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1 Introduction

Hilbert Nullstellensatz is a central result that tells us a necessary and sufficient
condition for when a system of equations has a no solution. This theorem was
first proven by David Hilbert in 1900. Here we present a self-contained proof.

Theorem 1.1 (Hilbert’s Nullstellensatz (HNS)) Let f1 = 0, f2 = 0, ..., fs =
0 be a system of polynomials in C[x1, ..., xm], then the system has no root, or
solution, if and only if there exist polynomials α1, α2, ..., αs ∈ C[x1, ..., xm] such
that 1 =

∑n
i=1 αi(x1, ..., xm)fi(x1, ..., xm)

The idea of the proof is by induction on the number of variables. One settles
it first for one variable and in the case one has more than one variable one needs
to have a way to eliminate variables one at a time (this is done using resultants).
The proof of the Hilbert Nullstellensatz in in one variable uses a familiar notion:

Definition 1.2 Let f1, ..., fs be univariate polynomials in C[x] (e.g. f1(x) =
x700 − 72x3 + 3) We say a polynomial h is a Greatest Common Divisor (GCD)
of f1, ..., fs if

1) h|f1, h|f2, ..., h|fs 2) p|fi for i = 1, ..., s =⇒ p|h

The centuries old Euclidean division algorithm allow us to compute the
GCD. Recall

Algorithm: (GCD computation)

Input: f, g ∈ C[x]
Output: gcd(f, g)

Set i = 1
Set h0 = f , h1 = g
while hi 6= 0 do

divide hi−1 by hi

hi−1 = qihi + ri where ri equals remainder(hi−1, hi)
Set hi = ri
i = i+ 1

Lemma 1.3 Suppose f, g are univariable polynomials with complex coeffi-
cients.

1) If we know q, r, f satisfy f = qg + r, then GCD(f, g) = GCD(g, f − qg)
= GCD(g, r)

2) GCD(f1, f2, ..., fs) = GCD(f1, GCD(f2, ..., fs))

3) If g1, g2 are both GCD(f1, ..., fs), then g1 = cg2 where c is a constant.
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Proof: : For part (1) GCD(f, g)|g, and GCD(f, g)|f − qg = r this implies
GCD(f, g)|GCD(g, r) by definition: GCD(g, r)|g, and GCD(g, r)|r = f − qg,
which implies GCD(g, r) must divides f . Also implies GCD(g, r)|GCD(f, g)

For the proof of part (3) GCD(f1, f2 . . . fs)|fi; for i = 1, . . . , s. This im-
plies GCD(f1, f2, . . . , fs)|GCD(f2, . . . , fs) and it also divides f1. Therefore
GCD(f1, GCD(f2, f3, . . . , fs)) is divided byGCD(f1, f2, f3, . . . , fs).Given these
two quantities, if h|f1 and h|GCD(f2, f3, . . . , fs) then h|fi for i = 1 to s.
Thus GCD(f1, f2, f3, . . . , fs) must divide GCD(f1, GCD(f2, f3, . . . , fs)). This
proves they are equal.

Theorem 1.4 Euclidean Algorithm works: It returns the GCD(f, g).

Proof: : We know hi+1 = remainder(hi−1, hi) Which can means hi+1 = hi −
qhi(hi−1) By the lemma above GCD(hi−1, hi) = GCD(hi+1, hi), Since the de-
grees decrease and eventually hn= 0, for some n,

hn−1 = GCD(hn−2, hn−3) = GCD(hn−3, hn−4) = . . . = GCD(h0, h1).

Now, we clearly obtain then an algorithm to compute GCD (f1,f2, . . . fs)
using Lemma part (3). But remember our main goal, to find solutions of the
system of polynomial equations. How can we determine whether system g1(x) =
0, . . . , gr(x) = 0 has a common root? The key point is that if a is a common
root, (x− a) is a common factor. Then when GCD(g1(x), . . . , gr(x)) 6= 1, then
you have a common solution, any of the roots of this GCD will be a common
root.

