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Abstract

The existence of Nash and Walras equilibrium is proved via Brouwer’s
Fixed Point Theorem, without recourse to Kakutani’s Fixed Point The-
orem for correspondences. The domain of the Walras fixed point map is
confined to the price simplex, even when there is production and weakly
quasi-convex preferences. The key idea is to replace optimization with
“satisficing improvement,” i.e., to replace the Maximum Principle with
the “Satisficing Principle.”
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lectures on mathematical economics as an undergraduate in 1974, and then again when I read Tim
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Mordecai Kurz has been an inspiration for a whole generation of economists.
I vividly remember many blissful summers at the IMSSS in Stanford, listening to
the programs Mordecai masterfully put together. Those summer sessions defined
economic theory for their time, and defined the standards of excellence we all tried to
live up to. In retrospect, the late 70s and early 80s appear clearly as a golden era in
the history of economic theory, and it is hard to believe things would have turned out
so well if it weren’t for IMSSS, and for Mordecai’s energy, enthusiasm, and tenacity
as its director.

1 Introduction

The standard proofs of the existence of Nash and Walras equilibrium (including the
original proofs by Nash [18], Arrow and Debreu [2], and McKenzie [16]) rely on Kaku-
tani’s Fixed Point Theorem for correspondences. I show that a slight perturbation
of the standard arguments enables one to work entirely with Brouwer’s Fixed Point
Theorem for continuous functions.!

Nash himself [19] gave a Brouwer fixed point proof of Nash equilibrium for the
special case of matrix games. McKenzie [17] derived the existence of Walras equilib-
rium with production from Brouwer’s Fixed Point Theorem. The only advantage of
the maps I propose is that some readers may think they are simpler. For example,
in my Walras existence proof the domain of the fixed point map is the price simplex.
There is no need to enlarge the domain to include excess demands, as done by Gale
[9] and Debreu [6], [7], or the demands of each consumer, as done in the general-
ized game proofs of Debreu [5] and Arrow and Debreu [2], or to add the auxiliary
commodities introduced by McKenzie [17].2

In Section 2, the existence of Nash equilibrium in concave games is proved. Let a
game G = (up, Xy )nen be described by its payoffs u, and compact, convex strategy
spaces Y, for agents n € N. The original proof by Nash relied on the best response
correspondence By (Gy,0_y) = argmax, cx Un(0y,,0_y). My proof simply replaces
B,, with a satisficing improvement function

B (On, T p) =argmax (U (0,0 y) — ||on — (_anQ}'
On€EXn

If w, is concave in o, it can easily be shown that (3, always moves agent n part of
the way to his optimal response against _,. Moving all the way to a best response

LOf course Kakutani’s FPT can be derived from Brouwer’s FPT, so in a sense all these standard
proofs are derivable from Brouwer. But I mean there is a single continuous function, not involving
any approximations and selection, whose fixed points are Walras equilibria.

?Thus in the proofs (9), (6), (7) the dimension of the domain of the fixed point map is (L — 1) +
(L — 1), where L is the number of commodities. In the proofs (5), (2), the dimension of the domain
is (L—1)+4 (H + F)(L — 1), where H is the number of households and F' the number of firms.
In the proof (16) the dimension is (L — 1) + F. All of the proofs (9), (6), (7), (5), (2) are based
on Kakutani’s fixed point theorem. My proof uses Brouwer’s fixed point theorem on a domain of

dimension (L — 1).



is irrelevant to demonstrating that a fixed point is an equilibrium. Section 1 also in-
cludes a discussion of earlier demonstrations of Nash equilibrium based on Brouwer’s
FPT for matriz games.

