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1 Goermans-Williamson Algorithm for the maxcut problem

This is a probabilistic approach to choosing a CUT

• Step 1: Solve the relax problem. Let the result be X and it can be factorized as

X = VTV (1)

where V =
[

v1 v2 · · · vn
]
.

• Step 2: Generate a random uniform vector r on the unit n-sphere Sn .

• Step 3: A CUT which approximates the MAXCUT is

yi = sign
(
rTv

)
=

{
1 if rTv ≥ 0
−1 if rTv < 0

(2)

Since this CUT is randomly generated, we are interested in its expected value.

Lemma 1

Pr
[
sign

(
rTvi

)
6= sign

(
rTvj

)]
=

arccos
(
vTi vj

)
π

. (3)

Theorem 2 Expected value of CUT is not less than .87856 the MAXCUT.

Proof The expected value of CUT is

E (CUT) =
1
2

∑
i,j∈E

wijPr [1− yiyj = 2]

=
1
2

∑
i,j∈E

wijPr
[
sign

(
rTvi

)
6= sign

(
rTvj

)]
=

1
2

∑
i,j∈E

wij
arccos

(
vTi vj

)
π

=
1
2

∑
i,j∈E

wij
arccos (Xij)

π

=
1
4

∑
i,j∈E

wij (1−Xij)
2
π

arccos (Xij)
(1−Xij)

≥ 1
4

∑
i,j∈E

wij (1−Xij)
(

min
−1≤t≤1

2
π

arccos (t)
(1− t)

)

= RELAX×
(

min
0≤θ≤π

2
π

θ

(1− cos (θ))

)
≥ 0.87856× RELAX (4)
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2 Global optimization using SDP

So far we have seen linear programs and Semidefinite programs are very useful and can be solved
efficiently. They will be used quite a bit later. We will consider now situations where

min/max f (x) (5)
subject to g1 (x) = 0 h1 (x) ≥ 0

g2 (x) = 0 h2 (x) ≥ 0
...

...
gk (x) = 0 hs (x) ≥ 0

There is no integrality restriction except f , gi, hj are all polynomials.

2.1 Univariate polynomial

Let us start understanding such problem for one variable.
Let f (x) be a polynomial of variable x as

f (x) = pnx
n + pn−1x

n−1 + · · · p1x+ p0 (6)

We wish to find the global minimum of f (x)

min f (x) (7)

This problem is equivalent to find

max γ (8)
s.t. f (x)− γ ≥ 0 for all x.

First note: f (x)− γ must be of even degree.

Lemma 3 A univariate polynomial p (x) is non-negative iff p (x) is a sum of square (SOS).

Proof It is obvious to see if p (x) is a SOS then p (x) is non-negative.
Now, given non-negative polynomial p (x) of order n and coefficients pj , (j = 1..n) we proof that

p(x) is also SOS.
According to the fundamental theorem of algebra, p (x) can be factorized as

p (x) = pn
∏
nj

(x− rj)nj
∏
mk

(x− ak + ibk)mk (x− ak − ibk)mk (9)
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where rj and ak ± ibk are the real and complex roots of p (x), respectively.
Because p ≥ 0, nj are even,i.e. nj = 2sj , and pn ≥ 0. Moreover, (x− ak + ibk) (x− ak − ibk) =

(x− ak)2 + b2k.
Therefore

p (x) = pn
∏
sj

(x− rj)2sj
∏
mk

(
(x− ak)2 + b2k

)mk

. (10)

The first product of p (x) in (9) is a product of square terms.
Note that

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2, (11)

we prove that p (x) is a SOS.

Corollary 4 Any non-negative polynomial in R is a sum of 2 squares.

p (x) = q21 (x) + q22 (x) (12)

The next question is how to check quickly whether p (x) is a SOS.

Theorem 5 A univariate polynomial p (x) of even degree 2d is a SOS iff there exits a positive
semidefinite matrix Q such that

p (x) = xTdQxd (13)

where xd =
[

1 x · · · xd
]T .

Proof We write p (x) in SOS form

p (x) =
m∑
k=1

q2k (x) (14)

Define q =
[
q1 (x) q2 (x) · · · qm (x)

]T , we have

q = Vxd, (15)

where k-th row of V is made of coefficients of qm (x). Therefore

p (x) = qTq

= xTdVTVxd
= xTdQxd (16)

where Q = VTV. By definition Q � 0 .

The coefficients of p (x) has the following relation with elements of Q

pi =
∑
j+k=i

Qjk (17)
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Proof We have

p (x) = xTdQxd

=
d∑
j=0

d∑
j=0

Qjkx
j+k

=
2d∑
i=0

 ∑
j+k=i

Qjk

xi

=
2d∑
i=0

pix
i (18)

Conclusion: SDP can solve (7) globally.

2.2 Multivariate polynomial

We wish to find a global minimum of a multivariate polynomial f (x)

min f (x) (19)
x ∈ Rn

This problem is equivalent to find

max γ (20)
subject to f (x)− γ ≥ 0 for all x ∈ Rn

The question is whether we can apply the same procedure as in the univariate polynomial case. The
answer is no because we do not know if f (x) is a SOS for x ∈ Rn. In fact Motzkin and Robinson
(1950) has shown that the polynomial x4y2 + x2y4 + 1− 3x2y2 can not be written as a SOS.