Lemma 1.5 if h = GCD(f1,f2, . . . fs), there exists polynomials a1,a2,...as such
that

h = a1 f1 + . . .+ asfs

Proof: This is proved by induction on the number of polynomials. Say for
n = 2, apply Euclidean algorithm to f1,f2. while keeping track of divisors in
each iteration hi+1 = hi− gi+1h1−1. We can start by observing GCD = hn−1 =
hn−2 − qn−1hn−3(∗) In each iteration: hn−2 = hn−3 − qn−2hn−4(∗∗) Substitute
(**) into (*) and we obtain: GCD(f1,f2) = (1− qn−1)hn−3 − qn−2hn−4

Repeat such back substitution using the identities hi+1 = hi − gi+1h1−1.
Eventually, a1 f1 + a2 f2 = GCD(f1,f2). Assume lemma is true for S− 1 polyno-
mials or less. We know GCD(f1,f2, . . . fs) = GCD(f1,GCD(f2, . . . fs)). Thus
by induction:

GCD(f2, . . . fs) can be written as h = GCD(f2, . . . fs) = b2 f2 + . . .+ bs fs.
Which, by the case of 2 polynomials, gives, as desired: GCD(f1,f2, . . . fs) =
GCD(f1,h) = r1 f1 + sh = r1 f1 + s(b2 f2 + . . .+ bs fs) = r1 f1 + sb2 f2 + . . .+
sbs fs; thenr1 = a1, sb2 = a2, . . . , sbs = as.
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Corollary 1.6 In the case of one variable, a system of equations f1(x) =
0, . . . , fs(x) = 0 has no common root if and only if

1 = a1 f1 + . . .+ asfs; for some polynomialsa1,a2,...as.

Now that we have the Nullstellensatz for systems of polynomials in one single
variable we will use Resultants to reduce any other system to this simpler case.
The resultant will be a special determinant obtained from f, g polynomials in
R[x], where R is any integral domain (Think R = K[y1, . . . , yn], or R = Z).
The Sylvester matrix syl(f, g) will have the following crucial property:

Theorem 1.7 Let R be an integral domain. The polynomials f, g have a com-
mon root factor in R[X] if and only if det(syl(f, g)) = 0.

Lemma 1.8 Let f and g be polynomials in R[x] such that f, g are nonzero,
where R is an integral domain, and deg(f) = n, deg(g) = m, then f, g have a
common factor if and only if A, B polynomials exist in R[x] such that

1. Af +Bg = 0⇒ Bg = −Af.

2. deg (A) < m, deg (B) < n.

3. A and B are nonzeros.

Proof: (⇒)
Suppose f = f1h, g = g1h, for some common h. Let A = g1 and B = −f1,
then g1f +−f1g = g1f1h− g1f1h = 0.

(⇐) By contradiction.
Suppose f, g have no common factor, that implies ∃ Ã, B̃ polynomials in k[x]
such that Ãf + B̃g = 1. Then B = BÃf +BB̃g = BÃf − B̃Af = (BÃ− B̃A)f
implies deg(B) > n, thus this contradicts our assumption that deg(B) < n.

Example:
f = 2x3 + 4x− 2
g = 2x2 + 3x+ 9

Solution:
A = a1x+ a0

B = b2x
2 + b1x+ b0

0 = Af +Bg = (a1x+ a0)(2x3 + 4x− 2) + (b2x2 + b1x+ b0)(2x2 + 3x+ 9)
0 = (2a1 + 2b2)x4 + (2a0 + 3b2 + 3b1)x3 + (4a1 + 9b2 + 3b1 + 2b0)x2 +
(−2a1 + 4a0 + 9b1 + 3b0)x+ (−2a0 + 9b0)
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setting the coefficients equal to zero:

2a1 + 2b2 = 0 (1)
2a0 + 3b2 + 2b1 = 0 (2)

4a1 + 9b2 + 3b1 + 2b0 = 0 (3)
−2a1 + 4a0 + 9b1 + 3b0 = 0 (4)

−2a0 + 9b0 = 0 (5)

form the Sylvester matrix (S(f, g)):

2 0 2 0 0

0 2 3 2 0

4 0 9 3 2

−2 4 0 9 3

0 −2 0 0 9




a1

a0

b2
b1
b0

 =


0
0
0
0
0



︸ ︷︷ ︸
S(f,g)

det(S(f, g)) = 1163 6= 0

Therefore, there is no common factor.

ALGORITHM:
Input: f, g ∈ R[x]
Output: Yes/No depending on whether they have a common factor.

