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1 Lecture 1: Overview and Goals of the Course

These 20 lectures tell the story of an intellectual trip that starts in areas
of mathematics, geometry and topology, that are known for their pure na-
ture, but the trip ends with central concerns in discrete applied mathematics
and mathematical economics. The ultimate goal is to revisit some beautiful
problems in game theory, and optimization. Indeed, geometric and topolog-
ical theorems have been used, among many others places, for understanding
optimality criteria of mathematical optimization, equilibrium theorems for
games, and in algorithms for fair-division and voting. Although some of
the theorems presented are well-over hundred-years-old we try to visit new
generalizations and extensions that promise future new applications. We
imagine the typical reader is a graduate student, who may not have seen
this part of mathematics, but we hope you will find the trip pleasurable.
Let us mention five motivating applications examples.

• Envy-free Cake-cutting, Rental Harmony problems.

Say n people wish to divide a rectangular cake. Each of them has an
idea of what they consider fair or sufficient. We will discuss a model
and an algorithm that proves the following fact, known to economists
as the fair-division theorem.

Theorem 1.1. Any group of n people can divide a cake amongst them-
selves in an envy-free way, i.e., the division is done so that each per-
son believes her piece is the biggest. More precisely: Consider a one-
dimensional cake (line segment), it can be divided into n pieces by n−1
cuts in such a way that each player receives his/her preferred piece.
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First of all, preferences are expressed by a measure function for each
of the players. We make some reasonable assumptions, such as no
player will ever prefer an empty piece of cake. A more technical as-
sumption is that if a player prefers the same piece within an infinite
set of possible divisions, because of the nature of the space of all pos-
sible divisions there must be at least one limit division. We make a
continuity assumption that the limiting divisions

Here is a perhaps surprising variation of the fair-division theorem

Theorem 1.2. Consider a house with n rooms and a total rent amount
to be divided among n roommates. Assume that for each possible divi-
sion of the rent amount any roommate can point to one or more room
as preferred. Then there exists a division of the rent and an assign-
ment of rooms to each participant, such that each player receives one
of his/her preferred rooms.

The same assumptions we made in the previous theorem hold to make
this happen. The proofs we will provide of these two theorems are
grounded in Sperner’s lemma. An algorithmic solution follows.

• Necklace-splitting among thieves, the Ham-sandwich theorem, geo-
metric data processing.

k thieves have stolen a necklace with n different types of precious
stones (think rubies, diamonds, etc). Luckily the number of times
each type occurs is divisible by k. The thieves intend to divide the
necklace in such a way that they do as few cuts as possible and each
gets the same number of jewels of each type. The question is can
this always be done and what is the smallest possible number of cuts
possible? We will investigate this problem using the Borsuk-Ulam
theorem a topological consequence of Fan-Tucker’s lemma.

Another consequence of the Borsuk-Ulam theorem is the ham sandwich
theorem. Consider a sandwich consisting of two slices of bread and a
slice of ham in between. The theorem asserts that one can always
make a straight cut in such a way that each of the three pieces is
perfectly divided in half. More generally one can prove (adding layers
of cheese, salami, etc. works too!):

Theorem 1.3. Given n continuous probability measures in Rn there
exist an an affine hyperplane such that each measure takes value 1/2
on each of the two half-spaces defined by the hyperplane.
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There are recent advanced generalizations of the ham-sandwich the-
orem. In [] the authors show that, for any prime power n and any
compact convex set with interior K ⊂ Rd, there exists a partition of
K into n convex sets with equal volumes and equal surface areas. The
goal is to have an equi-partition among n players of a divisible good. In
the plane this boils down to the following fact proven in []. Any convex
body in the plane can be partitioned into n convex regions with equal
areas and equal perimeters. The theorem has received the funny name
the spicy chicken theorem because it can be applied to equi-partition
of a (perfectly convex) chicken among guests. You will cut the raw
chicken fillet with a sharp knife, marinate each of the pieces in a spicy
sauce, and then fry the pieces. The surface of each piece will be crispy
and spicy, so the challenge is to cut the chicken so that all your guests
get the same amount of crispy (surface) crust and the same volume
amount of chicken meat. The theorem shows it is possible! But it is
an open question on how to carry on the partition.

Another fascinating result, which aims to find good portion divisions
rather than envy-free divisions, is the following proposition, which we
state for the plane but generalizes to all dimensions.

Theorem 1.4. Given any compact set K in the plane, there exist a
point p in K such that no matter which line one traces passing through
p leaves at least 1

3 of the area of K in each side of the line.

The techniques to prove the above result, and algorithmically find the
point too, are a consequence of Helly’s theorem. Helly’s theorem has
many surprising applications. Let us mentioned two more.

Suppose that X is set of discrete data points made of red points R and
blue points B. suppose that for any subset S ⊂ X in Rd of cardinality
no more than d+ 2, there exists a hyperplane which strictly separates
and S ∩B and S ∩R . Then there exists a hyperplane which strictly
separates the sets R and B. This is a result useful for the classification
of data points (e.g., bad vs good drivers? democrats vs republicans
voters?).

Similarly, in some situations we are interested on the clustering of
data by points that are nearby or are similar. We may wish to find
the smallest enclosing ball that contains the points. One can prove
that, given a finite set X of points in Rd, X is contained in a ball of
radius r if every d + 1 of its points are contained in a ball of radius
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r. For example,if you are given s points in the plane such that every
three of them are contained in a disk of radius 1, then all s points are
contained in a disk of radius 1. The techniques are stronger and one
can use them to solve the following problem:

Suppose the points represent bad objects that need to be contained
in a smallest-radius enclosing ball, but we have lack of exactly how
many and where the points are. There is a risk. You are given points
(u1, u2, . . . , ud) ∈ Rd, belonging to an unknown measurable set. Your
goal is to find the center x the ball of smallest radius R that contains
a “large proportion” of those points. E.g., if these are cancerous cells,
you do not wish to loose more than 1 percent of the bad cells. But the
bad news you may not know explicitly the probability measure. The
are sampling algorithms to attempt this problem. Clearly this is an
stochastic optimization problem that can be formulated as

min R

subject to Pr[{

√√√√ d∑
1

(xi − ui)2 −R ≤ 0}] ≥ 1− ε,x ∈ Rd+1.

• The games of chicken, matching pennies & Nash Equilibria.

The purpose of theory of games is to analyze or design systems where
rational selfish agents interact to achieve certain goals. Consider two
examples. First we have the game of chicken, where two people drive
in a one lane street facing each other. The idea is that if one is a
chicken you swerve the car before impact. If both drivers swerve away
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then they are both chickens (not a very pleasant nickname). Of course
if nobody is chicken the outcome is fatal. What is the best strategy
to follow? Clearly, no pure strategy will suffice to please both players.
A key idea to find a compromise, some kind of stable solution, is to
have a traffic light that takes turns assigning whose turn is it to swerve
away before from crashing. This method has a superior payoff over the
pure strategies (and preserves the lifes of players).

A similar game is matching penny game. Players Alice and Bob simul-
taneously showing heads or tails of a coin. If the choice is the same Bob
wins one penny Alice looses a penny, if they choose differently then
Alice wins a penny and Bob looses a penny. These are the payoffs of
the game.

The payoffs for each player can be recorded in two matrices (A and B,
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for each player). In the match penny game the payoff matrices can be
put together to show A+B = 0. We call such games zero-sum games.
For a game with two players this is not always the case (e.g., for game
of chicken!) A pure strategy consists of Alice selecting a single row
to be played and Bob a single column to be played. An equilibrium
strategy is one no player wants to deviate from.

The problem is that, as we saw twice already, there are no pure strate-
gies that are equilibria! But as in the case of the game of chicken
mixing pure strategies is gives a suitable compromise. mixed strategies
are linear combinations of the pure strategies proposed in the payoff
matrices. We think of the choices being made randomly. Alice has a
choice x of probabilities in which to choose each pure strategy, Bob
has a vector y of probablities in which to choose his pure strategies.
They will have an expected payoffs xTAy, and xTBy respectively.

John von Neumann was a pioneer on the study of equilibria for zero-
sum games. He showed equilibria existed in the 1920’s. Later in 1950’s,
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with the emergence of linear optimization and the simplex method
Dantzig showed that zero-sum games are special in that equilibria can
be computed solving a linear optimization problem. In 1949, John
Nash showed that in any game there is always at least one mixed
strategy that is an equilibrium solution. We call them Nash equilibria.
Later we will prove Nash’s theorem for which he received the Nobel
prize in Economics. The existence of Nash equilibria is proven using
fixed-point theorem, such as Brouwer’s and Kakutani’s theorem. They
in turn are consequences of Sperner’s lemma. We will look at the
details of these theorems and try to discuss some of the computational
methods.

• Coin-exchange and bin-packing problems.

Suppose we are given some coins of different denominations. One can
ask the following natural questions (try to answer them for the two
coins in the picture):

1. How many ways are there to give change for b cents?

2. What is the smallest number of coins necessary to do so?

3. What is largest quantity b that cannot be expressed using the
coins?

4. Which values of b have exactly 20 ways to be broken in change?

Another similar family of problems is that for the bin-packing problems
The problem is we are given n items and n bins. Item j has size sj
and bin i has capacity c. The goal is to assign each item to a bin (to
pack the bins!) so that the total weight of the items in each bin does
not exceed c, but the number of bins used is smallest possible. This
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is a difficult problem and for the most part one is interested on good
approximation algorithms.

Let us consider one instance of the problem. Let (s, a) be an instance
for bin packing with item sizes s1, . . . , sd ∈ [0, 1] and a vector a ∈ Zd≥0

of item multiplicities. In other words, our instance contains ai many
copies of an item of size si. (we assume that si is given as a rational
number and ∆ is the largest number appearing in the denominator of
si or the multiplicities ai.)

Consider the polytope P := {x ∈ Zd≥0 | sTx ≤ 1}. Now the bin
packer’s objective is to select a minimum number of vectors from P
that sum up to a,

min
{

1Tλ |
∑
x∈P

λx · x = a; λ ∈ ZP≥0

}
(1)

where λx is the weight that is given to x ∈ P. This special case is
known as the (1-dimensional) cutting stock problem.

Bin packing and the cutting stock problem belong to a family of prob-
lems that consist of selecting integer points in a polytope with multi-
plicities. In fact, several scheduling problems fall into this framework
as well, where the polytope describes the set of jobs that are admis-
sible on a machine under various constraints. Recently Goemans and
Rothvoss showed

Theorem 1.5. For any Bin Packing instance (s, a) with s ∈ [0, 1]d

and a ∈ Zd≥0, an optimum integral solution can be computed in time

(log ∆)2
O(d)

where ∆ is the largest integer appearing in a denominator
si or in a multiplicity ai.

Fundamentally, one is interested on finding the sparsest representation
of a vector b from a list of vectors X = (x1, . . . , xt) ⊂ Rd which we
think of as the columns of the matrix A In the case of the cutting
stock problem the vectors xi are the possible packing patterns. They
define the following sparse representation problem.

min ‖x‖0, Ax = b, x ≥ 0, x ∈ Zt. (2)

Here, ‖ · ‖0 denotes the 0-norm, which counts the cardinality of the
support of x, i.e. supp(x) = {i : xi 6= 0}. In other words, the value of
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‖x‖0 equals the number of non-zero entries in the vector x. Problem
(2) aims to find the vector of minimal support.

There is a rich literature about this problem. The sparsest solution
of a system of linear equations is quite important in applications to
signal processing [?], cryptography and coding theory [?]. Sparse in-
teger solutions also appear in the context of finding guarantees for
bin-packing problems via the Gilmore-Gomory formulation [?], as first
suggested in [?]. More generally, upper bounds given for the size of
the sparsest integer solution indicate that if there exists an optimal
solution to such an integer program, then there exists one which is
polynomial in the number of equations and the maximum binary en-
coding length among integers in the objective function vector and the
constraint matrix (see Section 3 in [?]). The sparsity of the solution is
also strongly connected to the integer Carathéodory problem (see [?]
and the references there).

