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LAST EPISODE...
We discuss the content of the course...



Convex Sets
A set is CONVEX if it contains any line segment joining two of its
points:

NOT CONVEX   CONVEX

The line segment between x and y is given by

[x , y ] := {αx + (1− α)y : 0 ≤ α ≤ 1}

EXERCISE Prove or disprove: the image of a convex set under a
linear transformation is again a convex set.



Examples



TEST: Which of the following are convex sets?

x4 − (z − 1) ≤ 0 and x2 − (y − 1) ≤ 0 and z ≥ 0

Proposition: The intersection of convex sets is always convex.



HYPERPLANES

I A linear functional f : Rd → R is given by a vector c ∈ Rd , c 6= 0.
I For a number α ∈ R we say that Hα = {x ∈ Rd : f (x) = α} is an

affine hyperplane or hyperplane for short.
I The intersection of finitely many hyperplanes is an affine space.
I The affine hull of a set A is the smallest affine space containing

A.
I Affine spaces are important examples of convex sets in particular

because they allow us to speak about dimension:
I The dimension of an affine set is the largest number of affinely

independent points in the set minus one.
I The dimension of a convex set in Rd is the dimension of its affine

hull.



HALF-SPACES
A hyperplane divides Rd into two halfspaces
H+
α = {x ∈ Rd : f (x) ≥ α} and H−α = {x ∈ Rd : f (x) ≤ α}.

Half-spaces are convex sets each denoted formally by a linear
inequality:

a1x1 + a2x2 + · · ·+ adxd ≤ b



I For a convex set S in Rd . A linear inequality f (x) ≤ α is said to
be valid on S if every point in S satisfies it.

I A set F ⊂ S is a face of S if there exists a linear inequality
f (x) ≤ α which is valid on P and such that
F = {x ∈ P : f (x) = α}.

I The hyperplane defined by f is a supporting hyperplane of F . It
defines a supporting half-space

I A face of dimension 0 is called a vertex. A face of dimension 1 is
called an edge, and a face of dimension dim(P)− 1 is called a
facet.



I Let K be a closed and bounded convex set in Rd . Let x0 /∈ K .
Then,

I There is a unique nearest point x1 of K to x0.
I The hyperplane H through x1 orthogonal to x1 − x0 is a supporting

hyperplane of K .

I A hyperplane H red separates sets X and Y if and only if X and
Y lie in different closed halfspaces of H. If X and Y lie in different
open halfspaces, we say that H strictly separates X and Y .



CONVEX BODIES ARE INTERSECTION OF
HALF-SPACES!!!
Theorem A convex body K is the intersection of its closed supporting
half-spaces.

Theorem convex bodies are the sets of solutions of systems of
LINEAR inequalities.
WARNING: It may require infinitely many hyperplanes



POLYHEDRA: THE INTERSECTION OF FINITELY
MANY HALF-SPACES



Examples

I d-dimensional unit cube

Cd = {x ∈ Rd : 0 ≤ xi ≤ 1, i = 1..n}

I the (d − 1)-dimensional standard simplex

∆n−1 = {x ∈ Rd :
d∑
i

xi = 1, xi ≥ 0}.

I the d-dimensional cross-polytope

On = {x ∈ Rd :
d∑
i

|xi | ≤ 1}.

I a simplotope is the Cartesian product of several simplices

∆m1 ×∆m2 × · · · ×∆mr .



SOLVABILITY OF SYSTEMS OF LINEAR
INEQUALITIES

Find a vector (x1, x2, . . . , xd ), satisfying:

a1,1x1 + a1,2x2 + · · ·+ a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxd ≤ b2

...

ak,1x1 + ak,2x2 + · · ·+ ak,dxd ≤ bk

This is the Linear feasibility problem



Convex Sets are EVERYWHERE!



and ALTHOUGH not all sets in nature are convex!



Convex Sets APPROXIMATE ALL SHAPES!

Let A ⊂ Rd . The convex hull of A, denoted by conv(A), is the
intersection of all the convex sets containing A. The smallest convex
set that contains A.
A polytope is the convex hull of a finite set of points in Rd . It is the
smallest convex set containing the points.



linear convex and conic combinations
I Definition: Given finitely many points A := {x1, x2, . . . , xn} we

say the linear combination
∑
γixi is

I a conic combination is one with all γi non-negative.
I an affine combination if

P
γi = 1.

I a convex combination if it is affine and γi ≥ 0 for all i .
I Lemma: (EXERCISE) For a set of points A in Rd we have that

conv(A) equals all finite convex combinations of A:

conv(A) = {
∑
xi∈A

γixi : γi ≥ 0 and γ1 + . . . γk = 1}

I Definition A set of points x1, . . . , xn is affinely dependent if there
is a linear combination

∑
aixi = 0 with

∑
ai = 0. Otherwise we

say they are affinely independent.
I Lemma: A set of d + 2 or more points in Rd is affinely

dependent.
I Lemma: A set B ∈ Rd is affinely independent ⇐⇒ every point

has a unique representation as an affine combination of points in
B.

I A k -dimensional simplex is the convex hull of k + 1 affinely
independent points.



Weyl-Minkowski: How to represent the points of a
polyhedron?

I There are TWO ways to represent a convex set: As the
intersection of half-spaces OR as the convex/conic hull of
extreme points.

I For polyhedra, even better!! Either as a finite system of
inequalities or with finitely many generators.



Weyl-Minkowski Theorem

I Theorem: (Weyl-Minkowski’s Theorem): For a polyhedral subset
P of Rd the following statements are equivalent:

I P is an H-polyhedron, i.e., P is given by a system of linear
inequalities P = {x : Ax ≥ b}.

I P is a V-polyhedron, i.e., For finitely many vectors v1, . . . , vn and
r1, . . . , rs we can write

P = conv(v1, v2, . . . , vn) + cone(r1, r2, . . . , rs)

I R + S denotes the Minkowski sum of two sets,
R + S = {r + s : r ∈ R, s ∈ S}.

I There are algorithms for the conversion between the
H-polyhedron and V-polyhedron.

I NOTE: Any cone can be decomposed into a pointed cone plus a
linear space.
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