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Point configurations

A point configuration is a finite set of points A in R
d .
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We allow repetition of the points, but we give a different label to
each point.
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A convex polytope is the convex hull of finitely many points

conv(p1, . . . , pn) := {
∑

αipi : αi ≥ 0 ∀i = 1, . . . , n,
∑

αi = 1}

A simplex is the convex hull of any set of affinely independent
points.
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A triangulations of a point configuration A is collection Γ of
simplices that partitions the convex hull of A such that

◮ The union of all the simplices equals conv(A).
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A triangulations of a point configuration A is collection Γ of
simplices that partitions the convex hull of A such that

◮ The union of all the simplices equals conv(A).

◮ Any pair of them intersects in a (possibly empty) common
face.
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A triangulations of a point configuration A is collection Γ of
simplices that partitions the convex hull of A such that

◮ The union of all the simplices equals conv(A).

◮ Any pair of them intersects in a (possibly empty) common
face.

◮ The vertex set of each polytope is contained in A.
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A triangulations of a point configuration A is collection Γ of
simplices that partitions the convex hull of A such that

◮ The union of all the simplices equals conv(A).

◮ Any pair of them intersects in a (possibly empty) common
face.

◮ The vertex set of each polytope is contained in A.

Remark: We do not need to use all (interior) points!, but cannot
add points
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Exercises

◮ Let F be a k-dimensional face of a d-dimensional polytope P .
And let T be a triangulation of P . Denote by T k the
k-dimensional faces of all the simplices of T . Prove that the
set {τ : τ ⊂ F , τ ∈ T k} is a triangulation of F .

◮ Let D be a compact subset of a polytope P ⊂ R
d . Prove that

D meets any triangulation T of P only in a finite number of
simplices.

◮ Let T be a triangulation of a d-polytope. Prove that if σ is a
d − 1 simplex inside T it is either a facet of either 1 d-simplex
or 2 d-simplices of T
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The following are not triangulations:
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The following are not triangulations:

Remark: We have a simplicial complex, a ball, with an explicit
coordinate realization!
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diameter, mesh size

Given a triangulation T of a polytope, the diameter of a simplex
σ ∈ T is given by

diam(σ) = max{||x − y || : x , y ∈ σ}
The mesh size of the triangulation T is given by the

mesh(T ) = sup{diam(σ) : σ ∈ T}
By adding more and more points and refining the triangulation we
reduce the mesh size.
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All triangulations of a point configuration

When the number of vertices allowed is finite, we have finitely
many possible triangulations.
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BIG WISH to give structure to the set of all triangulations!!
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poset of subdivisions

Important: There is a natural generalization to subdivisions:
Pieces are not simplices!

Subdivisions form a partially ordered set:

Γ1 < Γ2 if Γ1is finer than Γ2.
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A key example: Triangulations of a convex n-gon

To triangulate the n-gon, you just need to insert n − 3
non-crossing diagonals:
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A key example: Triangulations of a convex n-gon

To triangulate the n-gon, you just need to insert n − 3
non-crossing diagonals:
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The flips of a Hexagon
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.

◮ It is the graph of a polytope of dimension n − 3, called the
associahedron [Stasheff 1963, Haiman 1984, Lee 1989].
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.

◮ It is the graph of a polytope of dimension n − 3, called the
associahedron [Stasheff 1963, Haiman 1984, Lee 1989].

◮ The graph has diameter bounded above by 2n − 10 for all n
(and equal to that number for large n)
[Sleator-Tarjan-Thurston, 1988].
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.

◮ It is the graph of a polytope of dimension n − 3, called the
associahedron [Stasheff 1963, Haiman 1984, Lee 1989].

◮ The graph has diameter bounded above by 2n − 10 for all n
(and equal to that number for large n)
[Sleator-Tarjan-Thurston, 1988].

◮ There are exactly 1

n−1

(

2n−4

n−2

)

triangulations.
That is to say, the Catalan number Cn−2:
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.

◮ It is the graph of a polytope of dimension n − 3, called the
associahedron [Stasheff 1963, Haiman 1984, Lee 1989].

◮ The graph has diameter bounded above by 2n − 10 for all n
(and equal to that number for large n)
[Sleator-Tarjan-Thurston, 1988].

◮ There are exactly 1

n−1

(
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)

triangulations.
That is to say, the Catalan number Cn−2:
Cn := 1

n+1

(

2n

n

)

,

n 0 1 2 3 4 5 6

Cn 1 1 2 5 14 42 132
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Properties of triangulations and flips of an n-gon

◮ The graph is regular of degree n − 3.