It is known that even for real variables, the 0-norm minimization is
NP-hard [?], but that the greedy algorithm provides a guaranteed
approximation in this setting. Moreover, when one looks at random
matrices, one can prove nice properties for the size of the solution [?].
It is precisely such structural differences that we wish to study here
for integer solutions.

There are two important geometric objects associated with the sparse
representation problem. First, the conic hull of X is the set

cone(X) = {λ1x1 + · · ·+ λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ∈ R≥0},

and the semigroup of X or the integer conic hull of X is the set

Sg(X) = {λ1x1 + · · ·+ λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ∈ Z≥0}.

For each b ∈ Sg(X), we are interested in finding upper bounds and the
asymptotic behavior of the function

m0(b) = min{‖a‖0 : a ∈ PX(b)},

where PX(b) = {a ∈ Zt≥0 : a1x1 + · · ·+ atxt = b} is the solution set for
b. Note that the convex hull of PX(b) is a lattice polytope.

In the context of the applications, the upper bounds for m0(b) are of
special interest. The problem of estimatingM0(X) := maxb∈Sg(X) m0(b)
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goes back to classical results on the integer Carathéodory problem.
Cook, Fonlupt, and Schrijver [?] showed that M0(X) ≤ 2d − 1 if
C = cone(X) is pointed and X forms a Hilbert basis of C. This result
was later improved by Sebő [?] to M0(X) ≤ 2d−2. It remains an open
question to determine the exact value even when X is a Hilbert basis.
For an arbitrary set X ⊂ Zd, Eisenbrand and Shmonin [?] obtained
the bound

M0(X) ≤ 2d log(4d‖X‖∞), (3)

where ‖X‖∞ = maxx∈X ‖x‖∞.

There are two challenging open problems: What are the optimal bounds
for m0(b) in terms of the generating set X? What is the asymptotic
behavior of the univariate function f0(λ) := m0(λb) obtained from
successive dilations of the vector b?

Let us conclude this introduction with a bird-view of the four founda-
tional combinatorial theorems from geometry and topology. First, two from
combinatorial topology, Sperner’s and Fan-Tucker’s lemmas, and then, sec-
ond, two corner stones of combinatorial convex geometry, Carathéodory, and
Helly theorems. We will see how these four “mathematical cornerstones” are
deeply interrelated among themselves (e.g., the topological results imply the
the geometric statements, while they imply each other in some form or an-
other), and each theorem, is in fact a family of theorems of certain type,
with many generalizations, corollaries and extensions. The landscape is so
lovely one is often tempted to stay longer at many stops, but remember our
final destination is the world of applications!

First, Sperner’s Lemma is a combinatorial statement about labelings
of triangulated simplices. It is quite well-known as equivalent with the
topological fixed-point theorem of Brouwer [?, ?].

Theorem (Sperner’s lemma, 1928 []). Let T be a triangulation of a (n−1)-
simplex, and suppose that the vertices of T have a labeling satisfying these
conditions: each vertex of the triangulation is assigned a unique label from
the set {1, 2, . . . , n}, and each other vertex v of T is assigned a label of one
of the vertices of P in carr({v}).

Any Sperner labeling of a triangulation T of the d-simplex must contain
an odd number of cells for which all their labels are distinct. In particular,
there is at least one such cell.

Second, the Fan’s lemma is a combinatorial analogue of the famous
Borsuk-Ulam theorem (see []). We need to start with a little bit of ter-
minology and notation. Denote by Sd be the unit d-sphere, the set of all
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points of unit Euclidean distance from the origin in Rd+1. Any pair of points
in Sd of the form x,−x is a pair of antipodes in Sd. A triangulation of Sn has
an anti-symmetric labeling ` if `(−v) = −`(v) for all vertices v. A labeling
has a complementary edge if some adjacent pair of vertices has labels that
sum to zero. A simplex is alternating if its vertex’s labels are distinct in
magnitude and alternate signs, when arranged in order of increasing value.

Theorem (Fan’s lemma 1946 []). Let T be a symmetric triangulation of Sn

with an m-labeling that is anti-symmetric and has no complementary edge.
Then has at least one positive alternating n-simplex.

We recall now Carathéodory’s, and Helly’s theorems. They are clearly
among the most important theorems in convex geometry.

Theorem (C. Carathéodory 1911 [?]). Let S be any subset of Rd. Then
each point in the convex hull of S is a convex combination of at most d+ 1
points of S.

Theorem (E. Helly, 1913 [?]). Let F be a finite family of convex sets of
Rd. If

⋂K 6= ∅ for all K ⊂ F of cardinality at most d+ 1, then
⋂F 6= ∅.

We chose these four theorems because they are centrally located and
essential! One can sense this because they imply many of the later re-
sults and they have many corollaries generalizations and extensions. Our
course presents a interconnected theory and we can see what theorems imply
others, E.g., Sperner’s lemma implies Helly theorems. Fan-Tucker implies
Carathéodory.

(see the diagram of implications below).
These four fantastic theorems and their variations are key for discrete

applied mathematics today; a fact we will demonstrate with plenty of ex-
amples.

2 Combinatorial Topology Tools: Midterm 1

A triangulation is a subdivision by simplices that meet either face-to-face or
not at all. Each simplex is the affine hull of its vertices; these are the vertices
of the triangulation. We are interested on coloring or labeling the vertices of
a triangulated manifold, most often a triangulated ball or a sphere following
certain rules and then make conclusions about multicolored simplices inside
the triangulation.
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2.1 Lectures 2: Preliminaries

The line segment joining two points x, y ∈ Rd is given by the set of all
points of the form

[x, y] := {γx+ (1− γ)y : 0 ≤ γ ≤ 1}.
A set A ⊂ Rd is convex if it contains the line segment joining two of its

points, for every pair of points in the set. A lot of our arguments will rely
on convex sets.

Example 1. Figure 1 shows some convex sets in R3, whereas Figure ?? are
instances of nonconvex sets in R2.

Figure 1: Examples of convex figures (left) and non-convex figures (right)

It may be easy for humans to determine whether or not a given fig-
ure is convex through straightforward observation. However, in practice, a
computer is only able to understand the convexity of a figure by a set of
inequalities, and as the examples above show, whether or not a set is con-
vex is not always immediately clear from input inequalities. It is therefore
desirable to have a clear criterion that can be implemented to determine
whether or not a given figure in Rd is convex.

Proposition 2.1. The intersection of a (possibly infinite, possibly uncount-
able) collection convex sets is convex.

Proof. Let {Cβ : β ∈ I} be a (possibly infinite) collection of convex sets in
Rd and let γ ∈ [0, 1].

Suppose that x, y ∈ ⋂β∈I Cβ. Then x, y ∈ Cβ for each β ∈ I, and since
each Cβ is convex,

z = γx+ (1− γ)y ∈ Cβ
for each β ∈ I.

Thus, z ∈ ⋂β∈I Cβ, so that the intersection of these collection of convex
sets is again convex.
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Hyperplanes and Half-Spaces

For every nonzero c ∈ Rd, we may associate c with a linear functional
f : Rd → R. An example of this is f : Rd → R where f(x) = c · x, with the
usual dot product in Rd.

Definition 2.2. For α ∈ R, we say that Hα = {x ∈ Rd : f(x) = α} is an
affine hyperplane or simply a hyperplane.

H+α

Hα
-

Figure 2: A hyperplane dividing R2 into two half-spaces.

An affine space is an intersection of finitely many hyperplanes. The
affine hull of a set A ⊂ Rd, denoted aff(A) is the smallest affine space
containing A.

Notice that affine planes are always convex, as they are finite intersection
of hyperplanes, which are themselves convex. Thus, affine spaces provide
important examples of convex sets as they provide meaning to the dimension
of a convex set. Hyperplanes correspond to what are called level sets of
linear functions. The dimension of an affine space A in Rd is the largest
number of affinely independent points in A minus one. The dimension
of a convex set C in Rd is the dimension of aff(C).

Observe that every hyperplane in Rd divides Rd into two half-spaces,
namely

H+
α = {x ∈ Rd : f(x) ≥ α} and H−α = {x ∈ Rd : f(x) ≤ .α}

Note that equalities may be used to define half-spaces, as they can be
decomposed into two inequalities. This will come up later when we discuss
polytopes.

We can formally denote half-spaces as convex sets defined by a linear
inequality of the form

a1x1 + ...+ adxd ≤ b.
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Given a convex set C in Rd, a linear inequality f(x) ≤ α is said to be
valid on C if every point in C satisfies that inequality. A subset F a convex
set C is a face of C if there exists a linear inequality f(x) ≤ α which is
valid on C and that F = {x ∈ C : f(x) = α}. Whenever this is the case,
the hyperplane defined by f(x) = α is a supporting hyperplane of F .

Figure 3: A convex set in R2 with a supporting hyperplane and a vertex as
its face.

Definition 2.3. A face of dimension zero is called a vertex. A face of
dimension one is called an edge, and a face of dimension dim(C) − 1 is
called a facet.

The following are some standard properties of well-behaved convex sets.

Lemma 2.4. Let C be a closed and bounded convex set in Rd. Let x0 /∈ K.
Then

1. There is a unique nearest point x1 of C to x0.

2. The hyperplane H through x1 orthogonal to x1 − x0 is a supporting
hyperplane of C.

Theorem 2.5. A convex set C is the intersection of its closed supporting
half-spaces. In other words Convex sets are the sets of solutions of (possibly
infinite) systems of linear inequalities.

Theorems 2.5 will not be proved here, but shall be assumed as true from
this point onward. Both theorems suggest that it is sufficient to consider
intersection of regions specified by linear inequalities to describe convex sets
Convex sets arise naturally in the discussion of linear programming and
optimization. Suppose you have the problem of finding a vector (x1, ..., xd)
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Figure 4: Convex set as an intersection of half-spaces.

that satisfies all of the following:

a1,1x1 + ...+ a1,dxd ≤ b1
a2,1x1 + ...+ a2,dxd ≤ b2

...
...

ak,1x1 + ...+ ak,dxd ≤ bk
This is called the linear feasibility problem, and is an example of a

standard problem in the field. The set of points satisfying the constraints
constitute the feasible region or feasible set. If the problem has no solution,
it is called infeasible. If the feasible set is convex, solutions may be com-
bined to produce new solutions, so this is considered desirable. A feasible
set may be bounded or unbounded. For a problem with n variables, it is
a necessary but not sufficient condition that the number of constraints at
least n + 1 in order for the feasible set to be bounded.

In our future considerations, we will be interested in polyhedra, convex
figures that are the intersection of finitely many half-spaces. An example
illustrating a polyhedron is shown in Figure 5.

Example 2. The following are instances of a polyhedron:

1. The d-dimensional unit cube

Cd = {x ∈ Rd : 0 ≤ xi ≤ 1, i = 1 . . . d}.

2. The (d− 1)-dimensional standard simplex

∆n−1 = {x ∈ Rd :
d∑
i=1

xi = 1, xi > 0}.
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Figure 5: Convex set described with finitely many linear inequalities.

3. The d-dimensional cross-polytope

Od = {x ∈ Rd :
d∑
i=1

|xi| ≤ 1}.

4. The simplotope, which is the Cartesian product of several simplices

∆m1 ×∆m2 × . . .×∆mr

All of the above are indeed intersections of finitely many half-spaces. Cd
can be seen as the intersection of all half-spaces of the form xi ≤ 1 and
xj ≥ 0, where i, j = 1, . . . , d. Every equality f(x) = α can be seen as the
conjunction of the two inequalities f(x) ≤ α and f(x) ≥ α, so δn−1 is indeed
a polytope.