In Section 3 the existence of Walras equilibrium is proved for economies F =
(W eMner, (V) ter, (9?)%? ) with quasi-concave utilities v and convex technolo-

gies Y. Let M"(p,p) be the minimum net expenditure household & must make at
prices p beyond its Walrasian income I"(p) in order to achieve the same utility it
would obtain if it faced prices p and income I*(p).? It is well-known that M" is
continuous in (p,p) and concave in p for any fixed p. Let M(p,p) be the sum of the
M"(p,p) over all households h. Let S be the price simplex. In Section 3 it is shown
that the function ¢ : S — S defined for each p in S by

©(p) =argmax [M(p,p) — [lp — p||*]
peS

is continuous and has Walras equilibria as its fixed points.

The minimum expenditure function and its properties have been very closely stud-
ied since Hicks showed that the so-called Hicksian demand is more regular than the
Marshallian demand. Intermediate textbooks often emphasize the duality between
utility maximization and expenditure minimization. Precisely this duality guarantees
(through the Maxmin theorem) that a fixed point of the function ¢ must be a Walras
equilibrium. Nevertheless, though there are many closely related ideas to be found
in the literature, to the best of my knowledge nobody has used the function M to
demonstrate the existence of equilibrium.

To understand the genesis of the function M, let us temporarily suppose that the
Walrasian demand correspondence D"(p), and the Walrasian supply correspondence
Yy(p) = argmaxy,cy, P - Yy, and therefore also the Walrasian aggregate excess de-
mand correspondence Z(p) = >, (D"(p) —e™) =3 rer Y7(D), are all single valued
functions, which we denote by d"(p),y¢(p), z(p). (If utilities are strictly concave, and
production sets strictly convex, this will be the case, assuming we enclose the economy
in a compact space.) In that case we can define a continuous function ¢ : S — S

W (p) =argmax [p- 2(p) — |Ip — pl|*]
peS
whose fixed points are Walrasian equilibrium prices, as we show in Section 4.

When Z(p) is multivalued, there does not, at first glance, seem to be an analogue
for 1. However, define D" (p) as the set of all consumption bundles (budget feasible
and not) that make agent h at least as well off as his Walrasian demands D" (p). Define
the “better than excess demand correspondence” Zy by Z4 (p) = Y (D4 (D) —e) —
> ser Yy, where firms choose anything feasible. A crucial advantage of Zy over Z is

that it is lower semicontinuous as well as upper semicontinuous. We show in Section
3 that

¢(p) =argmax [ min_p-z— ||p—p[|%]
peES 2€Z4(p)

3Income is defined by I"(p) = p-e" + EfeFGI} maxy ey, P Yf-



defines a continuous function from the simplex to itself whose fixed points are Wal-
rasian equilibria. In fact this is the same ¢ given earlier, since

M(p.p) = min p-z.
(p,D) o p2

Z+(p)

\/5 ¢ argmax M(p,p)
peS

Figure 1

In the standard Kakutani existence proof pioneered by Debreu (see Arrow—Debreu
[2]), the price player chooses p to maximize the value of a given excess demand z. The
vector z is an independent argument in the fixed point map. In my proof the price
player chooses p to maximize the cost of achieving a given social welfare (v")ncp,
where v" is a utility level for agent h. The (v"),ey are in turn derived from prices
P, v = v"(p), the indirect utilities at Walrasian prices p, so that prices are the lone
independent variables.

The mapping ¢ naturally suggests a potential Lyapunov function L : § — R
defined by

L(p) = max[M(p,p) — ||p - pl|?]-
peS

It might be interesting to establish conditions for the underlying economy guaran-
teeing that L(o(p)) < L(p) for all p € S, but this line of inquiry is not pursued
here.

