Combinatorial Geometry & Topology arising in Game Theory and Optimization

Jesús A. De Loera

University of California, Davis

LAST EPISODE...

We discuss the content of the course...

Convex Sets

A set is **CONVEX** if it contains any line segment joining two of its points:

The line segment between x and y is given by

$$[x, y] := \{\alpha x + (1 - \alpha)y : 0 \le \alpha \le 1\}$$

EXERCISE Prove or disprove: the image of a convex set under a linear transformation is again a convex set.

Examples

TEST: Which of the following are convex sets?

$$x^4 - (z - 1) \le 0$$
 and $x^2 - (y - 1) \le 0$ and $z \ge 0$

Proposition: The intersection of convex sets is always convex.

HYPERPLANES

- ▶ A linear functional $f : \mathbf{R}^d \to \mathbf{R}$ is given by a vector $c \in \mathbf{R}^d, c \neq 0$.
- ▶ For a number $\alpha \in \mathbf{R}$ we say that $H_{\alpha} = \{x \in \mathbf{R}^d : f(x) = \alpha\}$ is an affine hyperplane or hyperplane for short.
- ► The intersection of finitely many hyperplanes is an *affine space*.
- ► The affine hull of a set A is the smallest affine space containing A.
- Affine spaces are important examples of convex sets in particular because they allow us to speak about dimension:
- ► The dimension of an affine set is the largest number of affinely independent points in the set minus one.
- ► The dimension of a convex set in **R**^d is the dimension of its affine hull.

HALF-SPACES

A hyperplane divides \mathbf{R}^d into two halfspaces

$$H_{\alpha}^{+}=\{x\in\mathbf{R}^{d}:f(x)\geq\alpha\} \text{ and } H_{\alpha}^{-}=\{x\in\mathbf{R}^{d}:f(x)\leq\alpha\}.$$

Half-spaces are convex sets each denoted formally by a linear inequality:

$$a_1x_1+a_2x_2+\cdots+a_dx_d\leq b$$

- For a convex set S in \mathbb{R}^d . A linear inequality $f(x) \le \alpha$ is said to be valid on S if every point in S satisfies it.
- ▶ A set $F \subset S$ is a face of S if there exists a linear inequality $f(x) \le \alpha$ which is valid on P and such that $F = \{x \in P : f(x) = \alpha\}.$
- ► The hyperplane defined by *f* is a supporting hyperplane of *F*. It defines a supporting half-space

K has a supporting hyperplane orthogonal to \mathbf{u} .

A face of dimension 0 is called a vertex. A face of dimension 1 is called an edge, and a face of dimension dim(P) − 1 is called a facet.

- Let K be a closed and bounded convex set in \mathbb{R}^d . Let $x_0 \notin K$. Then,
 - ▶ There is a unique nearest point x_1 of K to x_0 .
 - ► The hyperplane H through x_1 orthogonal to $x_1 x_0$ is a supporting hyperplane of K.

▶ A hyperplane *H* red separates sets *X* and *Y* if and only if *X* and *Y* lie in different closed halfspaces of *H*. If *X* and *Y* lie in different open halfspaces, we say that *H* strictly separates *X* and *Y*.

CONVEX BODIES ARE INTERSECTION OF HALF-SPACES!!!

Theorem A convex body K is the intersection of its closed supporting half-spaces.

Theorem convex bodies are the sets of solutions of systems of LINEAR inequalities.

WARNING: It may require infinitely many hyperplanes

POLYHEDRA: THE INTERSECTION OF FINITELY MANY HALF-SPACES

Examples

d-dimensional unit cube

$$C_d = \{x \in \mathbf{R}^d : 0 \le x_i \le 1, \ i = 1..n\}$$

• the (d-1)-dimensional standard simplex

$$\Delta_{n-1} = \{x \in \mathbf{R}^d : \sum_{i=1}^d x_i = 1, \ x_i \ge 0\}.$$

the d-dimensional cross-polytope

$$O_n = \{x \in \mathbf{R}^d : \sum_{i=1}^d |x_i| \le 1\}.$$

a simplotope is the Cartesian product of several simplices

$$\Delta_{m_1} \times \Delta_{m_2} \times \cdots \times \Delta_{m_r}$$

SOLVABILITY OF SYSTEMS OF LINEAR INEQUALITIES

Find a vector (x_1, x_2, \dots, x_d) , satisfying:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,d}x_d \le b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,d}x_d \le b_2$$

$$\vdots$$

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,d}x_d \le b_k$$

This is the Linear feasibility problem

Convex Sets are EVERYWHERE!

and ALTHOUGH not all sets in nature are convex!

Convex Sets APPROXIMATE ALL SHAPES!

Let $A \subset \mathbf{R}^d$. The convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A. The smallest convex set that contains A.

A polytope is the convex hull of a finite set of points in \mathbf{R}^d . It is the smallest convex set containing the points.

linear convex and conic combinations

- ▶ **Definition:** Given finitely many points $A := \{x_1, x_2, ..., x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is
 - a conic combination is one with all γ_i non-negative.
 - an affine combination if $\sum \gamma_i = 1$.
 - ▶ a convex combination if it is affine and $\gamma_i \ge 0$ for all i.
- ► **Lemma:** (EXERCISE) For a set of points *A* in **R**^d we have that conv(A) equals all finite convex combinations of *A*:

$$conv(A) = \{ \sum_{x_i \in A} \gamma_i x_i : \gamma_i \ge 0 \text{ and } \gamma_1 + \dots \gamma_k = 1 \}$$

- ▶ **Definition** A set of points $x_1, ..., x_n$ is affinely dependent if there is a linear combination $\sum a_i x_i = 0$ with $\sum a_i = 0$. Otherwise we say they are affinely independent.
- ▶ Lemma: A set of d + 2 or more points in R^d is affinely dependent.
- ▶ **Lemma:** A set $B \in \mathbb{R}^d$ is affinely independent \iff every point has a unique representation as an affine combination of points in B.
- A k-dimensional **simplex** is the convex hull of k + 1 affinely independent points.

Weyl-Minkowski: How to represent the points of a polyhedron?

- ► There are TWO ways to represent a convex set: As the intersection of half-spaces OR as the convex/conic hull of extreme points.
- ► For polyhedra, even better!! Either as a finite system of inequalities or with finitely many generators.

Weyl-Minkowski Theorem

- ► Theorem: (Weyl-Minkowski's Theorem): For a polyhedral subset P of R^d the following statements are equivalent:
 - P is an H-polyhedron, i.e., P is given by a system of linear inequalities P = {x : Ax ≥ b}.
 - ▶ *P* is a **V-polyhedron**, i.e., For finitely many vectors $v_1, ..., v_n$ and $r_1, ..., r_s$ we can write

$$P = conv(v_1, v_2, \dots, v_n) + cone(r_1, r_2, \dots, r_s)$$

- ▶ R + S denotes the Minkowski sum of two sets, $R + S = \{r + s : r \in R, s \in S\}$.
- There are algorithms for the conversion between the H-polyhedron and V-polyhedron.
- ▶ **NOTE:** Any cone can be decomposed into a pointed cone plus a linear space.