Meanwhile, there are 2d possible linear inequalities describing Od. For
example, in R3, O3 is specified as the following set of 8 inequalities:

−1 ≤ x1 + x2 + x3 ≤ 1,

−1 ≤ x1 + x2 − x3 ≤ 1,

−1 ≤ x1 − x2 + x3 ≤ 1,

−1 ≤ x1 − x2 − x3 ≤ 1.

Each inequality specifies a supporting hyperplane for a face of O3. The
reader is invited to verify that O3 is then a regular octahedron as shown at
top right of Figure 1. On the other hand, it is not immediately clear that
simplotopes are polyhedra. This is indeed the case, and we leave it as an
exercise for the reader to verify the more general claim that the Cartesian
product of finitely many polyhedra is again a polyhedron.
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Convex and Affine Combinations

Even though not every shape in nature appears as a convex set, we may
always use convex sets to approximate these shapes!

Definition 2.6. Let A ⊂ Rd. The convex hull of A, denoted by conv(A), is
the intersection of all the convex sets containing A, that is, it is the smallest
convex set that contains A.

We usually denote by conv(a1, . . . , an) for the convex hull of {a1, . . . , an} ⊂
Rd.

Definition 2.7. A polytope is the convex hull of a finite set of points in
Rd. It is the smallest convex set containing the points.

Definition 2.8. Given finitely many points A = x1, x2, ..., xd, we say the
linear combination

∑d
i=1 γixi is

• a conic combination if all γi are nonnegative.

• an affine combination if
∑d

i=1 γi = 1

• a convex combination if it is both a conic and affine combination.

Lemma 2.9. For a set of points A in Rd we have that conv(A) equals the
set of all finite convex combinations of points in A.

Sketch of Proof Denote B as the set of all finite convex combinations
of points in A. In other words, x ∈ B if and only if there is a finite subset
S = {x1, . . . , xn} of A with x =

∑n
i=1 γixi, γi ≥ 0 for all i and

∑n
i=1 γi = 1.

We need to prove that B = conv(A).
Let us first prove that B is a convex set containing A. Obviously, each

x ∈ A can be expressed as a finite convex combination, that is x = 1 · x,
so A ⊂ B. Now, if u, v ∈ B, then we may assume that there is a common
subset S = {x1, . . . , xn} of A such that u and v can be expressed as convex
combinations of points in S (Why?). Suppose that

u =
n∑
i=1

γixi

and

v =
n∑
i=1

γ′ixi,

where
γi, γ

′
i ≥ 0
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and
n∑
i=1

γi =
n∑
i=1

γ′i = 1.

Thus, if λ ∈ [0, 1], then we obtain

λu+ (1− λ) =
n∑
i=1

λγixi + (1− λ)γ′ixi

=
n∑
i=1

λγi + (1− λ)γ′i]xi.

For each i, we have

λγi + (1− λ)γ′i ≥ λ(0) + (1− λ)(0) = 0,

and moreover,

n∑
i=1

λγi + (1− λ)γ′i = λ

n∑
i=1

γi + (1− λ)
n∑
i=1

γ′i

= λ(1) + (1− λ)(1)
= 1.

Thus, λu + (1 − λ)v is also a finite convex combination of points in A, so
B is indeed a convex set containing A. We then have conv(A) ⊂ B by the
definition of convex hull of A.

The interested reader is then invited to prove that B ⊂ conv(A) by
showing that if C is any convex set containing A, then B ⊂ C. It then
follows that B ⊂ conv(A), so conv(A) is precisely the set of all finite convex
combinations of points in A.

Definition 2.10. A set of points {x1, ..., xk} is affinely dependent if there
is a nontrivial linear combination

∑k
i=1 γixi = 0 with

∑k
i=1 γi = 0. Other-

wise, it is said to be affinely independent.

Lemma 2.11. A set of d+ 2 or more points in Rd is affinely dependent.

Proof. Suppose that x1, . . . , xk are vectors in Rd, and consider the vectors
x′1, . . . , x

′
k in Rd+1 where x′i is the vector whose first d components coincide

with those of xi.
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Since k > d + 1, then this collection of vectors is linearly dependent,
that is, there are γi ∈ R with

∑k
i=1 γix

′
i = 0 and γ1, . . . , γk are not all zero.

Thus, we have both
∑k

i=1 γixi = 0 and
∑k

i=1 γi = 0 by considering the
linear dependence on the first d components and on the last component of
x′i separately.

Furthermore, this linear combination is nontrivial, because, some γj is
nonzero. By definition, x1, . . . , xk forms an affinely dependent set.

We have the following characterization of affinely independent sets in
Rd.

Lemma 2.12. A set B ⊂ Rd is affinely independent if and only if every
point in aff(B) has a unique representation as an affine combination of
points in B.

Proof. Suppose that B = {x1, . . . , xk} and that some point x in aff(B)
admits two different affine combinations

x =
k∑
i=1

βixi,

and

x =
k∑
i=1

γixi,

with βj 6= γj for some j and

k∑
i=1

βi =
k∑
i=1

γi = 1.

Then, by taking differences,

k∑
i=1

(βi − γi)xi = 0,

with
k∑
i=1

(βi − γi) =
k∑
i=1

βi −
k∑
i=1

γi = 1− 1 = 0.

This linear combination of 0 is nontrivial, because βj − γj 6= 0, so that
B is an affinely dependent set. Hence, if every point in aff(B) is uniquely
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expressed as an affine combination of points in B, then B must be affinely
independent.

On the other hand, if x ∈ aff(B), then it can be shown that x can be
expressed as an affine combination of some points in B. In other words,
x =

∑m
i=1 αixi and

∑m
i=1 αi = 1 where {x1, . . . , xm} ⊂ B. If B is affinely

independent, then B cannot have more than d + 1 points by Lemma 2.11,
let B = {x1, . . . , xk+1} for some k ≤ d.

We claim that the set {x1−xk+1, . . . , xk−xk+1} is linearly independent
over R. Suppose that

∑k
i=1 γi(x1−xk+1) = 0, for some γi ∈ R, i = 1, . . . , k.

Thus,
∑k+1

j=1 βjxj = 0, where βj = γj for j = 1, . . . , k and βk+1 = −∑k
j=1 γj ,

so that
∑k+1

j=1 βj = 0. The affine independence of B forces βj = 0 for all
j = 1, . . . , k + 1, so we have γi = 0 for all i = 1, . . . , k. This demonstrates
the linear independence of the set {x1 − xk+1, . . . , xk − xk+1}.

Now, if x ∈ B, then by the remark above, x =
∑k+1

i=1 αixi and
∑k+1

i=1 αi =
1. We then obtain

x− xk+1 =
k∑
i=1

αi(xi − xk+1)

As we know that the set {x1 − xk+1, . . . , xk − xk+1} is linearly indepen-
dent, the coefficients αi must be unique. x =

∑k+1
i=1 αixi + xk+1

The proof of Lemma 2.11 offers a test for affine dependence of points
{x1, . . . , xk}, one may treat them as vectors in Rd and write them as columns
of a matrix, and append a row of 1’s to the bottom as follows:

M =


x1,1 x2,1 . . . xk,1
x1,2 x2,2 . . . xk,2

...
...

. . .
...

x1,d x2,d . . . xk,d
1 1 . . . 1


If the null space of the M is trivial, the points are then affinely independent.
Otherwise, they are affinely dependent.

Triangulations of Convex Polytopes and Point Configurations

A point configuration is a finite set of points A in Rd. As noted earlier
in the lectures, a convex polytope is the convex hull of finitely many points.
Recall that from Lemma 2.9, we may describe a convex polytope P with
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vertices p1, . . . , pn as

P = conv(p1, ..., pn) :=

{
n∑
i=1

γipi : γi ≥ 0, ∀i = 1, . . . , n, and
n∑
i=1

αi = 1

}
.

Recall a k-dimensional simplex is the convex hull of a set of k+1 affinely
independent points.

Definition 2.13. A triangulation of a point configuration A is a finite
collection T of simplices σ that partitions conv(A) such that

1.
⋃
σ∈T

σ = conv(A).

2. Any pair of simplices intersects at a (possibly empty) common face.

3. Every vertex of T is contained in A.

Observe that we need not use all points in the interior of conv(A). How-
ever, we are not allowed to add points that were absent in A into a trian-
gulation of A. Figure 6 illustrates an example of valid triangulation that
does not use all points of A, whereas Figure 7 displays examples that are
not triangulations.

A common face in the definition refers to the intersection between two
simplices being a face for both of the simplices. For example, on the left
part of Figure 8, although an edge is a 1-dimensional face for any one of the
the triangles on the right, the same edge is not a face for the triangle on the
left.

On the other hand, two simplices are not allowed to intersect at the
interior for both of them, as portrayed on the right part of Figure 8.

Figure 6: A permissible triangulation.
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Figure 7: A subdivision that is not a triangulation.

Figure 8: Forbidden cases in a would-be triangulation.

Definition 2.14. Given a triangulation T of a polytope, the diameter of
a simplex σ ∈ T is given by

diam(σ) = max{||x− y|| : x, y ∈ σ}.

The mesh size of the triangulation T is given by

mesh(T ) := max{diam(σ) : σ ∈ T}.

We remark that the mesh size does not necessarily shrink if we only
introduce extra simplices using vertices from the same point configuration
A. This may be due to the fact that the line segment whose length equals
the mesh size does not contain any point in A strictly in between. Thus,
if we wish to reduce the mesh size of a triangulation T of point configura-
tion A, then we must introduce more points to A and refine the existing
triangulation.

Given a point configuration A that is finite, there may be multiple pos-
sible triangulations, but only finitely many of them. Figure 9 portrays 4
possible triangulations of the the same set of 5 points. It is not an easy
task to determine the set of all triangulations, let alone determine a possible
underlying structure.
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Figure 9: Four possible triangulations for the same point configuration.

Having covered the basic terminology for triangulations, we are ready to
define barycentric triangulations.

Definition 2.15. The barycenter of a simplex σ = conv(a1, . . . , ak+1)
where {a1, . . . , ak+1} is affinely independent, is the point

k+1∑
i=1

1
k + 1

ai.

The barycentric triangulation Tb of a simplex, denoted σ = conv(a1, . . . , ak+1)
has the following characterization:

1. The vertices of the triangulation Tb are the barycenters of faces of σ
(including the vertices a1, . . . , ak+1 themselves).

2. If ai1 , ai2 , . . . , aid are the d vertices contained in a face F of σ, then as-
sociate the barycenter of F with the subset {i1, i2, . . . , id} of {1, 2, . . . , k+
1}. Observe that this now gives a bijection between the set of faces of
σ with the subsets of {1, 2, . . . , k + 1}.

3. The simplices in Tb are the convex hulls of the subsets of barycenters
b1, b2, . . . , bk+1 such that corresponding subsets form a full chain of
containment in the indices:

{i1} ⊂ {i1, i2} ⊂ . . . ⊂ {i1, i2, . . . , ik+1}.

In other words, there cannot be further insertions of subsets within
this chain. An example is shown for a tetrahedron, a 3-dimensional
simplex, in Figure 10.

Observation 2.16. There are (k+ 1)! simplices in the barycentric triangu-
lation of a k-dimensional simplex.
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Proof. As in the remark made in the previous definition, every simplex in
the barycentric is in one-to-one correspondence with a full chain of subsets
of {1, 2, . . . , k + 1}.

Now, there are k + 1 possible choices for an element in {1, 2, . . . , k + 1}
to be included in the first subset in the chain, followed by k possible choices
for a different element to be included in the second subset in the chain, and
so on. As these choice can be made independently, (k + 1)! such chains are
possible, which corresponds to the same number of simplices in a barycentric
division.

