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1 Goermans-Williamson Algorithm for the maxcut problem

This is a probabilistic approach to choosing a CUT

e Step 1: Solve the relax problem. Let the result be X and it can be factorized as

where V = [ Vi Vo Vi ]

X =VTv

e Step 2: Generate a random uniform vector r on the unit n-sphere S™ .

e Step 3: A CUT which approximates the MAXCUT is

y; = sign (rTV) = { 1

Since this CUT is randomly generated, we are interested in its expected value.

Lemma 1

Pr[sign (r7v;) # sign (rTv;)] =

1 ifrfv>0
ifrfv<o0

arccos (v7v;)

™

Theorem 2 FEzpected value of CUT is not less than .87856 the MAXCUT.

Proof

E(CUT) =

%

The expected value of CUT is

1
3 > wiPr[l—yiy; = 2]
1,jEE

% Z w;;Pr [sign (rTvi) = sign (rij)]
i,jE€E

1 arccos (vIv,
)

< v
,jJEE
1 Z arccos (X;;)
- Wy TS\
2 £ Y T
i,jJEE

1 2 arccos (X;;)
— i (1 —X,.) = J
4Zwﬂ( J>7r (17X2J)

i,JEE
1 . 2 arccos (t))
— wij (1 — X5 min ————=
4.5z i ( 2 (—1§t§17r (1-1)
RELAX x | min 2_ 0
0<o<n7 (1 — cos (6))

0.87856 x RELAX
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2 Global optimization using SDP

So far we have seen linear programs and Semidefinite programs are very useful and can be solved
efficiently. They will be used quite a bit later. We will consider now situations where

min/max f(x) (5)
subject to g1(x)=0 hi(x) >0
g2(x)=0  ha(x)>0

There is no integrality restriction except f, g;, h; are all polynomials.

2.1 Univariate polynomial

Let us start understanding such problem for one variable.
Let f (x) be a polynomial of variable x as

f () =ppa™ 4+ pu_12™ '+ prx+ po (6)

We wish to find the global minimum of f ()

min £ (2) (7)
This problem is equivalent to find

max 7y (8)
st.  f(x)—~ >0 forall z.

First note: f (x) — v must be of even degree.
Lemma 3 A univariate polynomial p (x) is non-negative iff p (z) is a sum of square (SOS).

Proof It is obvious to see if p (z) is a SOS then p (x) is non-negative.

Now, given non-negative polynomial p (z) of order n and coefficients p;, (j = 1..n) we proof that
p(z) is also SOS.
According to the fundamental theorem of algebra, p (z) can be factorized as

p(@)=pa [[ (@ =)™ [ (@ —ar +iby)™ (@ — ap — iby)™ 9)

nj mi
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where 7; and aj, + iby are the real and complex roots of p (x), respectively.

Because p > 0, n; are even,i.e. n; = 2s;, and p, > 0. Moreover, (x — aj + iby) (x — a, — iby,) =
(x— ak)2 + b3.

Therefore

p@) =pa [[ =) [T (@=ar)® +02)"". (10)

Sj mg

The first product of p (x) in (9) is a product of square terms.
Note that

(a® + b*)(* 4+ d?) = (ac — bd)* + (ad + be)?, (11)

we prove that p (z) is a SOS.H

Corollary 4 Any non-negative polynomial in R is a sum of 2 squares.

p(x) =qi (z) + 45 (z) (12)
The next question is how to check quickly whether p (z) is a SOS.

Theorem 5 A univariate polynomial p(x) of even degree 2d is a SOS iff there exits a positive
semidefinite matriz Q such that

p(r) = x;Qxy (13)
where xg = [ 1 z - 2 }T.

Proof We write p(x) in SOS form

p(z) = Y di(2) (14)

k=1
Define q = [ ¢1(2) (2) - gn(2) |7, we have
q:VXd7 (15)

where k-th row of V is made of coefficients of ¢, (z). Therefore

px) = d'q
= X(Y;VTVXd
= x'Qxy (16)
where Q = VTV, By definition Q = 0 . H

The coefficients of p (z) has the following relation with elements of Q

pi= Y Qi (17)

jAk=i
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Proof We have

p(xr) = XdTQXd

d d
— Z Zijijrk

Jj=07=0
2d

= D | X Q]

i=0 \j+k=i

2d
= Z pix’ (18)
i=0

B Conclusion: SDP can solve (7) globally.

2.2 Multivariate polynomial

We wish to find a global minimum of a multivariate polynomial f (x)

min f (x) (19)
x € R"

This problem is equivalent to find

max ~y (20)
subject to  f(x) —~ >0 for all x € R"

The question is whether we can apply the same procedure as in the univariate polynomial case. The
answer is no because we do not know if f (x) is a SOS for x € R*. In fact Motzkin and Robinson
(1950) has shown that the polynomial x%y? + x%y* + 1 — 32%y? can not be written as a SOS.