Step 1: Compute the Sylvester matrix S(f, g).
Step 2: Compute its determinant (= Resultant).

If Resultant = 0,
Return Yes there’s a common factor.

Else Resultant 6= 0
Return No, there’s no common factor.

Properties of Resultants :

1. Resultant 6= 0⇔ GCD(f, g) = 1.

2. Resultant(f, g) is a polynomial whose variables are the coefficients
of f&g and it has integer coefficients.

3. There exists polynomials C,D ∈ k[x], such that Cf+Dg = Resultant(f, g)

Proof:

1. By lemma, resultant 6= 0⇔ there is no common factor⇔ GCD(f, g) = 1.
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2. Resultant(f, g) = det



an 0 . . . 0 bm 0 . . . 0

an−1 an
. . . 0 bm−1 bm

. . . 0

... an−1
. . . 0

... bm−1
. . . 0

a0

...
. . . an b0

...
. . . bm

0 a0 . . .
... 0 b0 . . .

...

0 0 . . . a0 0 0 . . . b0


︸ ︷︷ ︸

m

︸ ︷︷ ︸
n

3. Resultant(f, g) = 0. Take C = 0, D = 0, then we are Done.
Resultant(f, g) 6= 0⇒ det[S(f, g)] 6= 0 Because Resultant(f, g) 6= 0
⇒ GCD(f, g) = 1. Then there exist Cf +Dg = 1


Sylvester





cn
cn−1

...
c0
dm

dm−1

...
d0


=



0
0
...
...
0
0
0
1


By Cramer’s Rules:
Ci’s and Dj ’s can be written in the form:

26666664
0
...
0
1

37777775
Resultant(f,g) Cf +Dg = 1

multiply by Resultant(f, g). The denominators cancel, hence C̃f + D̃g =
Resultant(f, g).

Lemma 1.9 B(x1, x2, ....xn)εC[x1, x2, ...xn] polynomial that is not identically
zero, then ∃Z1, Z2, ...ZnεC such that B(Z1, Z2, ..., Zn) 6= 0

Proof: By induction on n the number of variables. If n = 1 we are done,
because univariate polynomials have finitely many roots, thus B(x1) 6= 0 in
infinitely values. Suppose the Lemma is true for n − 1 variables and take

6



B(x1, x2, .....xn) not identically zero. Expand it in terms of xn, B(x1, x2, ....xn) =
Pd(x1, x2, ....xn−1)xd

n + Pd−1(x1, x2, ....., xn−1)zd−1
n + .....+ P1(x1, x2, ....xn−1).

⇒ by hypothesis, Pi(x1, x2, ....xn) is not identically zero for some i. Thus by
induction ∃z1, z2, ....zn−1εC where Pi(z1, z2, ....zn−1) 6= 0. Substitute xk = zk

for k = 1, 2, ...., n−1. In B, B(z1, z2, ..., zn−1, zn), compute its root β1, β2, ..., βn,
let zn be any complex number 6= βi.

Lemma 1.10 (Make me monic!) Let b(x1, x2, ..., xn) be a polynomial all of
whose monomials have total degree ≤ d

There exist a change of coordinates

x1 = λ1y1 + yn, x2 = λ2y2 + yn, . . . , xi = λiyi + yn

xn = yn

such that B(y1+λ1yn, ..., yn−1+λn−1yn, yn) = P (y1, ...yn) is a monic polynomial
with respect to the variable yn. This means

P (y1, ...yn) = Cd(y1, ...yn−1)yd
n + ....+ C0(y1, ..., yn−1)

with Cd = 1.

Proof: Do substitution with parameter λ1, λ2, ..., λn−1; say d is the highest
degree for yn. The leading coefficient, will be the polynomial in λ1, λ2, ..λn−1

call leading coefficient Cd. From previous lemma we can find λ1, λ2, ..λn−1

values in C that make Cd 6= 0. Divide by constant Cd(λ1, λ2, ..λn−1) 6= 0,
P1(y1, ...yn) = 1 ∗ yd

n+ junk.