In Section 4 T examine several special economies with strictly quasi-concave util-
ities u”, for which there are already standard proofs of Walras equilibrium based
on Brouwer’s FPT. In the first special case we also take the Y} strictly convex, so
excess demand Z(p) is a function z(p), as mentioned earlier. By replacing M with
N = min,¢c 7@ p - 2, obtaining

N(p,p) = min p-z=p-2z(p
(p, D) o pez=p (P)
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we obtain the function ¢ defined earlier.* The map 1 is quite different from the stan-
dard Brouwer map (deriving from Nash’s matrix game map) that is exposited in most
textbooks, but it turns out that 1(p) reduces to another one of the standard Brouwer
maps, namely h(p) = Projs(p + %z(p)) But whereas it requires the Kuhn—Tucker
theorem to verify that a fixed point of & is a Walras equilibrium, it is immediate that
a fixed point of ¢ is an equilibrium. Thus our perturbation —||p — p||? still simplifies
matters, even when dealing with excess demand functions. We apply similar maps in
other special cases, e.g., with constant-returns-to-scale technologies (CRS).> In this
case 1 turns out to be closely related to the maps used by Todd [24] and Kehoe [12]
to compute equilibria of economies with fixed coefficient technologies.

The only technical point in this paper occurs in showing that the function M (p, p)
is continuous, which is tantamount to showing that the “better than” correspondence
Z4(p) is upper semi-continuous (USC) and lower semi-continuous (LSC). This in fact
is trivial, but I prove it after introducing a new lemma called the Satisficing Principle,
which could perhaps stand just behind the Maximum Principle as a useful tool in the
theory of choice, because it guarantees LSC and USC. The impression the student is
sometimes left holding is that LSC is less central than USC, but we should not forget
that the Maximum Principle cannot be applied unless the budget correspondence of
each agent is USC and LSC.

The Satisficing Principle supposes that an agent is maximizing a continuous utility
uq () subject to a constraint x € 3(a) over which he is locally nonsatiated. Suppose
he is satisfied with a payoff w(a) < v(«), where v(a) is the maximum achievable
utility given the exogenous parameters «, and w is any continuous function. Then
the correspondence W () of all choices achieving payoff at least w(«) is lower semi-
continuous (LSC) as well as upper semi-continuous (USC) in «, provided that G(«)
is. The Satisficing Principle complements the Maximum Principle, which guarantees
that v(«) is continuous and that the set of choices achieving v(a) is USC but not
necessarily LSC. One immediate application of the Satisficing Principle is that the
Walrasian budget correspondence is LSC and USC when the endowment is strictly
positive. More importantly, since the Walrasian indirect utility function w”(p) is
continuous, and by nonsatiation, strictly less than the maximal utility v"(p) = v
achievable without a budget constraint, the Satisficing Principle guarantees the LSC
and USC of D (p), and hence of Z (p).

"Note that for any pair (p,p), M(p,p) < N(p,p); usually M(p,p) < N(p,p). Indeed when excess
demand Z is a correspondence, as will typically be the case without further assumptions, N(p,p) is
not continuous. Even when Z(p) is a function, and N is continuous, M (p,p) # N(p,p). The function
N has nevertheless often been used to prove the existence of equilibrium. In one such approach the
prices p are called “better” than the prices p if N(p,p) > 0. Walras equilibrium then exists if it can
be shown that this partial ordering on prices has a maximal element. The problem is thus reduced to
one of maximizing a (nontransitive) binary relation, for which see Nikaido [21], Fan [8], Sonnenschein
[23], and Aliprantis and Brown [1]. For a lucid exposition of these ideas, see Border [3]. Along these
lines, see also the proof of the K-K—M-S theorem via Brouwer in Krasa—Yannelis [14].

® An interesting feature of each successive Walras existence proof is that Brouwer’s fixed point
theorem must be augmented by Farkas’ Lemma (when technology is given by a finite number of
activities), the separating hyperplane theorem (when technology is given more generally by a cone),
and the MinMax theorem (when technological possibilities are given by arbitrary convex sets).



The Satisficing Principle is stated and proved in Section 5, where it is also used
to give a Brouwer FPT proof that quasi-concave games have Nash equilibria. In
some sense the whole idea of this paper comes down to replacing optimization with
satisficing improvement; first for the game players and the auctioneer, by subtracting
|0y, — 7n)? or |[p — P||?, and second for the households, in substituting Z, (p) for

Z(p).