3 Motzkin function

The multivariate polynomial f(x), x ∈ Rn of even degree deg(f(x)) = 2d is a non-negative polyno-
mial if and only if it satisfies:

f(x) ≥ 0,∀x ∈ Rn. (21)

Clearly, a sufficient condition in order for f(x) to be non-negative is:

f(x) =
∑
i

q2i (x), (22)

that is, if f(x) is reducible to a sum of squares (SOS), it is a non-negative polynomial. In general,
condition (22) is only sufficient. Hilbert proved that it becomes also necessary if:

n = 1. (23)
d = 1. (24)

n = 2 and d = 2. (25)
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Motzkin showed an example of a non-negative polynomial with n = 2 and d = 3 that cannot be
reduced to a sum of squares:

f(x, y) = 1 + x4y2 + x2y4 − 3x2y2. (26)

It is easy to show that ∀(x, y) ∈ R2 f(x, y) ≥ 0:
Proof

1 + x4y2 + x2y4 ≥ 3x2y2 (27)

true, because:

a1 + . . .+ an

n
≥ n
√
a1 · a2 · . . . an. (28)

and:

1 + x4y2 + x2y4 ≥ 3 3
√
x4y2(x2y4) = 3x2y2. (29)

The proof that the non-negative polynomial f(x, y) cannot be reduced to a sum of squares is as
follows:
Proof
Suppose:

f =
∑

s2i , si ∈ R[x, y]. (30)

We note that each polynomial si must have Newton polytope contained in the triangle (0, 0), (1, 2), (2, 1),
therefore si is a linear combination of 1, xy2, x2y, xy, but s2i contains x2y2 and it must appear with
a positive coefficient (si = a+ bx2y + cxy2 + dxy implies that x2y2 has coefficient d2 ≥ 0), but this
is in contradiction with the fact that x2y2 appears with coefficient −3 in f(x, y).

Lemma 6 If p(x) =
∑
q2i (x), then Newton(qi)⊆

1
2
Newton(p(x)).

This reduces the size of the compounding PSD matrix Q. In fact, recall that semi-definite pro-
gramming can be used to prove whether a given polynomial is a sum of squares. A polynomial
f(x) = pαxα can be written as:

f(x) = [x]TdQ[x]d (31)

with [x]d vector of all monomials of n variables and degree deg([xi]d) ≤ d, if:

Q � 0, (32)

pα =
∑

α=β+δ

Qβδ. (33)

3.1 Example

f(x, y, z, ω) = (x4 + 1)(y4 + 1)(z4 + 1)(ω4 + 1) + 3x+ 4y + 5z + 2ω. (34)

deg(f(x, y, z, ω)) = 16, the total number of variables necessary to solve this problem is:(
4 + 8

8

)
= 495. (35)

Such a large number of variables is not efficiently handled on most of current computers. Recalling
that Newton(f(x)) is a cube, we can solve the problem using only 34 = 81 monomials, which is
duable on most of current computers.
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4 Optimization problem

We wish to:

maximize: f(x)
subject to: g1(x) ≥ 0 h1(x) = 0,

...
...

gm(x) ≥ 0 hk(x) = 0.

(36)

where functions f(·), gj(·)(j∈{1,... ,m}), hi(·)(i∈{1,... ,k}) are polynomials with coefficients in R. In order
to tackle the solution of problem 36, let us consider the set of all polynomials in n variables with
coefficients on a field K ∈ {C,R,Zp}, K[x1, . . . , xn] = K[x] and define an “ideal” I ⊆ K[xx] such
that:

(a) if f1, f2 ∈ I → f1 + f2 ∈ I,

(b) if f ∈ I, g ∈ k[x]→ f · g ∈ I.

Examples:

(1) Let S ⊆ Cn, then:

I(S) = {f(x)|f(s) = 0,∀s ∈ S}. (37)

I(S) is defined as the vanishing ideal.

(2) Let g1, g2, . . . , gs be a series of polynomials; the ideal generated by g1, . . . , gs is defined as:

< g1, . . . , gs >= {f |f = λ1g1 + λ2g2 + . . .+ λsgs, with λi ∈ K[x]}. (38)

Exercise: show that in C[x1] every ideal is principal. Theorem: every polynomial ideal is finitely
generated (HILBERT basis theorem). Given a set of polynomials h1, . . . , hk in K[x1, . . . , xn], we
define a variety as:

V (h1, h2, . . . , hk) = {s ∈ Kn|hi(s) = 0, ∀i = 1, 2, . . . , k}. (39)

Example: VR2(x2y2) is the set of the x and y axis.
We define a basic semi-algebraic set as a subset of Rn that satisfies:

{x ∈ Rn|g1(x) ≥ 0, . . . , gm(x) ≥ 0, h1(x) ≥ 0, . . . , hk(x) ≥ 0}. (40)

Examples:

(1) x ∈ [0, 1] is a semi-algebraic set of R that can be written as:

{x ∈ R| − x+ 1 ≥ 0, x ≥ 0} (41)

(2) The set of all symmetric n×n matrices that are positive semidefinite is a basic semi-algebraic
set: Proof A � 0 ⇐⇒ all 2n−1 principal minors of A are non-negative.

Exercise: find fewer than 2n−1 inequalities that define the same semi-algebraic set.
Given a set of polynomials g1, . . . , gm in K[x], a cone is defined as the set of all linear combination

of all products of subsets of gi:

cone(g1, . . . , gm) = {
∑

I⊆{1,... ,m}

sIπi∈Igi|sI an SOS}. (42)
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