Theorem 1.11 (Hilbert’s Nullstellensatz) Let f1 = 0, f2 = 0, ..fs = 0 be a
system of polynomial equation, f1, ..fsεC[x1, ....xn] then there is no common
solution over Cn ⇐⇒ ∃α1, α2, ..αsεC[x1, .., xn] such that α1f2+α2f2+..+αsfs =
1

Proof: By induction on the number of variables. We already proved it for
n = 1 using the GCD properties. Suppose true for n− 1 variables, you are now
given a system with n variables. (1) By Lemma about changes of variables you
can assume f1 is monic with respect to xn. (2) Let y be an auxiliary variable.
Let Q(x1, x2, ..., xn, y) = f2 + yf3 + y2f4 + ...+ ys−2fs.

(3) Compute the resultant of f1,Q with respect to xn namely Res(f1, Q) =
Rd(x1, .., xn−1)yd + Rd−1(x1, .., xn−1)yd−1 + .. + R0(x1, .., xn−1) We saw there
exist A,B ∈ C[x1, ..., xn, y] Af + BQ = Res(f1, Q, xn) Because of induction, if
I can prove R0 = 0, R1 = 0, .., Rd = 0 has no common root then done. Thus we
know now how, given a system of polynomials without a common root, we can
construct a new polynomial whose resultant must also have no solution. Here
is all as a lemma.

Lemma 1.12 Given the system of polynomials f1 = f2 = · · · = fs = 0 without
a common root, we let Q(x1, x2, . . . , xn, y) = f2 + yf3 + y2f4 + · · ·+ ys−2fs.

7



Next, we compute the resultant:
Res(f1, Q, x1) = Rd(x1, . . . , xn−1)yd+Rd−1(x1, . . . , xn−1)yd−1+· · ·+R0(x1, . . . , xn)

And find the system Rd = Rd−1 = · · · = R0 = 0, which also has no solution.

Proof: By contradiction, suppose not true, therefore, there must exist a solution
to the system constructed. Specifically, ∃a1, a2, . . . , an−1 (let these be denoted
by ā) such that Rd(ā) = Rd−1(ā) = · · · = R0(ā) = 0.

Thus, Res(f1, Q, xn)(ā) = 0.
Remember, since the resultant equals zero, the polynomials f1(ā, xn) and

Q(ā, xn, y) must have a common factor. This means that they share a root. Let
this root be denoted as β. So, f1(ā, β) = Q(ā, y, β) = 0, for any value of y.
Since y is unconstrained, the only way Q can be distinctly zero is if f2(ā, β) =
f3(ā, β) = · · · = 0. Therefore, we have found a solution.

We will now use Hilbert’s Nullstellensatz to prove the fundamental theorem
that characterises which polynomials vanish in a variety!

Theorem 1.13 (The Strong Hilbert Nullstellensatz) Let hi, g ∈ C[x1, ..., xm].
We define the hypothesis variety as follows V = {x̄|h1(x̄) = h2(x̄) = ... =
hn(x̄) = 0}. Here V can be interpreted as the set of all ”positions” or ”con-
figurations” where the hypotheses are satisfied, then g(x̄) = 0 ∀x̄ ∈ V ⇐⇒
gr(x1, ..., xm) =

∑n
i=1 αi(x1, ..., xm)hi(x1, ..., xm) where αi ∈ C[x1, ..., xm].

Proof: (=⇒) Suppose g(x̄) = 0 ∀x̄ ∈ V . Let fi be defined as follows:
f0 = 1 + g(x)t ∈ C[x1, x2, ..., xm, t]

f1 = h1

f2 = h2
...
fi = hi.

There is no solution of this system (1 6= 0) thus the Hilbert’s Nullstellensatz
implies 1 = α0(1+tg(x))+α1h1+α2h2+...+αnhn where αi ∈ C[x1, x2, ..., xm, t].
If we set t = −1/g, then we get 1 = α1(x1, ..., xm,−1/g)h1(x1, ..., xm) + ... +
αn(x1, ..., xm,−1/g)hn(x1, ..., xm) where the denominators look like g(x1, ..., xm)k.
Then pick the highest power of g that appears in the denominator, and multiply
the expression by it. we get the desired statement.

Now let us prove the converse, which is easy. Given

gn(x1, ..., xm) =
n∑

i=1

αi(x1, . . . , xm)hi(x1, . . . , xm),

when x̄ is a root of the system of equations means =⇒ hi(x̄) = 0 =⇒
gr(x̄) = 0 =⇒ g(x̄) = 0.
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