2 Games and Nash Equilibrium

2.1 Concave Perturbation Lemma

My proofs rely on the following concave perturbation lemma:

Concave Perturbation Lemma Let X C R"™ be convex, and let & € X. Let
u: X — R be concave. Then arg max,¢x [u(z) — ||z — Z||?] is at most a single point,
and if 7 = arg max e x[u(z) — ||z — Z||?], then Z € arg max,cx u(zx).

Proof Since u is concave in z, and —||z—2||? is strictly concave in , [u(x)—||z—Z||?]
is strictly concave, and arg max,cx[u(z) — ||z — Z||*] cannot contain two distinct
points. Suppose T = arg maxge x[u(z) — ||v — Z||?]. Take any = € X. By hypothesis,
and by the convexity of X and the concavity of u, for any 0 < e < 1,

0> {u([(1-e)7 +ea]) = [0 - ©)7 +ea] = 2[*} — {u(@) - ||z — z|*}
u([(1 = &)z +ea]) — |z — 7l — u(@)
(1 —e)u(Z) + eu(z) — u(z) — ||z — Z||?

e(u(z) — u(®)) — ||l — z||*

\Y)

So

el|x — z||? for all € > 0, so

2.2 Concave Games

Let a game G among N players be defined by compact and convex strategy spaces
¥1,..., X in finite-dimensional Euclidean spaces, and by continuous payoff functions
U1, ..., upn, where for eachn € N, u, : X =37 X --- x Xy — R. We call G a concave
game if for any fixed G_,, = (71, ..., 0n—1,0n+41, -, ON) € Xy = X1 X =+ X Uppq X
Y1 X oo X BN, Up(0p,T—p) 18 concave in o,.

Given a game G = (X4,...,2N;U1,...,uy), a Nash equilibrium is a choice & =
(71,...,0n) € ¥ such that for all n € N and all o, € %,

U (T) > Un(Op, T—pn).

Theorem Fuvery concave game has a Nash equilibrium.



Proof Define the function
Y, X — X, by
On(F1, ey Tray oy ON) = AIEMAX [ (T oy T_p) — || — Tn||?].
opn€EX,

Observe that the maximand is the sum of a continuous, concave function in ,,, and
a negative quadratic function in o,, and hence is continuous and strictly concave.
Since ¥, is compact and convex, ¢,, is a well-defined function. Furthermore, the
maximand is continuous in the parameter ¢ = (71, ...,0,), hence by the maximum
principle, ¢,, is a continuous function.

Now define ¢ : ¥ — ¥ by ¢ = (¢1,...,o5). Clearly ¢ is continuous, and so by
Brouwer’s theorem it has a fixed point ¢(¢) = 7.

By the concave perturbation lemma, for all o, € £,,, wy (0,5 —,) < up, (7). Hence
o is a Nash equilibrium. |

Nash [18] suggested the correspondence v, : ¥ = X, defined by %, (7) =
arg maxXg, ey, Un(0n,0—p). Since uy, is not necessarily strictly concave, v, () may
contain multiple elements.

The maximand above is simply a perturbation of the Nash maximand. It guaran-
tees that a player will always make some improvement when there is an opportunity
to improve, but he will not necessarily move all the way to his best response. Another
difference is that the Nash correspondence v,, throws away some information, since
,, actually is defined on ¥_,,. The map ¢,, depends on all the coordinates, including
PN

2.3 Matrix Games

Two player matrix games are defined by r x s matrices A and B. Player « has
strategy space X, = {p € R} : Y7 ;p; = 1} and player [ has strategy space
s = {g € R} : 375_,q; = 1}. The payoffs are defined by ua(p,q) = p'Ag and
ug(p,q) = p'Bq. Since uy, is linear on ¥, for n = a and (3, these matrix games are
indeed concave games.

