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Le Menu

THE PROBLEM and WHY YOU SHOULD LISTEN!

EHRHART’s THEORY & THE MAIN STRUCTURE THEOREM

GENERALIZATIONS AND YOUR CREDIT CARD!
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THE PROBLEM
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The MAIN ACTORS OF THIS PLAY ARE...

POLYHEDRA

Polyhedra represented by sets of the form {x|Ax = b, x ≥ 0}, for
suitable integral matrix A, and vector b.
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...AND THE INTEGER LATTICE

Z
n = {(x1, x2, . . . , xn)|xi integer}
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THE PROBLEM!!!
Given a polytope, P = {x|Ax = b, x ≥ 0},

COUNT HOW MANY LATTICE POINTS are inside P .

x

y

z

A=[3,5,17]   

φA(b) = #{(x, y, z)|3x + 5y + 17z = b, x ≥ 0, y ≥ 0, z ≥ 0}
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More general...
Let

φA(b) = #{x : Ax = b, x ≥ 0, x integral}.

It counts the number of lattice points inside convex polyhedra with

fix matrix A.

1. (APPLIED MATHEMATICIAN) Fast exact evaluation of φA(b) for fixed
values of b. or compute a “short” representation of φA(b).

2. (PURE MATHEMATICIAN) To compute explicit exact formulas in terms
of the parameters bi.
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EXAMPLE When A = [3, 5, 17], a short formula for φA(b) would be a
generating function!

∞
∑

n=0

φA(n)tn =
1

(1 − t17) (1 − t5) (1 − t3)
.

From that, you can see that φA(100) = 25, φA(1110) = 2471, etc...

Disclaimers: Whenever I say counting, I mean EXACT COUNTING.
There is a rich and exciting theory of estimation and approximation, but
that is not us!

We really care to get this rational functions In PRACTICE!!
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MOTIVATION
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Combinatorics
Many discrete structures can be counted this way: e.g. matchings on

graphs, Hamiltonian cycles, t-designs, linear extensions of posets, MAGIC

squares:

5

12 0 5 7

0 12 7 5

7 5 0 12

5 7 12 0

QUESTION:HOW MANY 4 × 4 magic squares with sum n are

there? Call this number M4×4(n).
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The possible tables are non-negative integer solutions of the system of
equations: Four equations, one for each row sum and column sum. For
example,

x11 + x12 + x13 + x14 = 24, first row

x13 + x23 + x33 + x43 = 24, third column
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Generating Function Formulas

The problem we have is equivalent to determining a short expression for
∑∞

n=0 M4×4(n)tn.

Because we are dilating a polytope, as we increase the magic sum n,
one can prove the following theorem:

Theorem The number of 4×4 magic squares with magic sum n has a toric

rational generating function:

t8 + 4 t7 + 18 t6 + 36 t5 + 50 t4 + 36 t3 + 18 t2 + 4 t + 1

(−1 + t)
4
(−1 + t2)

4
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Optimization

Let G be a network with n nodes and m arcs, with integer-valued
capacity and excess functions c : arcs(G) → Z≥0 and b : nodes(G) → Z.

A flow is a function f : arcs(G) → Z≥0 so that, for any node x, the
sum of flow values in outgoing arcs minus the sum of values in incoming
arcs equals b(x), and 0 ≤ f(i, j) ≤ c(i, j).

12c  =

13
c  =

23c  =
34

c  =

c  =35

45c  =

24c  =

c  =56

c  =46
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4
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6b  =v
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Figure 1: A simple example
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How many Max-Flows are there?
From well-known theorems the max-flow value is 11, but how many

max-flows are there?
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Figure 2: All max flows in the network.
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• Solving linear integer programming problems can be reduced to a counting
problem.

• There are VERY hard “small” instances, even commercial software
(CPLEX) could not solve them! New ideas are necessary. See
M. Cornuéjols et al. (1997,1998) and K. Aardal and A.K. Lenstra
(1999,2002).