Barycentric triangulations provide a useful tool at our disposal, because
of these two reasons. Firstly, barycentric triangulations always exist for an
arbitrary simplex and yields a possible triangulation of the simplex. Besides
that, by repeated use of barycentric triangulations, as shown in Figure 11,
we may successively construct a sequence of triangulations whose mesh size
tend to 0.

Definition 2.17. Denote the first barycentric subdivision of a simplex
σ as the barycentric triangulation of σ.

Fix an integer j > 1. The jth barycentric subdivision of a simplex
σ is the triangulation that results from the barycentric triangulation of each
simplex from the (j − 1)th barycentric subdivision of σ.

Lemma 2.18. The mesh size of the jth barycentric subdivision of a simplex
σ approaches 0, as j →∞.

Proof. For a given k-dimensional simplex ∆, diam(∆), the longest distance
between two points in ∆ is always the distance of some of its two vertices.
The barycentric subdivision of ∆ would introduce a barycenter G of ∆. If
we take the line segment joining a vertex of ∆ to the barycenter of the

{1}

{2}

{3}
{1,2,3}

{4}

{1,2}

{1,2,3,4}

Figure 10: An example of a simplex in the barycentric triangulation of a
tetrahedron.
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Figure 11: A sequence of barycentric subdivisions.

facet not containing this vertex, then the line segment passes through G
and G divides the line segment in the ratio of k : 1. In addition, it can be
shown inductively that this is the highest ratio possible for all vertices in
the triangulation lying on a line segment joining other two vertices in the
triangulation. Thus, the mesh size of this barycentric subdivision reduces
by a factor of at most k

k+1 .
Therefore, mesh(T1) ≤ k

k+1diam(σ) and mesh(Tj) ≤ k
k+1mesh(Tj−1), so

that inductively

mesh(Tj) ≤
(

k

k + 1

)j
diam(σ).

Since diam(σ) is constant, mesh size is always nonnegative and limj→∞

(
k
k+1

)j
diam(σ) =

0, we conclude that
lim
j→∞

mesh(Tj) = 0

Now, given a triangulation T of a k-dimensional simplex ∆ and V (T )
denotes the set of vertices of T , the function l : V (T )→ {1, 2, . . . , k + 1} is
called a coloring or a labeling function.

2.2 Lecture 3,4: Sperner’s lemma and its relatives

In this lecture we state and proof the important Sperner’s Lemma. We first
introduce some convenient notation.

Let ∆d be a d - dimensional simplex with vertices {e1, · · · , ed, ed+1}.
Furthermore, let T be a triangulation of ∆d together with a labeling of its
vertices, i.e. a function l : V (T ) −→ {1, 2, · · · , d+ 1}.
Definition 2.19. Denote by Fi the facet in ∆d opposite to ei. A labeling l
is good if for any vertex in T contained in Fi we have l(v) 6= i.
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Note that this is equivalent to the property that for any vertex v con-
tained in a face conv(es : s ∈ S) of ∆d, we must have l(v) ∈ S. In particular,
this forces l(ei) = i for all 1 ≤ i ≤ d+ 1.

Definition 2.20. Given a simplex ∆d and a triangulation T with labeling
l, a d-dimensional simplex σ ∈ T with vertices v1, · · · , vd+1 is full if all
vertices use different labels.

Theorem 2.21 (Sperner’s lemma). Let ∆d be a d-dimensional simplex with
triangulation T, and l : V (T )→ {1, · · · , d+1} a good labeling on V (T ). Then
there exists a full d-dimensional simplex σ ∈ T . Furthermore, the number
of full simplices is odd.

Figure 12: An example in dimension 2 of Sperner’s lemma.

The proof will be by induction in the dimension d.

Proof. We begin with the base case d = 1. In this case we have a string
of digits 0 and 1, starting with a 0 and ending with a 1. On each pair of
consecutive digits the string either remains the same (00 and 11) or change
(10 and 01). Since it starts with a 0 and ends with a 1, there must be an
odd number of changes, which is precisely what we needed to check.

We now assume is true for any simplex ∆ of dimension less than d. We
are going to use the following graph G. The vertex set is the set of all (d−1)
simplices in T whose vertices uses all the labels in {1, 2, · · · , d}. There is

26



an edge between two such simplices if they are both facets of a common d
simplex in T .

Figure 13: An example in dimension 2 of the graph.

In any dimension the only possible degrees for any vertex are 0,1, or 2:

1. Degree 0. There are two options. Either the vertex is at the facet Fd+1

and contained in a full simplex, or is contained in two full simplices.

2. Degree 1. There are two options. Either the vertex is at the facet Fd+1

or it is contained in (only one) full simplex.

3. Degree 2. Everything else.

Any graph with degrees at most 2 is the union of disjoint paths and
cycles. We consider isolated vertices as paths of length zero. Note that the
full simplices are always the endpoint of some path.

The restriction of the triangulation and the labeling to the facet/simplex
Fd+1, is again a good labeling (see the remarks after Definition 2.19). By
the inductive hypothesis, there is an odd number of d − 1 simplices in T
contained in Fd+1 whose vertices uses all the labels in {1, 2, · · · , d}. These
are precisely all vertices in G lying on Fd+1.
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Furthermore, all the vertices lying in T are all endpoints of a path (pos-
sibly of length zero). If we follow the path they begin, then we will either
end up in a full simplex or back to Fd+1. The latter can happen just an
even number of times, so it must happen an odd number of times that we
end up in a full simplex. Cycles do not add any full simplices. Also a path
whose two endpoints are both full simplices adds two to the number of full
simplices, so it does not affect parity either, hence we are done.

Sperner’s lemma’s key importance is its role on the computation of fixed
points of continuous maps. This is a topological challenge with applications
in game theory and economics where the notion of equilibrium is very im-
portant [?]. Mathematically an equilibrium is a fixed point of a continuous
mapping. Finding a fixed point is then an issue of practical importance.
A wide variety of algorithms have been proposed and there is an extensive
literature in the mathematical programming community.

One of the most famous theorems about fixed points is due to the Dutch
mathematician L. E. J. Brouwer:

Theorem (Brouwer). If C is a topological d-dimensional ball and f : C 7→ C
is a continuous function, then f has a fixed point, namely, there is a point
x∗ in C with f(x∗) = x∗.

Recall that a homeomorphism is a one-to-one and onto continuous func-
tion whose inverse is also continuous. A topological d-ball is the image of
the standard unit ball Bd = {x ∈ Rd :

∑
i x

2
i ≤ 1} under a homeomorphism.

A simplex is our favorite example of a topological ball. Brouwer’s original
proof says nothing about how to find the fixed point or a good approximation
to a fixed point, not even in the case when C is a simplex. In the case of a
simplex Brouwer’s theorem may be demonstrated via a combinatorial result
about labeling triangulations due to Sperner. A non-obvious consequence
of Sperner’s Lemma is the famous Brouwer Fixed Point Theorem.

Theorem 2.22 (Brouwer’s fixed point theorem, 1912). Let C be a nonempty,
compact, convex subset of Rn, and f : C → C a continuous function. Then
there is an x ∈ C such that f(x) = x, i.e. a fixed point of f .

The next goal will be showing how the Brouwer’s theorem is a con-
sequence of Sperner’s Lemma. We begin this journey with the Knaster-
Kuratowski-Mazurkiewicz Lemma. This set-covering variant of Sperner’s
lemma is known as the KKM Lemma.
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Theorem 2.23 (Knaster–Kuratowski–Mazurkiewicz (KKM) lemma, 1929).
Let ∆ be an (n − 1)-dimensional simplex with vertices labeled 1, . . . , n. Let
C1, . . . , Cn be closed sets such that for any I ⊆ {1, . . . , n},

conv(I) ⊆
⋃
i∈I

Ci, (4)

where conv(I) is the convex hull of the vertices in I. Then
n⋂
i=1

Ci is nonempty.

Before we give a proof, let’s illustrate the KKM lemma with an example.
Figure 1 has a two-dimensional simplex with vertices labeled 1 through 3,
and three closed sets C1, C2, C3 satisfying (1). The nonempty intersection
C1 ∩ C2 ∩ C3 is highlighted in red.

Figure 1: An illustration of the KKM lemma in two dimensions.

Our proof of KKM will use the following nice fact about simplices.

Lemma 2.24. Let ∆ be an (n−1)-dimensional simplex with vertices labeled
1, . . . , n. If I1, I2 ⊆ {1, . . . , n}, then

conv(I1 ∩ I2) = conv(I1) ∩ conv(I2).

Proof. (Lemma 3) Let x ∈ conv(I1 ∩ I2). Then x can be written as a
convex combination of vertices belonging to I1 ∩ I2 (this was a homework
problem), which is therefore a convex combination of vertices in I1 (so x ∈
conv(I1)) and a convex combination of vertices in I2 (so x ∈ conv(I2)). Thus
x ∈ conv(I1) ∩ conv(I2).
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Now let y ∈ conv(I1) ∩ conv(I2). Then we can write y as two convex
combinations:

y =
∑
i∈I1

γixi, y =
∑
i∈I2

λixi,

where xi is the vertex of ∆ corresponding to i ∈ {1, . . . , n}, all γi ≥ 0, all
λi ≥ 0,

∑
i∈I1 γi = 1 and

∑
i∈I2 λi = 1. Then∑

i∈I1

γixi −
∑
i∈I2

λixi = 0.

We re-index this into three disjoint sums, setting ηi = γi − λi:∑
i∈I1∩I2

ηixi +
∑

i∈I1\I2

γixi −
∑

i∈I2\I1

λixi = 0 (5)

There are two cases. If γi = 0 for all i ∈ I1 \ I2, then

y =
∑
i∈I1

γixi =
∑

i∈I1∩I2

γixi +
∑

i∈I1\I2

γixi =
∑

i∈I1∩I2

γixi

and
1 =

∑
i∈I1

γi =
∑

i∈I1∩I2

γi +
∑

i∈I1\I2

γi =
∑

i∈I1∩I2

γi,

and thus y ∈ conv(I1 ∩ I2). Consider the other case, in which γi 6= 0 for
some i ∈ I1 \ I2. Note that∑

i∈I1∩I2

ηi +
∑

i∈I1\I2

γi −
∑

i∈I2\I1

λi =
∑
i∈I1

γi −
∑
i∈I2

λi = 1− 1 = 0. (6)

Disaster strikes! Now (2) and (3) give an affine dependence relation among
the vertices I1 ∪ I2—but ∆ is by definition the convex hull of the affinely
independent vertices {1, . . . , n}, so the vertices I1 ∪ I2 must be affinely in-
dependent. Contradiction! This completes the proof.

Note that Lemma 3 does not hold for a general polytope! Try it for a
square. Lemma 3 is immediately extended by induction to any finite list of
subsets I1, . . . , Ik ⊆ I.

We now return to proving KKM.
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Proof. (Theorem 2) We will apply Sperner’s lemma. For each integer
k ≥ 0, let Tk be the kth barycentric subdivision of ∆, where T0 = ∆. Let
V (Tk) be the set of all vertices of all simplices in Tk, and set V =

⋃∞
k=0 V (Tk).

For each v ∈ V , define

I(v) = {I ⊆ {1, . . . , n} : v ∈ conv(I)}

and
I∗(v) =

⋂
I∈I(v)

I.

Define a labeling ` : V → {1, . . . , n} by

`(v) = min{i ∈ I∗(v) : v ∈ Ci}.

We need to prove that `(v) always exists. Let v ∈ V . Note that v ∈ ∆ =
conv({1, . . . , n}), so I(v) is nonempty. Now we need I∗(v) to be nonempty.
We have

v ∈
⋂

I∈I(v)

conv(I) =∗ conv

 ⋂
I∈I(v)

I

 = conv(I∗(v)).