Nash [19] showed that for matrix games, Brouwer’s Fixed Point Theorem sufficed.
He suggested using the excess return functions z,(p, ) = AG— (p’Aq)1 and z3(p, q) =
P’'B — (pBq)1, which specify the surplus each agent can get by playing each pure
strategy instead of his designated mixed strategy. He then defined the map

_ ([ pt+[Ag-(PAQ1]"T g+ [P'B— (p'By1]*
09 = <1+[Aci—(ﬁ'Aq)1}+-1’ 1+[ﬁ'B—(ﬁ’B@)1}+-1)’

where for any vector y, [y]T is the vector with ith coordinate max(0, y;), and 1
is the vector of all 1’s, or just the scalar 1, depending on the context. A fixed
point of the Nash map can be shown to be a Nash equilibrium by observing that
P'[Ag — (p'Ag)1] = 0. Indeed this same trick is copied in the now standard existence
proof for Walrasian equilibrium, where it crops up as Walras law. The Nash map f
exploits the special form of matrix games.



The map ¢ can be used for any concave game, not just matrix games. In the
special case of matrix games, a short computation shows that it reduces to

0(p.q) = h(p,q) = (s, (P+ 347) 1Is, (7+37'B)),
where Il (x) is the closest point in K to x. The map h has already been used to
prove the existence of Nash equilibrium in matrix games by Lemke-Howson [15], and
to study the index of matrix game Nash equilibrium by Gul-Pearce-Stacchetti [11].
To see that ¢ reduces to h for matrix games, one needs to use the Kuhn—Tucker
theorem. Indeed, one needs the Kuhn-Tucker theorem to verify that a fixed point of

h is a Nash equilibrium.® But as we saw in the proof of our first theorem, using ¢
avoids the need for the Kuhn-Tucker theorem.

3 Walrasian Economies

3.1 The Walrasian Economy

Let us represent an economy by
E = {H7 (Xh7 ehvuh)hGHa F7 (Yf)f€F7 (0?)?2%—[} 9

where H is a finite set of households, X C R” is the consumption set of household
h, " is the endowment, and u” is the utility function of agent h € H, F is a finite
set of firms, Y7} is the technology of firm f € F, and 9? € R, is the ownership share

of firm f by agent h, >,y 9? =1 for all f € F. Following Arrow—Debreu [2], we
assume in addition that Vh € H,

(1) X" is closed, convex, and bounded from below: 3d" such that d" < z for all
re Xh

(2) e € X and 3d" € X" with d" < "
(3a) u" : X" — R is continuous

(3b) u” is quasi-concave, i.e., [u"(x) > u"(y) and 0 < X < 1] = Ao+ (1 - N)y) >
ul(y)], for all x, y € X"

(3c) u is nonsatiated, i.e., Vy € X", 3z € X" with u"(z) > u”(y)
and for all f € F,

(4) Yy is a closed convex subset of R*, and 0 € Yy

and furthermore,
(5) Y =3 cp Yy, then Y NRY = {0}
(6) Irreversibility: Y N =Y = {0}.

By the Kuhn-Tucker theorem, (5, q) = (¢, (B, ), (P, q)) satisfies AG—2(,,(P,7)—P)—Ae+A =
0, where A > 0 is a diagonal matrix with A;; > 0 only if ¢, ;(p,g) = 0. By the Kuhn-Tucker theorem,
the map h(p,q) = (ha(P, q), hs(P,q)) satisfies —2(ha(P,q) — 3 A7 — D) + pe + Q2 = 0, where Q > 0 is
a diagonal matrix with €;; > 0 ounly if h.;(P,g) = 0.