◮ It is the graph of a polytope of dimension n − 3, called the
associahedron [Stasheff 1963, Haiman 1984, Lee 1989].

◮ The graph has diameter bounded above by 2n − 10 for all n
(and equal to that number for large n)
[Sleator-Tarjan-Thurston, 1988].

◮ There are exactly 1

n−1

(

2n−4

n−2

)

triangulations.
That is to say, the Catalan number Cn−2:
Cn := 1

n+1

(

2n

n

)

,

n 0 1 2 3 4 5 6

Cn 1 1 2 5 14 42 132

THIS HAS FAR REACHING GENERALIZATIONS!!
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Regular triangulations

Let A = {a
,
. . . , an} ⊂ R

d be a vector configuration. Let
h = (h1, . . . , hn) ∈ R

n be a vector of heights.
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Regular triangulations

Consider the lifted configuration Ã =

{

a1 · · · an

h1 · · · hn

}

⊂ R
d+1.

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



Regular triangulations

Compute the lower envelope of conv(Ã)
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Regular triangulations

Projected down to R
d . Projected faces form a subdivision of A.
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Regular triangulations

If the vector h is “generic” then it forms a triangulation!
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Regular triangulations

Remark: Different h’s may provide different triangulations. But,
for some A’s, not all triangulations can be obtained in this way.
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THE Example:

h = ( 0, 0, 0,−5,−4,−3), A =
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Another example:

h = ( ?, ?, ?, ?, ?, ?), A =
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The secondary polytope

Theorem [Gelfand-Kapranov-Zelevinskii, 1990]
The poset ( partially ordered set) of regular polyhedral
subdivisions of a point configuration A equals the face poset of a
certain polytope of dimension n − d − 1 (n = number of points,
d = dimension).
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Secondary Polytope of a Hexagon
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Secondary polytope of with non-regular triangulations
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Bistellar flips

◮ In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations.
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Bistellar flips

◮ In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations.

◮ If a subdivision is only refined by triangulations then it is
refined by exactly two of them.
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Bistellar flips

◮ In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations.

◮ If a subdivision is only refined by triangulations then it is
refined by exactly two of them.

◮ Definition: Flips correspond to next to minimal elements in
the poset of polyhedral subdivisions of A
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Bistellar flips

◮ In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations.

◮ If a subdivision is only refined by triangulations then it is
refined by exactly two of them.

◮ Definition: Flips correspond to next to minimal elements in
the poset of polyhedral subdivisions of A

◮ Flips are the “minimal possible changes” among
triangulations. We say these two triangulations differ by a flip.
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Bistellar flips

◮ In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations.

◮ If a subdivision is only refined by triangulations then it is
refined by exactly two of them.

◮ Definition: Flips correspond to next to minimal elements in
the poset of polyhedral subdivisions of A

◮ Flips are the “minimal possible changes” among
triangulations. We say these two triangulations differ by a flip.
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poset of subdivisions of a pentagon
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Bistellar flips

They are the “minimal possible changes” among triangulations.

(e)

(c)

3 collinear points
form a circuit.

(d)

(b)

(a)

Detect via “minimal affine dependences in the point configuration”

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

◮ Corollary: For every point set A, the graph of flips between
regular triangulations is n − d − 1-connected (in particular,
every triangulation has at least n − d − 1 flips).
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The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

◮ Corollary: For every point set A, the graph of flips between
regular triangulations is n − d − 1-connected (in particular,
every triangulation has at least n − d − 1 flips).

◮ For dimension = 2:
◮ the graph of ALL triangulations is connected [Lawson 1977]
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The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

◮ Corollary: For every point set A, the graph of flips between
regular triangulations is n − d − 1-connected (in particular,
every triangulation has at least n − d − 1 flips).

◮ For dimension = 2:
◮ the graph of ALL triangulations is connected [Lawson 1977]
◮ Every triangulation has at least n − 3 flips

[JDL-Santos-Urrutia, 1997]
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The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

◮ Corollary: For every point set A, the graph of flips between
regular triangulations is n − d − 1-connected (in particular,
every triangulation has at least n − d − 1 flips).

◮ For dimension = 2:
◮ the graph of ALL triangulations is connected [Lawson 1977]
◮ Every triangulation has at least n − 3 flips

[JDL-Santos-Urrutia, 1997]

◮ In dimension 5, there are triangulations with disconnected
graph of flips [Santos, 2004].
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The number of flips of a triangulation

◮ Lemma: All edges in the secondary polytope come from flips

◮ Corollary: For every point set A, the graph of flips between
regular triangulations is n − d − 1-connected (in particular,
every triangulation has at least n − d − 1 flips).