*By Lemma 3. Because conv(I∗(v)) is nonempty, it follows that I∗(v) is
nonempty. (Note that carr(v) := conv(I∗(v)) is the unique smallest di-
mensional face of ∆ containing v, called the carrier of v.) Next, by the
assumption (1) of C1, . . . , Cn,

v ∈ conv(I∗(v)) ⊆
⋃

i∈I∗(v)

Ci,

so there is an i ∈ I∗(v) such that v ∈ Ci. (Note that we have now used the
full power of the assumption (1).) Therefore, the set {i ∈ I∗(v) : v ∈ Ci} is
nonempty, so applying the well-ordering principle, `(v) exists.

Now we show that for any k ≥ 0, ` restricted to V (Tk) is a Sperner
labeling of Tk. Suppose that v ∈ V (Tk) belongs to a face of ∆ containing
the vertices in I ⊆ {1, . . . , n}; that is, v ∈ conv(I). Then by definition of
`, we have `(v) ∈ I∗(v), and by definition of I∗(v), we have I∗(v) ⊆ I. So
`(v) ∈ I, which proves that ` is a Sperner labeling.

By Sperner’s lemma, for each k ≥ 0, there is a fully colored simplex
σk ∈ Tk. We can write σk as the convex hull of its vertices:

σk = conv({xk1, . . . , xkn}),
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where, without loss of generality (by re-indexing the xki ’s), `(x
k
i ) = i for each

i = 1, . . . , n. By definition of `, we have xki ∈ Ci for every k ≥ 0. Because
the sequence (xk1)k≥0 is contained in the compact set ∆, it has a convergent
subsequence (xkj

1 )j≥0 with limit x ∈ ∆. Because (xkj

1 )j≥0 is a sequence in
C1, and C1 is closed, we have x ∈ C1.

The final step is to show that every other subsequence (xkj

i )j≥0, 2 ≤ i ≤ n
of vertices also converges to the same limit x. For any k ≥ 0, recall that the
mesh size of Tk is defined by

mesh(Tk) = max{diam(σ) : σ ∈ Tk}
where for any σ ∈ Tk,

diam(σ) = max{‖x− y‖2 : x, y ∈ σ}
and ‖ · ‖2 is the Euclidean norm. (Note that the maximum in the mesh size
is attained because Tk consists of finitely many simplices, and the maximum
in the diameter is attained because ‖ · ‖2 is continuous and σ is compact.)
An important property of the barycentric subdivision (indeed, the reason
for its existence) is that

mesh(Tk) ≤
(

1− 1
n

)k
mesh(T0)

for all k ≥ 0 (see Munkres Elements of Algebraic Topology), where mesh(T0) =
diam(∆). Let i ∈ {2, . . . , n}. Then

‖xkj

i − x‖2 ≤ ‖x
kj

i − x
kj

1 ‖2 + ‖xkj

1 − x‖2
≤ diam(σkj

) + ‖xkj

1 − x‖2
≤ mesh(Tkj

) + ‖xkj

1 − x‖2

≤
(

1− 1
n

)kj

diam(∆) + ‖xkj

1 − x‖2 → 0

as j → ∞. Thus xkj

i → x as j → ∞. Because xkj

i is a sequence in Ci, and
Ci is closed, it follows that x ∈ Ci. Therefore, x ∈ Ci for all i = 1, . . . , n,
and

⋂n
i=1Ci is nonempty.

We now return to Theorem 1, Brouwer’s fixed point theorem. The the-
orem is stated for compact, convex sets, but we now show that it suffices to
prove it for the standard (n− 1)-dimensional simplex ∆n, defined by

∆n =

{
x ∈ Rn : x ≥ 0,

n∑
i=1

xi = 1

}
.
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Here, ∆n is (n− 1)-dimensional but “lives in” Rn.
If ω is any other (n − 1)-dimensional simplex, ω is homeomorphic to

∆n. This is because every point of ω has unique barycentric coordinates. In
other words, if v1, . . . , vn are the vertices of ω, then every point p ∈ ω can
be written uniquely as a convex combination of the vertices:

p =
n∑
i=1

βivi, with all βi ≥ 0 and
n∑
i=1

βi = 1.

Then the map from ω to ∆n given by
∑n

i=1 βivi 7→
∑n

i=1 βiei is a homeo-
morphism, where ei is the ith standard basis vector of Rn. It follows that
proving Brouwer for the standard simplex will prove it for any simplex, by
considering the continuous function f composed with this homeomorphism.

In fact, if C is any nonempty, compact, convex subset of Rn, then C is
homeomorphic to a simplex. This is a fact that we will not prove, but which
allows us to extend the following proof to its more general statement above.

Proof. (Theorem 1) We give a proof for the case that C = ∆n. Let
f : ∆n → ∆n be continuous. We want to find x ∈ ∆n so that f(x) = x. For
each j = 1, . . . , n, let

Cj := {x ∈ ∆n : f(x)j ≤ xj}.

We claim that C1, . . . , Cn, satisfy the hypotheses of the KKM lemma.

1. Let j ∈ {1, . . . , n}, and we show that Cj is closed. Let (x(k))k≥1 be any
convergent sequence in Cj with limit x∗. So for every k ≥ 1, we have
f(x(k))j ≤ x

(k)
j . By the continuity of f , f(x(k)) → f(x∗) as k → ∞.

Then by convergence in the infinity norm on Rn, we have x(k)
j → x∗j

and f(x(k))j → f(x∗)j as k →∞. Therefore,

f(x∗)j = lim
k→∞

f(x(k))j ≤ lim
k→∞

x
(k)
j = x∗j .

Thus x∗ ∈ Cj , so Cj is closed.

2. To show: for any I ⊆ {1, . . . , n}, conv(I) ⊆ ⋃j∈I Cj .

If I = ∅, then conv(I) = ∅ and
⋃
j∈I Cj = ∅, and ∅ ⊆ ∅. So assume

that I 6= ∅. Let x ∈ conv(I). Assume to the contrary that f(x)j > xj
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for all j ∈ I. Then because f(x) ∈ ∆n,

1 =
n∑
j=1

f(x)j ≥
∑
j∈I

f(x)j >
∑
j∈I

xj = 1,

a contradiction. So there is a j ∈ I such that f(x)j ≤ xj . Therefore,
x ∈ ⋃j∈I Cj . So conv(I) ⊆ ⋃j∈I Cj .

Since the sets C1, . . . , Cn satisfy the hypotheses, KKM says that
⋂n
j=1Cj 6=

∅. So let x ∈ ⋂n
j=1Cj , and we claim that x is a fixed point. Because x ∈ Cj

for every j, f(x)j ≤ xj for all j. So

1 =
n∑
j=1

f(x)j ≤
n∑
j=1

xj = 1.

Since equality holds throughout, f(x)j = xj for all j. Thus f(x) = x.

Brouwer’s fixed point theorem has a lot of applications. Notably, John
von Neumann used it to prove the Minimax Theorem in game theory, which
is equivalent to strong duality in linear programming. John Nash proved
the existence of equilibria in strategic games using Brouwer’s fixed point
theorem.

Another interesting result is a generalization of Sperner’s lemma proved
by our very own professor. Let P be a d-dimensional polytope, which is
the convex hull of its n vertices v1, . . . , vn. Let T be a triangulation of P ,
possibly using additional vertices. A Sperner labeling of T is a labeling of
the vertices of T by 1, . . . , n such that a vertex v of T can only be labeled
by j if vj ∈ carr(v).

2.3 lectures 4,5

Theorem 2.25 (Polytopal Sperner’s Lemma (De Loera, Peterson, Su)). Let
P be a d-
dimensional polytope with n vertices, and T a triangulation of P . For any
Sperner labeling of T , there are at least n− d d-dimensional simplices of T
each with d+ 1 different labels on its vertices (“fully colored”).

For example, in the hexagon in Figure 2, we have n = 6 and d = 2. So
by Theorem 4 there must be at least 4 fully colored simplices. In fact, there
are 10 in this example. Notice that because we are using 6 colors, “fully
colored” refers to any set of 3 distinct colors.
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Figure 2: An illustration of the polytopal Sperner’s lemma in two dimensions.

Using Brouwer’s theorem we can prove this generalization of Sperner’s
lemma to labelings of vertices of triangulations of arbitrary convex polytopes
(see Figure ?? for an example and [?, ?]

Note that in particular this implies for P a d-simplex the original Sperner’s
lemma. Thus we have a proof that Brouwer and Sperner’s lemma are in fact
equivalent.

In what follows we must extend previous definitions to deal with poly-
topes.

Definition 2.26. Given a polytope, P , with n vertices and a triangulation,
T , let v ∈ V (T ). The carrier of v, denoted carrier(v) is the smallest face
of P that contains v. Given a labeling l : V (T )→ {1, · · · , n} such that each
original vertex in P has a distinct label, we extend the notion of a good
labeling to mean that for any v ∈ V (T ), l(v) can only take values l assigned
to vertices in the carrier of v.
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Theorem 2.27 (Polytopal Sperner (De Loera, Peterson, Su)). Let P ⊂ Rd

be a convex polytope on n vertices, T be a triangulation on P and l : V (T )→
{1, · · · , n} a good labeling. Then there will be at least n − d fully colored
simplices.

Here is a picture for the case when n = 6 and d = 2

Proof. For convenience we will use e1, · · · , en to denote the vertices of P
and without loss of generality we assume l(ei) = i. Define fT : P → P be
first defining fT (v) = el(v) for all vertices in T , then extend fT linearly.

Claim 2.28. This map fT is surjective.
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Observation 2.29. 1. Since our labeling is good, if F is a face of P , we
know fT (F ) ⊆ F .

2. Since faces of a polytope are polytopes themselves, it suffices to show
fT is surjective on the interior of P .

Let y ∈ int(P ) and for a contradiction suppose y is not in the image of
fT . Define g : P → ∂P as follows, for x ∈ P , we look at the ray originating
at fT (x) traveling in the direction of y. This ray hits the boundary of P at
some point, we define g(x) to be this point.

Note that because y is not in the image of fT , g is defined on all of P . Also
notice that g is continuous because fT is continuous (as illustrated above1).
Thus, by Brouwer’s Fixed Point Theorem, there is a point z ∈ P such that
z = g(z). Since g maps to the boundary, we must have that z ∈ ∂P . This
of course means that z lies in some face, Fz ⊂ P . By our first observation
above, this means fT (z) ∈ Fz. Since y ∈ int(P ) the ray originating from
fT (z) and going through y cannot possibly terminate on Fz. That is to say,
we cannot have g(z) = z, a contradiction! Hence fT is surjective on the
interior of P and therefore on P .

It should be clear from how fT is defined that the only points that map
to the interior of P are those that lie in the interior of a fully colored simplex
in T . For this reason.

Observation 2.30. Let FULL denote the set of fully colored simplices in
T . The map fT is still surjective when restricted to FULL.

We illustrate this observation below:
1 If x′ is close to x then fT (x) is close to fT (x′) and so the rays terminate at points

that are also close
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So, fT (FULL) is a covering of P with simplices whose vertices come from
the vertices of P . To address the issue of counting how many simplices must
be used, we introduce pebble sets.

Definition 2.31. A pebble set of a polytope P is a finite set of points (peb-
bles) in P such that any d-dimensional simplex with vertices in P contains
at most one pebble.

Here is an illustration of a pebble set for the pentagon. Note that pebble
sets are not unique. Indeed, the rotational symmetry of the pentagon shows
that there are at least four more pebble set, similar to the one below.

Let us call two simplices in FULL distinct/different if their vertices are
labeled differently. (Note this is why simplices with the same labels were
shaded with the same color, while simplices with different labels were shaded
with different colors in all the examples.)
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Observation 2.32. By the definition of a pebble set we know that distinct
pebbles are must be contained in distinct simplices in fT (FULL). Therefore
|FULL| ≥ |peb(P )| for all pebble sets, peb(P ).