3.2 Walras Equilibrium

A Walras equilibrium (WE) for the economy E is a tuple (p, (") hem, (Jf) fer) €
]Rf; X Xpeg X" x XrerY} satisfying

(@) Y a"< Y+ Yy

heH heH fer

(b) yy cargmax p-yys, Vf € F
Yr €Yy

(c) Zh e BMp)={x e XP:p-a<pe + 9? max pyr = I"(p)}, Vh € H
fer " yreYy

(d) zh € argmax u”(z).
z€B"(p)

By nonsatiation and quasi-concavity, we know that at a WE each agent spends
all his income, so the budget inequality in (c) reduces to equality, and we therefore
conclude that in a WE,

doat <> e+ yu=pi=0. (1.1)

heH heYy fer

3.3 Easy Consequences of the Assumptions

It follows from (1.1) that we obtain an equivalent definition of equilibrium by strength-
ening the definition of equilibrium to require equality of supply and demand in con-
dition (aA), provided that we augment production by allowing free disposal, replacing

YwithY =Y — Rﬁ. So without loss of generality we require equality in (a) but also
assume

ree disposal: — =Y.
(7) Free disposal: Y —RL =Y.

As shown in Arrow-Debreu [2], assumptions (1)—(6) have the consequence that
A= {2 y1, o ur) € Xnen XX XperpYy Y e (@ —e") =3 e pyy <0} is
compact. In view of the quasi-concavity of the utilities, restricting the consumption
sets from X" to X» N X" and restricting the technologies from YrtoYyN Yf where
XM and Yf are compact and convex and such that A is contained in the interior
of Xpep X% Xre FYf gives rise to an economy E with exactly the same Walras
equilibria as E. Thus without loss of generality, we may add assumption (8) and
weaken assumption (3c):

(8) X" and Y/ are compact for all h € H and f € F,
which requires weakening (3c) to

(3c) (Y, ...,z y1,.yyr) € Al = [Vh € H, 32" € XP u(2") > ul(x)].



An implication of the convexity of X" from (1), and the quasi-concavity of u”
from (3b), is that

(3d) u” is locally nonsatiated in X? : vy € X" if 3z € X" with u”(z) > u"(y), then
FHz(n)}2, € X" x(n) — y with u”*(z(n)) > u"(y) for all n.

We list six more simple observations. All lemmas rely on assumptions (1)-(8).
Lemmas 1 and 2 rely on the definitions of USC and LSC, and on the Satisficing
Principle, all of which are deferred to Section 5.

Lemma 1 The budget correspondence B"(p) is USC, LSC, nonempty valued, and
compact-valued on S = {p € RL : > p, = 1}.

Proof This is a standard and trivial result. Instead of proving it directly, we note
that it is a corollary of the satisficing principle proved in Section 5.

B'p)={reX":p-a<I"(p)}={reX":—p-x>-T"(p)}

Let w(p) = —I"(p) be the satisficing threshold. Let v(p) = max,cxn —p - x be
the maximal threshold. Since e > d", for all p € S, w(z) = —I"(p) < —p- e <
—p-d" < max,cxn —p -z = v(p), so the lemma follows from the compactness of X",
the continuity of I"(p), and the Satisficing Principle. [

Let v"(p) = max, BA(p) uP(x) be the so-called indirect utility function of agent

h. Since B"(p) is USC and LSC, nonempty valued and compact-valued, by the
Maximum Principle, v"(p) must be continuous on S. Furthermore, let

D"(p) = arg max u"(z)
z€B"(p)

be the demand correspondence of agent h. Again by the Maximum Principle, D" (p)
is USC. Unfortunately, D"(p) may not be LSC, as is well known.

A central element of the existence proof given in Section 3.4 is the replacement
of the demand correspondence D"(p), which may fail to be LSC, with the “demand
or better” correspondence D" (p), which is always LSC. McKenzie [17] used a similar
correspondence.

Lemma 2 D%(p) = {z € X" : ul(z) > v"(p)} is USC, LSC, and nonempty-valued
for p € S. Hence so is the better than excess demand Z.(p) = > ,cpy D (p) —

> oheH el — ZfeF Yy.