◮ For dimension = 2:
◮ the graph of ALL triangulations is connected [Lawson 1977]
◮ Every triangulation has at least n − 3 flips

[JDL-Santos-Urrutia, 1997]

◮ In dimension 5, there are triangulations with disconnected
graph of flips [Santos, 2004].

◮ In dimension 6, there are triangulations with arbitrarily large
n and ZERO flips [Santos, 2000].
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?

◮ If dimension 3 and the points are in convex position, then
every triangulation has at least n − 4 flips
[JDL-Santos-Urrutia, 1997] (but it is not known whether the
graph is even connected).
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?

◮ If dimension 3 and the points are in convex position, then
every triangulation has at least n − 4 flips
[JDL-Santos-Urrutia, 1997] (but it is not known whether the
graph is even connected).

◮ There are triangulations with arbitrarily large number of points
n but only O(

√
n) flips [Santos, 1999].
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?

◮ If dimension 3 and the points are in convex position, then
every triangulation has at least n − 4 flips
[JDL-Santos-Urrutia, 1997] (but it is not known whether the
graph is even connected).

◮ There are triangulations with arbitrarily large number of points
n but only O(

√
n) flips [Santos, 1999].

◮ In dimension 4, there are triangulations with arbitrarily large
n and only O(1) flips [Santos, 1999].
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?

◮ If dimension 3 and the points are in convex position, then
every triangulation has at least n − 4 flips
[JDL-Santos-Urrutia, 1997] (but it is not known whether the
graph is even connected).

◮ There are triangulations with arbitrarily large number of points
n but only O(

√
n) flips [Santos, 1999].

◮ In dimension 4, there are triangulations with arbitrarily large
n and only O(1) flips [Santos, 1999].

◮ All edges in the secondary polytope correspond to flips
between regular triangulations. how about the converse??
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AFTER 22 YEARS, a lot we need to learn!

◮ QUESTION Are there (flip) disconnected 3-dimensional
examples? How about 4-dimensional?

◮ If dimension 3 and the points are in convex position, then
every triangulation has at least n − 4 flips
[JDL-Santos-Urrutia, 1997] (but it is not known whether the
graph is even connected).

◮ There are triangulations with arbitrarily large number of points
n but only O(

√
n) flips [Santos, 1999].

◮ In dimension 4, there are triangulations with arbitrarily large
n and only O(1) flips [Santos, 1999].

◮ All edges in the secondary polytope correspond to flips
between regular triangulations. how about the converse??
Proposition [JDL, Santos, Rambau 2010] False! There are
regular triangulations connected by flips, yet their flip is not
an edge in secondary.
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More questions!

◮ Observation Flips can be used to count all regular
triangulations, but cannot be used to generate all
triangulations, lack of connectivity!!
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More questions!

◮ Observation Flips can be used to count all regular
triangulations, but cannot be used to generate all
triangulations, lack of connectivity!!
CHALLENGE What is the computational complexity of
counting all triangulations? How to generate them at
uniformly at random? Could we enumerate all different
triangulations of the d-cube?

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



More questions!

◮ Observation Flips can be used to count all regular
triangulations, but cannot be used to generate all
triangulations, lack of connectivity!!
CHALLENGE What is the computational complexity of
counting all triangulations? How to generate them at
uniformly at random? Could we enumerate all different
triangulations of the d-cube?

◮ Lemma We know the facets of the secondary polytope
correspond to coarsest subdivisions.
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More questions!

◮ Observation Flips can be used to count all regular
triangulations, but cannot be used to generate all
triangulations, lack of connectivity!!
CHALLENGE What is the computational complexity of
counting all triangulations? How to generate them at
uniformly at random? Could we enumerate all different
triangulations of the d-cube?

◮ Lemma We know the facets of the secondary polytope
correspond to coarsest subdivisions.

◮ CHALLENGE Can we find all the facets of the secondary
polytope of the d-cube? How about other nice polytopes or
point configurations?
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Sizes of Triangulations

Triangulations of d-polytopes come in different sizes!!

6 8

Theorem [Below, JDL, Richter-Gebert, 2000] It is NP-hard to
compute the smallest size triangulation of a convex 3-polytope.
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Sizes of Triangulations

Triangulations of d-polytopes come in different sizes!!