Claim 2.33. Every polytope P ⊂ Rd, with n vertices, has a pebble set of
size at least n− d.

The proof of this claim is rather messy and omitted, but the idea for two
dimensions is demonstrated below:

This completes the proof.

Lemma 2.34 (Lebesgue’s Lemma). Let ∆ be a (d+1) dimensional simplex
cover of ∆ by closed sets {M1,M2, . . . ,Md+2} such that ∆ = conv(v1, . . . , vd+2).
If Mi contains the facet conv(v1, . . . , v̂i, . . . , vd+2), then

⋂
Mi 6= ∅.

Proof. [Exercise 1 for Homework] Use Sperner’s Lemma by coloring
(Hint: Use indices that are not containing a point)

Observation 2.35. With Exercise 1 (Hint: Using linear map from Exercise
1) we can prove the following:

[Exercise 2 for Homework] Let {a1, a2, . . . , ad+2} be points in Rd.
Ω = conv(a1, a2, . . . , ad+2). K1,K2, . . . ,Kd+2 are closed sets covering Ω
such that Ki ⊇ conv(ai, . . . , âi, . . . , ad+2), then

⋂d+2
i=1 Ki 6= ∅.

Theorem 2.36 (Helly’s Theorem (Special Case)). Let K1,K2, . . . ,Kd+2 be
convex sets in Rd. Suppose any subfamily of d+1 many intersects

⋂
i 6=jKi 6=

∅ for all j, j = 1, . . . , d+ 2,
then

⋂d+2
i=1 Ki 6= ∅.

Proof. Let ai ∈
⋂
j 6=iKj , and Ω = conv(a1, a2, . . . , ad+2).

Claim: Ki
⋂

Ω ⊇ conv(a1, a2, . . . , âi, . . . , ad+2). (Note that this satisfies
Exercise 2). This implies that

⋂
i 6=jKi 6= ∅.
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O. Musin generalized of Sperner and Tucker lemmas to large classes of
manifolds with or without boundary;

One more fascinating consequence is S. Kakutani’s 1941 theorem

Theorem (Kakutani’s). Let X be a compact, convex subset of Euclidean
d-space. Let F be a continuous set-valued function on X; i.e., a mapping
from X to the set of all subsets of X, If T (x) is convex for all x belonging
to X, then there exists a vector z such that z ∈ T (z).

To prove this theorem we will use Brouwer’s fixed point theorem in
combination of the barycentric triangulation we have used before.

Anecdote: In his game theory textbook, Ken Binmore recalls that Kaku-
tani once asked him at a conference why so many economists had attended
his talk. When Binmore told him that it was probably because of the Kaku-
tani fixed point theorem, Kakutani was puzzled and replied, ”What is the
Kakutani fixed point theorem?”

First we need to generalize the classical concept of point-valued func-
tions.

Definition 2.37. A set-valued function is a function F : X −→ 2X . In
words, it is a function that send elements of a set X to subsets of X.

We are interested in the membership problem, i.e. we want to find
x ∈ X such that x ∈ F (X). This generalizes the notion of fixed point for
the classical point-valued functions.

In the same way that most of the time we restrict our attention to
continuous functions, we need to ask for a similar condition on set-valued
functions.

Proposition 2.38. A function f : X −→ Y between two topological spaces
is continuous if and only if its graph Γf = {(x, y) ∈ X × Y : y = f(x)} is
closed in X × Y .

Analogously we can define the graph for any set valued function F as

ΓF = {(x, x′) ∈ X ×X : x′ ∈ F (x)}

If additionally X is a topological space, it makes sense to talk about its
closedness. More specifically we say that ΓF is closed if given a sequence
{(xk, x′k)} with x′k ∈ F (xk) and such that x = limxk and x′ = limx′k exist,
then x′ ∈ F (x).
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Theorem 2.39. Let X ⊂ Rn be a compact convex set. If F : X −→ 2X is a
set valued function with closed graph and the property that F (x) is nonempty
and convex for all x ∈ X, then there exist a x∗ ∈ X such that x∗ ∈ F (x∗).

It is enough to prove it for the standard simplices and that’s what we’ll
do.

Proof. Let ∆ the d−dimensional standard simplex. Consider the Tn the
n−th barycentric subdivision. We construct a continuous function fn as
follows. For all vertices v ∈ Tn we define fn(v) as an arbitrary point in
F (v). Having defined it on the vertices of Tn we extend linearly to all
the simplices inside the barycentric subdivision. The resulting map fn is
continuous since it is piecewise linear.

Brouwer’s theorem guarantess that for each n there exists a fixed point
xn. If any of the xn is a vertex of its corresponding barycentric subdivision,
then we are done since xn = f(xn) ∈ F (xn) by definition. From now
on we assume that xn is not a vertex of Tn, then it is in some simplex
conv(xn0 , · · · , xnd), hence we have a convex expression

xn = θn0xn0 + · · ·+ θndxnd (7)

Since the function f is linear on simplices we can apply it to Equation 7
to get

xn = θn0yn0 + · · ·+ θndynd (8)

where yni = f(xni). Now we have 2d+ 3 sequences

{xn}, {θni} ∀i, {ynj} ∀j.
By repeatedly taking convergent subsequents, and relabeling, we can

assume that each sequence convergences while Equation 8 remains true for
all n.

Observation 2.40. As n goes to infinity, the mesh in Tn goes to zero, so
x∗ = lim

n→∞
xn = lim

n→∞
xni for all i.

Taking limits on Equation 8 we get

x∗ = θ∗0y
∗
0 + · · ·+ θ∗dy

∗
d (9)

where lim
n→∞

θni = θ∗i . Here is where we use the closedness of the graph.

Since ynj = fn(xnj ) ∈ F (xnj ), in the limit we have

y∗j = lim
n→∞

ynj ∈ F
(

lim
n→∞

xnj

)
= F (x∗)
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This means that the right hand side of Equation 9 is a convex combination
of points in F (x∗). Since F (x∗) is convex, this proves that x∗ ∈ F (x∗) as
we wanted.

The following examples shows that we cannot drop some of the conditions
in the statement.

Boundedness of X
Let X = R and consider the function F : R→ 2R:

F (x) =


{−1
x } for x < 0
{2} for x = 0
{ 1
x} for x > 0

There is no fixed point. Kakutani’s theorem doesn’t apply since R is not
compact.

Convexity of F (x)
Consider X = [−1, 1] ⊂ R. Which is compact and convex. We define
F : X −→ 2X as

F (x) =


{1

2} for − 1 ≤ x < 0
{−1

2 ,
1
2} for x = 0

{−1
2 } for − 1 ≤ x > 0

The graph is closed, but the conclusion fails. What fails is that F (0) is
not convex.

3 Nash Equilibria

A nice application of Kakutani’s fixed point theorem appears in the proof
of Nash Equilibrium (for finite games). We define games in the extensive
form. Each game G has three main components: The set of players (P ),
sets of strategies for each player (Sp for p ∈ P ) and the set of payoffs
for each player given the strategies played (up). We’ll star with a simple
example with 3 players (results can be extended to any finite number of
players and strategies). Let G be a game with 3 players: Abe (A), Bernie
(B) and Charlie (C). The set of players is defined as P = {A,B,C}. In this
game, each player has a finite set of pure-strategies defined, i.e., for Abe we
define his strategy set as SA = {1, 2, . . . , i0}, for Bernie SB = {1, 2, . . . , j0}
and for Charlie SC = {1, 2, . . . , k0}. Elements for each strategy set will be
denoted by sp ∈ Sp with p ∈ P . A strategy profile is is a vector s ∈ S
where S = ×p∈PSp. Therefore, for each strategy profile s ∈ S, agents have
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payoffs given by up(s) ∈ R. Thus, the game can summarized as follows
G =

(
P, Sp, up(s),

)
p∈P .

To simplify notation, payoffs will be written as follows: For an strategy
profile s = (i, j, k) ∈ S (Abe plays i ∈ SA, Bernie plays j ∈ SB and Charlie
plays k ∈ SC), payoffs will be aijk, bijk and cijk, for Abe, Bernie and Charlie,
respectively.

We allow agents to play a given pure strategy sp ∈ SP or to randomize of
their set of strategies. For example, Abe is allowed to play i ∈ SA or to play
i ∈ SA with probability pi and all others with probability 1−pi for pi ∈ [0, 1].
Over the set of pure strategies, we define mixed strategies σp as a probability
distribution over pure strategies. The assumption behind randomization
is that mixed strategies for each player’s are statistically independent of
those of his opponents. Let the space of player’s p mixed strategies be
Σp, where σp(sp) is the probability that σp that player p assigns to sp.
The space of mixed strategy profiles is denoted Σ = ×p∈PΣp, with element
σ. Hence, if Abe plays a mixed strategy σA = (p1, . . . , pi0), Bernie plays
σB = (q1, . . . , qj0) and Charlie plays σC = (r1, . . . , ri0), the expected payoff
to profile σ = (σA, σB, σC) is given by

UA(σ) =
∑
i,j,k

(piqjrk)aijk, UB(σ) =
∑
i,j,k

(piqjrk)bijk, UC(σ) =
∑
i,j,k

(piqjrk)cijk,

for Abe, Bernie and Charlie, respectively.
Since each mixed strategy σp is a probability distribution over pure

strategies, we must have:

pi ≥ 0,
i0∑
i=1

pi = 1; qj ≥ 0,
j0∑
j=1

qj = 1; rk ≥ 0,
k0∑
k=1

rk = 1.

To simplify notation, we will write the expected payoff for a mixed strategy
σ = (p, q, r) as a(p, q, r), b(p, q, r) and c(p, q, r).

In this 3-person game, we can ask the following question: Which strat-
egy (pure or mixed) each agent has to take given the rules of the game?
Clearly we are missing one important assumption to answer this question:
selfishness. In economics, is common to assume that agents are selfish, i.e.,
agents want to maximize their (expected) payoff for any given strategy of
their opponents independent of the payoff of their opponents. For instance,
when thinking about the optimal decision for Abe, for any mixed strategy
q ∈ ΣB that Bernie plays and any mixed-strategy r ∈ ΣC that Charlie plays,
Abe will choose a mixed strategy p̂ ∈ ΣA such that

a(p̂, q, r) ≥ a(p, q, r), ∀p ∈ ΣA.
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I.e., p̂ is the mixed strategy that allows Abe to get the highest expected
payoff. Clearly, for each strategy (pure or mixed) Abe can have different
strategies that maximize his (expected) payoff.

In this scenario, we can informally define a Nash equilibrium as the
profile of strategies such that each player’s strategy is an optimal response
to the other player’s strategies. Formally:

Definition 3.1. A mixed strategy profile (p̂, q̂, r̂) ∈ Σ is a Nash equilibrium
if, for all players (Abe, Bernie and Charlie),

a(p̂, q̂, r̂) ≥ a(p, q̂, r̂), ∀p ∈ ΣA;

b(p̂, q̂, r̂) ≥ b(p̂, q, r̂), ∀q ∈ ΣB;

c(p̂, q̂, r̂) ≥ c(p̂, q̂, r), ∀r ∈ ΣC .

Finally, after all of this necessary notation, we are able to state the
following theorem:

Theorem 3.2 (Nash (1950)). A Nash equilibrium always exists on finite
games.

Before showing the proof, we present a classical example of Nash equi-
librium in mixed strategies. Suppose two players, A and B, have one 1
coin each. In this game, each player has to decide if they show Tails (T ) or
Heads (H). Both players chose which side of the coin they will show and
after the decision is made, they show simultaneously their decision to each
other. If coins match, player A wins 1 dollar and player B looses one dollar
and if they don’t, player A looses one dollar and player B wins 1 dollar. The
matrix of payoffs is shown in figure 14.

