with their m potential penfriends from Buda-
pest. This time our condition is that no Budapest
child should remain neglected. (Surjective mapping.)
This is possible of course only if m < n. We use the
I-E principle, writing N = n™, representing all the
possibilities and excluding the undesirable ones.

Let Np,Np, ... be the numbers of arrangements
where B, B, etc. are neglected, Ny 3, the number
where BB, are both omitted and so on. Then

[\]B1 = ]\]B:2 =.,. = NB,,, = (m — 1)”,
Nyp, = Npgp, = ... =(m =2y,
Ngp, .  Bi=...=(m—i)y

the sum of terms of the last type being (7)(m — i)".
Thus the number of desired arrangements is

) <~1>f(’,’-’)(m i),

i=0

This formula immediately yields the identities

m—1 ’
N (- (r?).(m — " =0whenn <m

i=0




s <—1)"(§')(n ~iy =n!

=)

m(m + 1)!

< (=1) (m — i+t = 3 .

One celebrated alternating sum formula gives the
solution of the “probleme des ménages”. The number
of possible seatings around a table of n couples so that
no husband is to sit next to his wife is

No=2n Y (~1F (n - k) 2n2’1k(2”k_k) .
k=0

The problem originates in the 19th century (Cayley,
Lucas) with the formula given by Touchard and in-
terpreted combinatorially by Kaplansky (1943).

The formula bears an interesting resemblance to the
Chebyshev polynomial T,(x) = cos n 6 where
+ = cos 8. In particular when x = cos(0) = 1, the poly-
nomial gives

+

n
2
:T,,(l) =2 = Z
0

(—1) - ’1,((” ,:k)z"“‘”*'-

he common feature of the two formulae is the factor
M= k(") which has a combinatorial meaning. [t
5ives the number of ways in which k objects can be
blaced in n slots around a circle so that the objects
1o not occupy adjacent slots. Allied to this is the ex-
arassion ("E+Y) which represents the number of ways

in which k objects can be placed in 7 slots along a line
so that two objects do not occupy adjacent slots. Both
these formulae can be proved easily by using induc-
tion for the second one and then deducing the first
one. They can also be interpreted by independent
physical models (which are left to the reader as exer-
cises).

We are going to use these two formulae together
with the I-E principle to establish the Chebyshev ex-
pansion for x = 1 along with the allied identity

Z (-1 (n —k)2""'-””' =n +1.
0 k

Suppose that n seats are marked with A or C along
a line or along a circle, respectively, to reserve seats
for adults and children, with the restriction that no
child is to sit on the left side of an adult. This of course
includes seatings where all the seats are marked with
A only, or C only. The obvious counts for these are
then n + 1 along the line, and 2 around the circle
(only A, or only C).

Now apply the I-E principle, denoting the number
of unrestricted seating arrangements by N. We begin
the numbering at the left of the line, or at any point
of the circle, and denote by N; the number of those
arrangements where seat i is marked by C, buti + 1
is marked by A, thus violating the rule. N, is the num-
ber of those markings where the rule is broken both at
i and at j, and so on. Clearly, the seats at which the
marking violates the rule cannot be adjacent.

We see at once that N = 2", N, = 2" for any i,
since the marking of the seats other thani and i + 1
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is left free (by the notation used in the [-E principle).
Generally

1\/,'1[2 PR

Next we find that

il\- —_ zn-z’k

. n—kj. _,
ZN'.I"‘Z"'I"':( k )2””‘

in the case of the line and

. n n-=kj,._
ZNiliz"'lk =n _k( k )2 %

in the case of the circle, using the respective formulae
for the arrangement of k objects in k non adjacent
slots, chosen out of n. The terms are now calculated;
the general I-E formula gives both identities as stated.

Two questions arise naturally. Can this “method”
be used for discovering new identities? Is it always
applicable when we deal with finite combinations
(sums, products, etc.) of integer valued expressions?
The answer to the first question is certainly yes:
counting different arrangements may yield new iden-
tities as we saw in some of the preceding examples.
The second question must remain open and wait for
some decidability formulation. While it is very re-
warding to glimpse the combinatorial meaning on
second sight, sometimes the hunt for it can become
a strenuous and frustrating exercise (with no guar-
antee of success).

Here is a rather innocent looking example where the
author has conceded defeat and invites the reader to
try his bit. (No generating functions, please!)

w= 3 (2)(22)

Each side of this identity can be given a simple mean-
ing, but where shall the twain meet?

Department of Pure Mathematics
University of Adelaide

Box 498, G.P.O.

Adelaide, S.A. 5001

Australia

A Quote

“What's one and one and one and one and one
and one and one and one and one and one?”’

“I don’t know,”” said Alice. ‘I lost count.”