3 Motzkin function

The multivariate polynomial f(x), x € R™ of even degree deg(f(x)) = 2d is a non-negative polyno-
mial if and only if it satisfies:

F(x) > 0,¥x € R". (21)

Clearly, a sufficient condition in order for f(x) to be non-negative is:
Fo0) = (), (22)

that is, if f(x) is reducible to a sum of squares (SOS), it is a non-negative polynomial. In general,
condition (22) is only sufficient. Hilbert proved that it becomes also necessary if:

n=1. (23)
d=1. (24)
n=2and d=2. (25)
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Motzkin showed an example of a non-negative polynomial with n = 2 and d = 3 that cannot be
reduced to a sum of squares:

fla,y) =1+ a%y? +a?y" — 3272 (26)
It is easy to show that V(z,y) € R? f(z,y) > 0:
Proof
1+ aty? + 22yt > 32%? (27)
true, because:
ar+...+an
! - > ag -as - ... Gn. (28)
and:
1+ ahy? + 22y > 3¢/ ady2(22yt) = 32292 (29)
|

The proof that the non-negative polynomial f(z,y) cannot be reduced to a sum of squares is as
follows:

Proof

Suppose:

f=Y sl s €Rz,y (30)

We note that each polynomial s; must have Newton polytope contained in the triangle (0,0), (1, 2), (2, 1),
therefore s; is a linear combination of 1,zy?, 2%y, ry, but s? contains z2y? and it must appear with

a positive coefficient (s; = a + bx?y + cxy? + dry implies that x2y? has coefficient d? > 0), but this

is in contradiction with the fact that 22y? appears with coefficient —3 in f(z,y). B

1
Lemma 6 If p(x) =Y ¢?(x), then Newton(q;)C §Newt0n(p(x)).

This reduces the size of the compounding PSD matrix Q. In fact, recall that semi-definite pro-
gramming can be used to prove whether a given polynomial is a sum of squares. A polynomial
f(X) = pax® can be written as:

f(x) = [x]3 Qx4 81)
with [x]4 vector of all monomials of n variables and degree deg([x;]q4) < d, if:
Q=0 (32)
Pa = Z Qﬁé- (33)
a=#B+4
3.1 Example
fl@,y,z,0) = (@ + Dy + D"+ 1) + 1) + 32 + 4y + 52 + 2w. (34)

deg(f(z,y,z,w)) = 16, the total number of variables necessary to solve this problem is:

( 4;'8 > — 495. (35)

Such a large number of variables is not efficiently handled on most of current computers. Recalling
that Newton(f(x)) is a cube, we can solve the problem using only 3* = 81 monomials, which is
duable on most of current computers.
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4 Optimization problem

We wish to:
maximize: f(x)
subject to: ¢1(x) >0 hy(x) =0,
: : (36)
gm(x) >0 hi(x) =0.

where functions f(-), g;()jeq1,...,m})> Pi(-) ief1,... k) are polynomials with coefficients in R. In order
to tackle the solution of problem 36, let us consider the set of all polynomials in n variables with
coeflicients on a field K € {C,R,Z,}, K[z1,...,2,] = K[x] and define an “ideal” I C K|[xx] such
that:

(a) if fi,fo€l — fi+ fa €l
(b)if fel,gekx]|— f-gel
Examples:
(1) Let S C C™, then:
I(S) = {f(®)|f(s) = 0,Vs € S}. (37)
1(S) is defined as the vanishing ideal.

(2) Let g1,99,...,9s be a series of polynomials; the ideal generated by g1,... ,gs is defined as:

<1y 9s >={fIf = A1g1 + Aaga + ... + Asgs, with \; € K[x]}. (38)

Exercise: show that in Clz;] every ideal is principal. Theorem: every polynomial ideal is finitely
generated (HILBERT basis theorem). Given a set of polynomials hq,... ,h in K[x1,...,2,], we
define a variety as:

V(hl,hg,...,hk) = {S S Kn|hl(8> =0,Vi=1,2,... ,k‘} (39)

Example: Vg:(22y?) is the set of the z and y axis.
We define a basic semi-algebraic set as a subset of R™ that satisfies:

{x eR"[g1(2x) 20,... ,gm(x) 20, ha(x) = 0,...  he(z) = 0}. (40)
Examples:
(1) x € [0,1] is a semi-algebraic set of R that can be written as:

{reR|—2z+1>0,z >0} (41)

(2) The set of all symmetric n x n matrices that are positive semidefinite is a basic semi-algebraic
set: Proof A >0 <= all 2"~! principal minors of A are non-negative. ll

Exercise: find fewer than 27! inequalities that define the same semi-algebraic set.

Given a set of polynomials g1, ... , g, in K[x], a cone is defined as the set of all linear combination
of all products of subsets of g;:
cone(gy, ... ,gm) =1{ Z srmicrgilsr an SOS}. (42)
IC{1,...,m}
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