H T
H 1,-1 -1,1
T -1,1 1,-1

Figure 14: matrix of payoffs

Since each agent is selfish, we look for strategies that maximize indi-
vidual payoffs. This game doesn’t have a pure strategy Nash equilibrium
since agent A wins when coins match and player B wins when they don’t.
Then, from the Nash equilibrium theorem, since the game has at least one
equilibrium, this equilibrium has to be in mixed strategies. Let pB be the
probability that agent B assigns to strategy H. If player A chooses H, the
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expected payoff is UA(H) = pB(1)+(1−pB)(−1) = 2pB−1 and if A chooses
T his payoff is UA(T ) = pB(−1) + (1 − pB)(1) = 1 − 2pB. Then, if we call
pA the probability that player A assigns to playing H, the optimal decision
will be

pA(pB) =


1 if pB > 1/2
[0,1] if pB = 1/2
0 if pB < 1/2

clearly pA is a set function and by symmetry of payoffs, optimal prob-
abilities for agent B given that player A plays H with probability pA are
given by

pB(pA) =


0 if pA > 1/2
[0,1] if pA = 1/2
1 if pA < 1/2

Hence, Nash equilibrium in the matching pennies game is given by p̂A = 1/2
and p̂B = 1/2.
From last episode: We presented a game with three players A,B,C, and
denoted their payoffs by A → aijk, B → bijk and C → cijk. Therefore,
expected payoffs for each agent where written as:

A : a(p, q, r) =
∑
i,j,k

aijkpiqjrk,

B : b(p, q, r) =
∑
i,j,k

bijkpiqjrk,

C : c(p, q, r) =
∑
i,j,k

bijkpiqjrk.

Finally, we gave the definition of Nash equilibrium for this game:

Definition 3.3. A Nash equilibrium is a triple of probability vectors (p̂, q̂, r̂)
such that:

a(p̂, q̂, r̂) ≥ a(p, q̂, r̂), ∀p probability vector,

b(p̂, q̂, r̂) ≥ c(p̂, q, r̂), ∀q probability vector,

c(p̂, q̂, r̂) ≥ c(p̂, q̂, r), ∀r probability vector,

the above inequalities are called Nash inequalities.

Commercial break: Simplices are useful! Probability vectors for each
player are just points inside the standard simplex in the dimension defined
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by the number of pure strategies for that player. For instance, for player A
we have

4i0−1 = {(p1, p2, ..., pi0)|
∑
i

pi = 1, pi ≥ 0}.

Note: The space 4 of mixed strategies (p, q, r) will be denoted by

4 = 4i0−1 ×4j0−1 ×4k0−1.

Observation 3.4. If 3 players have two strategies (such as choosing heads
or tails) then the space of mixed strategies (p, q, r) is the 3-D cube. See
Figure 15.

Figure 15: Space of strategies ∆ when each player has 2 strategies

An important observation is that the Nash inequalities are linear. Thus,
the problem of satisfying each inequality is a linear program (LP). For ex-
ample, for agent A Nash inequality:∑

i,j,k

aijkp̂iq̂j r̂k ≥
∑
i,j,k

aijkq̂j r̂kpi for all p,

implies solving:
max

∑
i,j,k

aijkq̂j r̂kpi s.t. p ∈ 4i0−1.

where clearly the objective function is linear in p.
Example: this simple example can help you meditate:

max 2p1 + 4p2 + 7p3 + 7p4 + 7p5, s.t. p ∈ 44.

Any probability vector that puts a positive probability to strategies 1 and 2
is not optimal because you can increase the objective function giving more
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probability to strategies 3, 4 and 5. Hence, at the optimum we must have
p̂1 = p̂2 = 0.

The maximum on the first Nash inequality occurs on the face of 4i0−1

defined by the vertices selected by the largest coefficients aijkq̂j r̂k:

P (q̂, r̂) :=

{
p : pi ≥ 0,

∑
i

pi = 1, pi = 0 when aijkq̂j r̂k < max {aijkq̂j r̂k}
}
,

which is a face of 4i0−1.
Similarly, on the second Nash inequality, again the maximum exists only

within the face

Q(p̂, r̂) :=

q : qj ≥ 0,
∑
j

qj = 1, qj = 0 when bijkp̂ir̂k < max {bijkp̂ir̂k}

 ,

which is a face of 4j0−1.
Finally, for the third Nash inequality, the maximum exists within the

face

R(p̂, q̂) :=

{
r : rk ≥ 0,

∑
k

rk = 1, rk = 0 when cijkp̂iq̂j < max {cijkp̂iq̂j}
}
,

which is a face of 4k0−1.
Now, as Nash realized, equilibria exist if and only if there exists a triple

(p̂, q̂, r̂) with p̂ ∈ P (q̂, r̂), q̂ ∈ Q(p̂, r̂), and r̂ ∈ R(p̂, q̂).

Theorem 3.5. (1950 Nash) A Nash equilibrium of mixed strategies (p̂, q̂, r̂)
exists.

Proof. We will use Kakutani’s theorem to prove this. Define X := 4i0−1 ×
4j0−1 ×4k0−1 to be the space of mixed strategies. Define F : X → 2X as
the set-valued function that mapsp̃q̃

r̃

 7→
P (q̃, r̃)
Q(p̃, r̃)
R(p̃, q̃)

 .

Now, clearly, since X is the product of simplices, it is a compact, convex
set. Additionally, F (x) is convex since it is the product of faces of simplices.
Now, we need only show that F satisfies the last hypothesis of Kakutani’s
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theorem, that the graph of F is closed, i.e., {(x, y) : y ∈ F (x)} is a closed
set.

Take a convergent sequence {xn} ⊂ X. Say that lim
n→∞

xn =: x0. Take

another sequence {yn} with yn ∈ F (xn) and say that lim
n→∞

yn = y0. Our goal

is to show that y0 ∈ F (x0).
Now, each xn and yn is a triple of mixed strategies, call them

xn =

pnqn
rn

 , yn =

unvn
wn

 .

By definition, un ∈ P (qn, rn), vn ∈ Q(pn, rn) and wn ∈ R(pn, qn) and so the
three Nash inequalities are satisfied:

a(un, qn, rn) ≥ a(p′, qn, rn), ∀p′ ∈ ∆i0−1,

b(pn, vn, rn) ≥ b(pn, q′, rn), ∀q′ ∈ ∆j0−1,

c(pn, qn, wn) ≥ c(pn, qn, r′), ∀r′ ∈ ∆k0−1,

Note that as n goes to infinity the vector (pn, qn, rn) converges to x0

and (un, vn, wn) converges to y0. Since the inequalities are linear and thus
continuous, they are satisfied in the limit and so they hold true at x0, y0 so
we have that y0 ∈ F (x0).

Thus, Kakutani’s theorem gives us that there exists some x∗ ∈ X with
x∗ ∈ F (x∗). Thus, this point provides a Nash equilibrium

x∗ =

p∗q∗
r∗

 with p∗ ∈ P (q∗, r∗), q∗ ∈ Q(p∗, r∗) and r∗ ∈ R(p∗, q∗).

We move to the final application of Sperner’s lemma. We will provide
proof of the 1982 theorem of Imre Bárány the colorful Carathéodory’s the-
orem. Recall the usual form first:

Let A ∈ Zd×n be an integer matrix.

Theorem 3.6. (Carathéodory) If Ax = b, x ≥ 0 has a solution then there
exists a solution with no more than d non-zero entries in x.

The nonnegative entries in x are called the support of x, i.e., supp(x) =
{i : xi 6= 0}.
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Theorem 3.7. (Colorful Carathéodory) Suppose B1, B2, ..., Bd are d pair-
wise disjoint subsets of indices of columns, each with d-columns, of the
matrix A. If the d systems ABix = b, x ≥ 0 all have a solution for all
i = 1, . . . , d then there exists a set of indices B such that

ABx = b, x ≥ 0

has solution too and, in addition, |B ∩Bi| ≤ 1 for all i.

One can prove this theorem using Sperner’s theorem. It has some re-
markable consequences, e.g., Tverberg’s theorem can be proved from it.

3.1 Lecture Borsuk-Ulam and Tucker’s Lemma

In this lecture, we introduce the Borsuk–Ulam theorem and some of its ap-
plications. The Borsuk–Ulam theorem comes in many different forms, and
in this lecture we will prove that its different statements are indeed equiv-
alent. The proof of the theorem itself will come later using combinatorial
geometry again.

Let ‖ · ‖2 be the Euclidean norm on a Euclidean space. Let §n be the
n-dimensional sphere, that is,

§n =
{
x ∈ Rn+1 : ‖x‖2 = 1

}
.

A function f : §n → Rn is antipodal if f(−x) = −f(x) for all x ∈ §n. That
is, f is an odd function.

Theorem 3.8 (Borsuk–Ulam).

(1) If a function f : §n → §m is continuous and antipodal, then m ≥ n.

(2) If a function f : §n → Rn is continuous and antipodal, there is an
x ∈ §n with f(x) = 0.

(3) If a function f : §n → Rn is continuous, there is an x ∈ §n with
f(x) = f(−x).

(4) If §n =
⋃n
i=0 Si and each Si is closed, there is an x ∈ §n and an

i ∈ {0, 1, . . . , n} with {x,−x} ⊆ Si.

Proof. We postpone the proof until later.

Claim 3.9. The statements (1)–(4) in Theorem 3.8 are equivalent.
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Proof. We prove the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).
(1) ⇒ (2): For a contradiction, assume there is a function f : §n → Rn

that is continuous and antipodal, but f(x) 6= 0 for all x ∈ §n. Then we can
consider the function F : §n → §n−1 defined by

F (x) =
f(x)
‖f(x)‖2

.

For any x ∈ §n,

F (−x) =
f(−x)
‖f(−x)‖2

=
−f(x)
‖ − f(x)‖2

= −F (x),

so F is antipodal. Because f is continuous, F is also continuous. This
produces a contradiction to (1).

(2) ⇒ (3): Let f : §n → Rn be a continuous function. Consider F :
§n → Rn defined by F (x) = f(x) − f(−x). Then F (−x) = −F (x), so F
is antipodal, and F is continuous. By (2), there is an x∗ ∈ §n such that
F (x∗) = 0, i.e. f(x∗) = f(−x∗).

(3) ⇒ (4): Assume that §n =
⋃n
i=0 Si and each Si is closed. Define

f : §n → Rn by
f(x) =

(
d(x, S1), . . . , d(x, Sn)

)
,

where d(x, Si) is the Euclidean distance of x from Si, which because Si is
compact is given by

d(x, Si) = min{‖x− y‖2 : y ∈ Si}.

Because f is continuous, (3) gives an x∗ ∈ §n with f(x∗) = f(−x∗).
Case (a): There is some coordinate f(x∗)i = 0 = f(−x∗)i. Then x∗ ∈ Si

and −x∗ ∈ Si.
Case (b): f(x∗)i > 0 for every i = 1, . . . , n. So x∗ /∈ Si for every

i = 1, . . . , d. But §n =
⋃n
i=0 Si, so x∗ ∈ S0, and similarly for −x∗.

(4) ⇒ (1): For a contradiction, assume that f : §n → §m is continuous
and antipodal, but m < n. Let ε > 0 and build a cover §n =

⋃n
i=0 Si by

defining
Ri = {(x0, . . . , xm) ∈ §m : xi ≥ ε}

for i = 0, 1, . . . ,m, and

Rm+1 =

{
(x0, . . . , xm) ∈ §m :

m∑
i=0

xi ≤ −ε
}
.
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For sufficiently small ε > 0, we have §m =
⋃m+1
i=0 Ri. Moreover, no Ri

contains a pair {x,−x}. Set Si = f−1(Ri), so each Si is closed because f is
continuous. Then §n =

⋃m+1
i=0 Si. There are m+ 2 of the sets Ri, and since

n + 1 ≥ m + 2, there are not too many Si’s. (If there are too few Si’s to
apply (4), we can just add empty sets to the list.) By (4), there is an x ∈ §n
and an i ∈ {0, 1, . . . , n} with {x,−x} ⊆ Si. Because f is antipodal, we have
Ri ⊇ {f(x), f(−x)} = {f(x),−f(x)}, a contradiction.