10



Proof The USC and nonemptiness of Dfﬁ follow immediately from the continuity of
uP. As for LSC, let p(n) — p and let © € D% (p). Let y(0) € arg max{u”(y) : y € X"}.
If uh(x) = u"(y(0)), then u"(x) 2 Uh(p(n)) Vn and so letting xz(n) = x for n > 1
shows the LSC of D% at p. If u(z) < u"(y(0)), then by local nonsatiation (Sd)

Jy(m) — x with u ( (m)) > u”(z) for all m > 1. Since the indirect utility v”
continuous, v"(p(n)) — v"(p). Hence for n > 1 we can define xz(n) = y(m(n)), where
m(n) = max0<m<n{u y(m)) > v"(p(n))}. Then z(n) € D" (p(n)) and z(n) — =,

showing the LSC of Dh The sum of USC (LSC) correspondences whose range is
compact is also USC (LSC).

Lemma 2 can also be derived from the satisficing principle. Let w(p) = v"(p)
be the satisficing threshold, and let v*(p) = v* = max,. x» u"(z) be the maximum
threshold. Apply the Satisficing Principle, noting that X" and u” are independent
of p, and that v"(p) is continuous. [ |

Lemma 3 The minimum expenditure function

M(p,p) =
(p,D) zeIIzliI%p)p z

is continuous in (p,p) € S x S, and concave in p for any fized p € S.

Proof Lemma 2 and the Maximum Principle guarantee the continuity of M (p,Dp).
For any fixed p, M(p,p) is the minimum of a family of linear functions in p, hence it
must be concave. |

Lemma 4 Forall pe S, Z(p) C Z4+(p). Hence M(p,p) < 0.
Proof Obvious. |

The following Lemmas 5 and 6 show the role of the so-called “duality principle”
that utility maximization and expenditure minimization are the same at points where
nonsatiation holds. Lemma 5 also uses the linearity of unconstrained expenditure
minimization.

Lemma 5 If for some p € S, there is 2 € Z.(p) with Z < 0, then 37" € X" Vh
and §y € Yy Vf such that (p, (Z")nem, (Js) fer) is a Walrasian equilibrium.

Proof If z € Z,(p), then by deﬁmtlon there is 2" € D" (p) Vh € H, and §; € Yy
VfeFwithz=Y, 52" => ,cye" — > _ter Yy Since z < 0, nonsatiation obtains
from (3c) and we deduce from local nonsatiation (3d) that p-z" > I"(p) Vh € H.
But z <0 and p € S implies that 0 > p- z _theHm P e €+ Y per Ul =

Snen (D)= pen I"(P) = 0. Hence p-z"* = I"(p) Vh € H and 3y € arg maxy ey, p-
yr, Vf e F. |

11



It is worth noting that (assuming local nonsatiation), neither the quasi-concavity
of the u” nor the convexity of the Y7 played any role in proving Lemmas 1-5.

Lemma 6 If for some p € S, mazpesM(p,p) = M(p,p), then 2" € X" Vh and
yg € Yy Yf such that (p, (e, (Ug) fer) is a Walrasian equilibrium.

Proof We now invoke the convexity of the X" and Y}, and the quasi-concavity of
u”, to assert the convexity of Z,(p). The minmax theorem then guarantees that
3z € Z,(p) with M(p,p) = maxpesp-Z =P+ Z = Min,cz, (5 P 2. Since by Lemma
4, M(p,p) <0, we must have z < 0 (if z; > 0, take p; = 1). Hence by Lemma 5, p is
a Walrasian equilibrium price vector. |

3.4 Existence of Walras Equilibrium

We now construct an existence proof of Walras equilibrium for general quasi-concave
preferences and convex production sets, that uses only the domain of prices S, and
only Brouwer’s fixed point theorem.