For example:

{(x, y, z, w, v) ∈ R
5
+|12223x+12224y+36674z+61119w+85569v = 89643481}.
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Compiler Design
How often is a certain instruction I of the computer code executed?
Example:

void proc(int N, int M)

{

int i,j;

for (i=2N-M; i<= 4N+M-min(N,M), i++)

for(j=0; j<N-2*i; j++)

I;

}

{(i, j) ∈ Z
2|i ≥ 2N−M, i ≤ 4N +M−min(N, M), j ≥ 0, j−2i ≤ N−1}
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Algebra and Number Theory

Number Theory Relations to the theory of partitions, Geometry of
Numbers. For example, Frobenius problem: Given relatively prime a1, ..., an

what is the highest value of N for which a1x1 + · · · + anxn = N, xi ≥ 0 is
integral INFEASIBLE.

Representation Theory: The calculation of multiplicities and tensor
product multiplicities for decomposition of representations into irreducible
representations are given by Gelf’and-Tsetlin polytopes, Hive Polytopes
(Knutson-Tao), Berenstein-Zelevinsky polytopes, Lattice-Path cones
(Littelmann). Kostant’s partition function for simple Lie algebras can
be seen naturally as counting lattice points.

Commutative Algebra The Hilbert series of monomial algebras and
Grobner bases of toric ideals can be seen as problems of counting lattice
points in certains polytopes.
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EHRHART’s THEORY

& THE DESCRIPTION OF

φA(b)
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Dilations of Polyhedra
Let P be a convex polytope in R

d. For each integer n ≥ 1, let

nP = {nq|q ∈ P}

P 3P
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Ehrhart Counting function
For P a d-polytope, let

i(P, n) = #(nP ∩ Z
d) = #{q ∈ P |nq ∈ Z

d}

This is the number of lattice points in the dilation nP .

Similarly if P ◦ denotes the interior of P .

i(P ◦, n) = #{q ∈ P − ∂P | nq ∈ Z
d}
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Jesús De Loera

Example 1: Cubes

P 3P

i(P, n) = (n + 1)2 i(P ◦, n) = (n − 1)2

In general for a d-dimensional unit cube we have i(P, n) = (n + 1)d
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Example 2
Let P be the tetrahedron

y

x

z

(1,0,0)

(0,1,0)

(0,0,0)
(1,1, 13)

Then

i(P, n) =
13

6
n3 + n2 −

1

6
n + 1

WARNING: The coefficients of Ehrhart polynomials can be negative!
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Example 3: MAGIC SQUARES polytopes

WARNING: The theory for polytopes with fractional vertices is more
complicated.

We can consider the convex polytope inside R
n2

of magic n×n squares
of magic sum 1. For example, for n = 3 the vertices are

0
0

0
0

0

01/3
2/3

2/3

2/30
1/3

2/3 1/3

2/3

1/3

1/3

2/3

2/31/3

2/3 1/3

2/3 1/3

1/3 2/3

1/3 2/3

1/3 2/3

1/30

0
0

0
0

In this case the Ehrhart counting function is not a polynomial, it is a
quasipolynomial!

i(P, s) =

{

2
9s

2 + 2
3s + 1 if 3|s,

0 otherwise,
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Jesús De Loera

Ehrhart-Macdonald Theorem

Theorem (E. Ehrhart 1962, I. Macdonald 1963)

Let P be a full dimensional rational polytope. Then i(P, n) is univariate
quasipolynomial, the Ehrhart quasipolynomial of P , in the dilation variable
n and of degree dim(P ) whose leading term on each quasipolynomial piece
equals the volume of P .

Moreover, when the coordinates of the vertices of P are integers i(P, n)
is a polynomial.
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Our Recent Generalization

Theorem (J. De Loera 2004). Let P be a convex rational d-polytope. Let
f be any homogeneous polynomial function in Z[x1, x2, . . . , xd] and let a
hyperplane arrangement H be given too. Then the counting function

iP,f,H(n) =
∑

α∈nP∩Zd, α/∈H

f(α)

is a quasipolynomial of degree d + D with rational coefficients on the
variable n. Its leading coefficient equals the integral of f over the polytope
P .