The Borsuk–Ulam theorem has a whole host of applications, of which we
will share two. The first is a memorably-named theorem in measure theory.

Theorem 3.10 (Ham Sandwich theorem). If X1, . . . , Xn are compact sub-
sets of Rn, there is a hyperplane

h(u) = {v ∈ Rn : u1v1 + · · ·+ unvn = u0},

where u = (u0, u1, . . . , un) ∈ §n, with corresponding half-spaces

h+(u) = {v ∈ Rn : u1v1 + · · ·+ unvn ≥ u0}

h−(u) = {v ∈ Rn : u1v1 + · · ·+ unvn ≤ u0}
such that vol(Xi ∩ h+(u)) = vol(Xi ∩ h−(u)) for every i = 1, . . . , n.

The Ham Sandwich theorem gets its name from the case n = 3 in which
the three sets X1, X2, X3 are thought of as three layers of a ham sandwich.
Then the theorem says that we can cut all three layers of the sandwich
perfectly in half (by volume) with a single cut, i.e. a hyperplane!

A practical interpretation of the Ham Sandwich theorem.
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Proof. We will apply statement (2) of Theorem 3.8. Define f : §n → Rn by

f(u) =
(

vol
(
X1∩h+(u)

)
−vol

(
X1∩h−(u)

)
, . . . , vol

(
Xn∩h+(u)

)
−vol

(
Xn∩h−(u)

))
.

Note that h+(−u) = h−(u) for any u ∈ §n. Thus f(−u) = −f(u), so f
is antipodal. It can be shown that f is also continuous. Then applying
statement (2) of Theorem 3.8, there is a u∗ ∈ §n such that f(u∗) = 0. Then
h(u∗) is the desired hyperplane.

Theorem 3.11 (Akiyama, Alon). Suppose that A1, . . . , Ad are general-
position finite sets in Rd with |Ai| = m ≥ 1 for all i = 1, . . . , d. Then
there is a partition of

⋃d
i=1Ai into m d-element sets B1, . . . , Bm such that

|Ai ∩Bj | = 1 for every i = 1, . . . , d and j = 1, . . . ,m, and B1, . . . , Bm have
pairwise disjoint convex hulls.

An illustration of Theorem 3.11 in the case d = 2 and m = 4.
The red points belong to A1, and the blue points to A2.

Proof. (Sketch of idea only) Apply induction on m. If m is odd, then by the
Ham Sandwich theorem, there is a hyperplane intersecting each Ai in one
point with (m− 1)/2 of each color on each side. Now take one Bj to be the
intersection of the hyperplane with

⋃d
i=1Ai, and continue with Ai ∩ h+ and

Ai ∩ h−.

The following is another version of Borsuk-Ulam theorem (we leave it as
an exercise):

Theorem 3.12. There is no continuous map f : Bn → Sn−1 = ∂Bn that
is antipodal (f(−x) = −f(x)) for all x ∈ ∂Bn.

Lemma 3.13. Borsuk-Ulam in the presentation of Theorem ?? implies
Brouwer’s fixed point theorem.
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Proof. Suppose there exists a continuous map f : Bn → Bn with no fixed
points. That is, such that f(x) 6= x for all x ∈ Bn.

Let us consider the map g : Bn → Sn−1, where g(x) is defined to be the
unique intersection point between Sn−1 and the open ray that starts at f(x)
and passes through x. That is,

Sn−1 ∩ {f(x) + λ(x− f(x)) : λ > 0} = {g(x)}
Notice that g is well defined because f has no fixed points and the ray

is considered open. Also, since f is continuous, so is g.
Let x ∈ ∂Bn, by definition g(x) = x. Hence, if we consider antipodal

points {x,−x} ⊂ ∂Bn we have that g(−x) = −x = −g(x). That is, g is
antipodal in ∂Bn, which contradicts (5).

We are now going to see that Borsuk-Ulam theorem can be proved from
Tucker’s Lemma. Let us first introduce some notions:

Definition 3.14. Let T be a triangulation of Bn, we say that it is antipo-
dal symmetric if:

1. The set of simplices of T that are contained in Sn−1 = ∂Bn are a
triangulation of Sn−1.

2. If σ ∈ T , σ ⊂ Sn−1, then −σ is also in T .

Figure 16: An antipodal symmetric triangulation of the 2-dimensional ball.
Antipodal simplices in the boundary are painted with the same color.

We present to equivalent versions of Tucker’s lemma (see exercises)
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Lemma 3.15 (Tucker’s Lemma, 1946- Version A).
Let T be an antipodal symmetric triangulation of Bn and let λ : V (T )→

{±1, . . . ,±n} be a labeling on the vertices of T that satisfies λ(−v) = −λ(v),
∀v ∈ V (T ) ∩ ∂Bn.

Then there exists and edge (v, v′) ∈ E(T ) such that λ(v) + λ(v′) = 0,
that is, there exists a complete edge in T .

−1
2

1

−2
−1

1

2

−2
−2

2
2

−2

−1

−2

−1

−1

−2

1

1

1

Figure 17: An antipodal symmetric triangulation of B2 with a labeling in
its vertices that is antipodal in the boundary. The red edge is a complete
edge.

Lemma 3.16 (Tucker’s Lemma, 1946- Version B).
Let T be an antipodal symmetric triangulation of Bn. Then there is no

simplicial map from T into ♦n−1 that is antipodal in ∂Bn.

In the previous lemma, ♦n−1 is the (n− 1)-dimensional boundary of the
n-crosspolytope.

Remember that a simplicial map between simplicial complexes sends
vertices to vertices, and the image of the rest of the points is defined by
affinely extending the images of the vertices. Notice that a simplicial map
maps simplices to simplices.

Theorem 3.17. Borsuk-Ulam in Theorem 3.12 is equivalent to Tucker’s
lemma.

Proof. Borsuk-Ulam (5) =⇒ Tucker (B)
Suppose there exists a simplicial map g from T to ♦n−1 that is antipodal

in the boundary of T . That is, we have a continuous function g : Bn → ♦n−1
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that is antipodal in ∂Bn. Consider now the function f : Bn → Sn−1 defined
by f(x) = g(x)/||g(x)||. f is, by construction, continuous and antipodal on
the boundary, which is a contradiction with Borsuk-Ulam (5).

Tucker (A) =⇒ Borsuk-Ulam (5)
Suppose f : Bn → Sn−1 is a continuous function, antipodal in ∂Bn.

Since f is continuous and Bn is compact, f is uniformly continuous. Given
ε = n−1/2 there exists a universal constant δ > 0 such that, if x, y ∈ Bn are
such that ||x− y||2 < δ (norm 2 or ∞???), then ||f(x)− f(y)||∞ < 2ε.

Let us now choose an antipodal symmetric triangulation T of diameter
≤ δ. Observe that such a triangulation can be found, since any antipodal
symmetric triangulation can be made finer and finer by barycentric subdi-
vision, being careful that antipodality at the boundary is preserved.

Let k : V (T )→ {1, . . . , n} be a map defined as

k(v) := min{i ∈ {1, . . . , n} : |f(v)i| ≥ ε}, v ∈ V (T ).

Let us see that k well defined. Let y = f(v) ∈ Sn−1, and suppose that |yi| <
ε, for all i ∈ {1, . . . , n}. Then ||y||22 := y2

1 + · · ·+ y2
n < nε2 = n(n−1/2)2 = 1,

which is a contradiction with the fact that y ∈ Sn−1. Hence there exists at
least one index i such that |f(v)i| ≥ ε.

Let us now define the following labeling:

λ(v) :=
{

+k(v) if f(v)k(v) > 0
−k(v) if f(v)k(v) < 0

Suppose now there exists a complete edge, that is there exist v, v′ ∈ V (T )
such that (v, v′) ∈ E(T ), λ(v) = i and λ(v′) = −i, for some i ∈ {1, . . . , n}.
On one hand, since (v, v′) is an edge, we have that ||v − v′||2 ≤ diam(T ) ≤
δ. On the other, we have f(v)i ≥ ε and −f(v′)i ≥ ε, which implies that
||f(v)−f(v′)||∞ ≥ |f(v)i−f(v′)i| ≥ 2ε. But this is a contradiction with the
choice of δ. Hence no such complete edge exists, which contradicts Tucker
(A).

3.2 Exercises:

1. Take a regular tetrahedron. Can you triangulate it, with the help of
extra interior points, in such a way that only regular tetrahedra appear
inside?

2. (**) Prove that it is always possible to label the vertices of the k-th
barycentric subdivision of a (d − 1)-dimensional simplex with labels
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1, 2, . . . , d such that each simplex present obtains all d labels in its
vertices.

3. How many vertices are there in the k-th barycenter subdivision of a
simplex?

4. Provide an inductive proof of Sperner’s lemma for arbitrary dimension.
This is another existence proof, but can you think of an algorithmic
way to find the fully colored simplices?

5. Prove Sperner’s lemma (for simplices) using Brouwer’s theorem di-
rectly (show they are equivalent!).

6. (**) Prove that it is enough to prove Brouwer’s theorem for simplices
to derive it for convex sets (or even topological balls).

7. Perron’s theorem say that n× n positive matrix must have a positive
eigenvalue with an eigenvector all of whose entries are positive. Use
Brouwer’s fixed point theorem to prove this fact.

8. (**) Here is another polytopal Sperner lemma (a la Budapest): Let
P be a simple d-dimensional convex polytope (i.e., every vertex is in
exactly d-facets). You color the facets with d-colors (no way or rule
in particular). Suppose that at the end of your coloring, one of the
vertices has its touching facets of different colors. Show that there
most be at least another vertex of P with all the colors surrounding
it. HINT: How can you reduce this to the usual Sperner’s lemma?

9. Let X be a compact set in Rd. Let f : X → Rd be a usual function.
Prove that f is a continuous function if and only if its graph {(x, y) :
y = f(x)} is a closed set.

10. Let X be a compact-convex set and define f : X → X, with f a
continuous function. Prove that f has a fixed point using Kakutani’s
fixed point theorem, i.e., prove that Kakutani fixed point theorem
implies Brouwer fixed point theorem (under the above assumptions).

11. Prove that it is enough to prove Kakutani’s fixed point theorem for
simplexes to derive it for compact-convex sets.

12. (**) Write a careful proof of the existence of Nash equilibria for N
players.
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13. Let X = [−1, 1] and F (x) = {set of numbers y satisfying x2 + y2 ≥
1/4}. Do all of the hypotheses of Kakutani’s theorem hold for this
example?

14. Consider the game with three players A,B,C in which each player
writes a number from 1 to 10. If A writes i, B writes j and C writes
k, then they have the playoffs

aijk = |i− j|, bijk = |j − k|, cijk = |k − i|.

Find at least one Nash equilibria. (BONUS: Can you find them all?).

15. Prove that the four statements (1), (2), (3) and (4) in Borsuk-Ulam’s
theorem Theorem 3.8 are in fact equivalent to:

There is no continuous map f : Bn → Sn−1 = ∂Bn that is antipodal
(f(−x) = −f(x)) for all x ∈ ∂Bn.

—————-FORTHCOMING TOPICS —————-

4 Combinatorial Geometry Tools: Midterm 2

4.1 Lectures 8,9,10 Carathéodory-type theorems

4.2 Lectures 11,12,13 Helly-type theorems

5 Applications: Midterm 3

5.1 Lecture 14,15,16 Game Theory and Fair-Division

5.2 Lecture 17,18,19,20 Data Analysis and Optimization
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