“She can’t do addition,” said the Red Queen.

L
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Counting and Recounting: The Aftermath

In my recent article (The Mathematical Intelligencer,
5.4 (1983), p. 21), I ended by challenging readers to
provide a combinatorial proof to the identity:

- 52)0r-7)

This is a recount of the letters that I received from
readers who continued where I left off by offering so-
lutions to the problem.

The problem is not that new. P. Erdés, on reading
the article, was quick to point out to me that Hun-
garian mathematicians tackled it in the thirties: P.
Veress proposing and G. Hajos solving it. In his letter
to me L. Gessel (M.I.T.) has given a survey of the more
recent history of the problem. Proofs were published
by D. Kleitman (Studies in Applied Mathematics 54.
(1975), also by his student D. J. Kwiatowski (Ph.D.
Thesis, MIT, 1975). It also found its way into texts
(Feller, Mohanty).

In addition, I received solutions by A. Bondesen
(Royal Danish School of Educational Studies, Copen-
hagen), K. Griinbaum (Roskilde Universitetscenter,
Denmark), J. Hofbauer, jointly with N. Fulwick (Uni-
versitit, Wien, Austria), D. Zeilberger (Drexel Univer-
sity, Philadelphia), and verbally from C. Pearce (Ade-
laide University), directly after reading the article.

All solutions are based, with some variations, on the
count of lattice paths, or equivalently (1,0) sequences.
Figure 1 is used to illustrate the simplest version. It
represents a two-dimensional coordinate lattice, or a
network of streets running East and North. We con-
sider paths of length 2n, beginning at O, proceeding
in unit steps, heading East or North. It is clear that
there are 22" ways in which a lattice point on the
boundary AB can be reached. This gives the left-hand
side of the identity.

Counting in a different way, assume that the last
crossing of a path with the NE line (OM on the dia-
gram) is at K(k,k), which of course may coincide with
O or M. It is easy to see that there are (#) possible
paths from O to K. Assuming for the moment that the
number of ways the remaining 2n - 2k steps,
(avoiding OM) may be taken, is similarly (*"-%), we
obtain the desired right-hand side:

Marta Sved

5 (2k
PG

The last statement, used to establish the identity,
implies that the number of paths. 2k, fin- .

J(oE)

/

j__ghj_gggatu K (Fig. 2(a)), is the same as the number of
paths_of the same leng

-not touching the fine OK
(Fig. 2(b)). This is not obvious, but can be verified by~
manipulations involving binomial sums. An alterna-
tive geometric argument, coming from 1. Gessel, is
briefly sketched here.

As an intermediate step, consider paths of type
shown in Fig. 2(c): these are completely in the upper
half of the region, but may touch the line OK.

A path of type (a) may be transformed via (¢} into
type (b). The dotted line, drawn in Fig. 2(a), is a ““tan-
gent” to the path, parallel to OK and touching it for
the first time at the extremity E. The transformation
from (a) to (c) is done in three steps: cutting the path
at E, translating the segment EK parallel to itself,
bringing E to O and K to a point K', and finally fitting
the OE segment, by placing the end-point E at K’ and
turning the segment to exchange vertical and hori-
zontal directions, the image of the end originally at O
coming to be the end of the path thus spliced together.
A path of type (c) is thus obtained. :

To get from (c) to (b) is necessary only if the path
touches OK. In that case the horizontal unit-segment
preceding the contact is turned vertical, the segment
following it is shifted parallel to itself to the loose end,
and finally this new path is reflected in OK into the
lower region.

It can be shown easily that these “cutter, fitter,
turner” operations from (a) to (c) and (c) to (b) have
unique inverses (the reflection about OK in the second
transformation ensures this). The composition of the
two transformations gives a bijective map from (a)
to (b).

A. Bondesen sent in an appealing variation of the
theme of path-counting.

Fig. (3) represents “Polya-town” (Pascal triangle in
disguise), the thick lines its streets, the circles, indexed
by binomial coefficients, its corners. The thin lines
with circles are the streets and corners of an under-
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ground satellite town, while the heavy lines in the
middle are ramps joining the two cities. The numbers
‘ndexing the corners of the satellite town are marked
>y the symbol (), defined as sums of binomial coef-
ficients belonging to points of Polya-town in the same
row, as the satellite-town point considered and be-
tween it and the nearer river drive. It is shown that

B2+ (1) - 1)+ )

(d the Kronecker symbol). The desired identity is in-
terpreted as two counts of the shortest paths from A
to the satellite point: (°7) = 2", using streets of either
town together with the ramps.

We are now a (lattice)-step nearer to conjecturing
that combinatorial identities can be proved combina-
torially.

Department of Pure Mathematics
The University of Adelaide

Adelaide, S.A. 5001
Australia
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