This generalizes results of Brion-Vergne and Beck-Pixton
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Example

Suppose the polytope P is the unit square [0, 1]2, and that f(x, y) is of
the form xkyk. Then

i(P, n) =n2 + 2n + 1 = (n + 1)2

i(P, xy, n) =1/4 n4 + 1/2 n3 + 1/4 n2

i(P, x2y2, n) =1/9 n6 + 1/3 n5 +
13

36
n4 + 1/6 n3 + 1/36 n2

i(P, x3y3, n) =1/16 n8 + 1/4 n7 + 3/8 n6 + 1/4 n5 + 1/16 n4
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A Key Structure Theorem.
Theorem. For a d × n integral matrix A and a parameter vector b ∈
cone(A),

• there exist a finite decomposition of Z
d ∩ cone(A) such that φA is a

multivariate polynomial of degree n−d in each piece. The number n−d
is the dimension of the polytope {x|Ax = bx ≥ 0}.

• More precisely, cone(A) can be decomposed into pieces, called chambers,
such that, for all integral vectors b inside a chamber the function φA(b)
can be written as a fixed polynomial function of degree n − d in the

variables b1, . . . , bd plus a “correction polynomial” of smaller degree. The

correction terms depend periodically on the values of b1, b2, . . . , bd.

• The chambers are convex polyhedral subcones of cone(A), that subdivide

its interior and their union equals cone(A).
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Example

A =


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 slice of  the cone

Ax=b  x>=0.
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Here is the formula for the chamber marked in the picture.

φA(b1, b2, b3) =
b2b3

2
+

b2b
2
3

8
−

b2
3

24
+ correction

correction =











1 + b2
2 + 2b3

3 if b1 = 0 and b2 = 0 mod2
1
2 + b2

2 + 5b3
12 if b1 = 1 and b2 = 1 mod2

1
2 + 3b2

8 + 13b3
24 otherwise.
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Example:

A=

1
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0

1

0

−1

0

0

0
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1
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0 −1
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e−e
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2 4
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 slice of  the cone
Ax=b  x>=0.

Two dimensional
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1. If min{b3,−b2, b1 + b2} ≥ 0 then

φK4(b) = (b1 + b2 + 3)(b1 + b2 + 2)(b1 + b2 + 1)/6.

2. If min{b1, b2, b3} ≥ 0 then

φK4(b) = (b1 + 1)(b1 + 2)(b1 + 3b2 + 3)/6.

3. If min{b1, b2, b1 + b3, b2 + b3,−b3} ≥ 0 then φK4(b) = 1 + 11
6 b1 +

2/3 b3 +b2 +3/2 b1 b2 +b1
2+1/6 b1

3+1/2 b1
2
b2 −1/6 b3

3 −1/2 b1 b3
2+

1/2 b1 b3 − 1/2 b3
2.

4. If min{b1, b2 + b3,−b1 − b3} ≥ 0 then φK4(b) = (b1 + 2)(b1 +
1)(2b1 + 3b2 + 3 + 3b3).
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Chamber Geometry.
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COUNTING LATTICE

POINTS INSIDE

MORE COMPLICATED

REGIONS, CAN WE?
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Can one count inside other regions?

When the sets are arbitrary really bad things can happen, even in small
fixed dimension!

• Given (a, b, c) positive integers, deciding whether there is a lattice point
in the set {x|ax2 + bx = c, x ≥ 0} is an NP-complete problem.

• Deciding whether there is a non-negative integer root for arbitrary
polynomials in Z[x1, . . . , x9] is undecidable.

Thus we clearly need to be less ambitious!
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But convex sets must be tractable, right?

A convex set C is a set of Euclidean space such that for any pair
of points in C the line segment joining x and y is completely inside C.
Polyhedra are the simplest case.

NOT   CONVEX
  CONVEX

CAN ONE EASILY COUNT THE LATTICE POINTS OF CONVEX SETS?
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EARLIER WORKERS
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CREDIT CARD CYBER-THIEVES CARE

For an integer number n consider the 4-dimensional convex body

B(n) = {x ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 ≤ n}

Jacobi proved that if |B(n)| is the number of lattice points in B(n), for
n of the form pq = n, where p, q are primes, we have

|B(n)| − |B(n − 1)| = 8(1 + p + q + n)

If we know that n = pq, then a factorization of n can be done fast if we
know how to compute |B(n)|!!

RSA cryptosystems used in Internet transactions can be broken if

you know how to count lattice points fast.
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VISIT:
www.math.ucdavis.edu/~latte

www.math.ucdavis.edu/~totalresidue

with lots of nice stuff about lattice points on polytopes...

THANK YOU!
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