6 8

Theorem [Below, JDL, Richter-Gebert, 2000] It is NP-hard to
compute the smallest size triangulation of a convex 3-polytope.
Remark: Even for the 0/1 cube, we do not know the smallest size,
for dim ≥ 8.
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Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.
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Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.

◮ Unimodular triangulations appear in many areas,
From Optimization (integer programming) to Algebraic
Geometry too (toric varieties).
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Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.

◮ Unimodular triangulations appear in many areas,
From Optimization (integer programming) to Algebraic
Geometry too (toric varieties).

◮ Useful to compute volume formulas for polytopes!! Great for
combinatorics!!!
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Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.

◮ Unimodular triangulations appear in many areas,
From Optimization (integer programming) to Algebraic
Geometry too (toric varieties).

◮ Useful to compute volume formulas for polytopes!! Great for
combinatorics!!!
OPEN PROBLEM Prove/Disprove that all smooth polytopes
have a unimodular regular triangulation.

Jesus A. De Loera Triangulations of Convex Polytopes and Point Configurations



Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.

◮ Unimodular triangulations appear in many areas,
From Optimization (integer programming) to Algebraic
Geometry too (toric varieties).

◮ Useful to compute volume formulas for polytopes!! Great for
combinatorics!!!
OPEN PROBLEM Prove/Disprove that all smooth polytopes
have a unimodular regular triangulation.
OPEN PROBLEM Prove/Disprove that all matroid polytopes
have a unimodular regular triangulation.
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Largest Size Triangulations: Unimodular triangulations

◮ Definition For a point configuration in Z
d a simplex S is

unimodular if the vertices of S × {1} form a basis for the
lattice Z

d+1

◮ A triangulation is unimodular if al its simplices are
unimodular, all simplices of (normalized) volume 1.

◮ Unimodular triangulations appear in many areas,
From Optimization (integer programming) to Algebraic
Geometry too (toric varieties).

◮ Useful to compute volume formulas for polytopes!! Great for
combinatorics!!!
OPEN PROBLEM Prove/Disprove that all smooth polytopes
have a unimodular regular triangulation.
OPEN PROBLEM Prove/Disprove that all matroid polytopes
have a unimodular regular triangulation.
OPEN PROBLEM What is the complexity of deciding when
such triangulations exist?
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The Diameter and Hamiltonicity of a triangulation

The dual graph of a triangulation: it has one vertex for each
simplex and an edge joining two such vertices if the two simplices
share a triangle:
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The Diameter and Hamiltonicity of a triangulation

The dual graph of a triangulation: it has one vertex for each
simplex and an edge joining two such vertices if the two simplices
share a triangle:
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Open Problem Is it true that every 3-dimensional polyhedron has
a triangulation whose dual graph is Hamiltonian?
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Diameters of Simplicial Complexes

Definition

◮ The distance between two facets, F1,F2, is the length k of
the shortest simplicial path F1 = f0, f1, . . . , fk = F2.

◮ The diameter of a triangulation is the maximum over all
distances between all pairs of vertices.

QUESTION: What are the best bounds for the diameter of a
triangulation?
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A case study of application: Algebraic Geometry

• To every monomial xa1

1
. . . xan

n we associate its exponent vector
(a1, . . . , an).
• To a polynomial f (x1, . . . , xn) =

∑

ci x
ai we associate the

corresponding integer point set. Its convex hull is the Newton
polytope of f , N(f ).

2

3 4

1

1 2

Figure: The Newton polytope for x2 + xy + x3y + x4y + x2y3 + x4y3
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n
variables with “generic” coefficients. The number of common
zeroes of them in (C∗)n is either infinite or bounded above by the
mixed volume of the n polytopes N(f1), . . . ,N(fn).

+ =

Computing the mixed volume boils down to computing a regular
subdivision!!
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Hilbert’s sixteenth problem (1900)

“What are the possible (topological) types of smooth real algebraic
curves of a given degree d?”
Observation: Each connected component is either a pseudo-line
or an oval. A curve contains one or zero pseudo-lines depending in
its parity.

A pseudoline. Its complement has one An oval. Its interior
component, homeomorphic to an open is a (topological) circle

circle. The picture only shows the “affine part”; and its exterior is a
think the two ends as meeting at infinity. Möbius band.
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Example:

The classification of non-singular real algebraic curves of degree six
was completed the 1960’s [Gudkov]. There are 56 types degree six
curves, only three with 11 ovals:
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Viro’s Theorem:

+

Construct the algebraic curve as a simplicial transversal curve of a
regular triangulation!!
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