Theorem Let E = (H,(u") ey, F, (Y¢)er, (9?)?2?) be a Walras economy satis-

fying assumptions (1)—(6). Then E has a Walras Equilibrium (p, (Z)new, (Yf) fer)-

Proof Recalling that Z, (p) = > ey D)= pem e — > ter Yr(D) is the at least
as good as excess demand, and that M(p,p) = min.cz, 5 p - 2, define ¢ : S — S by

o(p) = arg ma [M(p,p) — Ip — pII’]

= argmax | min p-z—|p — 9|7
peS 2€Z4(p)
Since (by Lemma 3) M is concave in p for any fixed p, and ||p — p||? is quadratic, the
maximand is strictly concave, so it has a unique maximum and ¢(p) is a function.
Since by Lemma 3 M is continuous (equivalently, since Z; (p) is USC and LSC), ¢
is a continuous function. Therefore by Brouwer’s fixed point theorem, ¢ has a fixed
point p.
At the fixed point p,

M (p,p) = max[M(p,p) — ||p — p||*] =max M(p,p).
peS peS

where the last equality follows from the concavity of M in p and the concave pertur-
bation lemma. By Lemma 6, p is a Walrasian equilibrium price vector. |

Again it is worth noting that the quasi-convexity of the X* and the convexity of
the Y} played no role until the very last step where they guaranteed the convexity
of Z, (p) at the single point p = p. In traditional proofs of Walrasian existence, it is
important to make sure that the excess demand correspondence is convex at every
point p (otherwise there might not be a fixed point).
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This observation might be of some value in proving the existence of Walras equi-
librium in models with a continuum of agents without the quasi-concavity hypothesis.
However, I do not pursue this here.

4 Comparisons to Earlier Proofs: Walras Equilibrium
with Strictly Convex Preferences

The main difference between the standard proofs of Walrasian existence and the proof
just given in Section 3 is that the latter only requires Brouwer’s fixed point theorem,
applied to a domain of dimension L — 1. Another difference is that the latter proof
has a natural “Lyapunov function” L : S — R given by

L(p) = max[M(p,p) — |Ip — pl|?]-
peS
I do not pursue the question of identifying conditions under which L declines under
the dynamic p — ¢(p).

Instead I turn to explaining the connection between my method of proof and the
standard methods when excess demand is already a function. Taking advantage of
the unicity of the excess demand, my proof can be modified to show its connection
to earlier proofs.

In this section we specialize the general Walrasian economy given in Section 3 to
cases where we can work with excess demand functions. For these cases it is already
known that Brouwer’s Theorem suffices to prove the existence of Walras equilibrium.
But we show here that the perturbation —||p — p||? can still simplify matters.

4.1 Pure Exchange and Strictly Convex Technologies

Let S ={peRE: Zle pi = 1} be the usual price simplex.
Let z be called an excess demand function whenever z : S — R” is a continuous
function satisfying Walras Law: p- z(p) =0 Vp € S.7
We define a Walras equilibrium for the excess demand function z as a price vector
p € S satisfying
2(p) 0.

Note that by Walras Law, z;(p) = 0 unless p; = 0, in which case we may have

"Suppose that, in addition to assumptions (1)—(7) from Section 2, for all h € H,
[u"(z) > u"(y)] = " Az + (1-N)y) > u"(y)]
ifo<A<l,z#yandz,yc€ X" andforall f€ F
[x£yeYr, 0<A<1]=[Tz€Y; withz> Az + (1-N)y] .

Then 2(p) = >, cn D"(p) — > ohen el — > fer @TEMAXy ey, P- Yy is a continuous function satisfying
Walras Law. In the special case Yy = {0} Vf € F', we have a pure exchange economy.

13



Theorem FEvery excess demand function has a Walras equilibrium.

Proof Define the map ¥ : S — S by

Y (p) =argmax [p- 2(p) — lp — pII’)-
peES

Observe that the maximand is the sum of a linear function in p and a quadratic
function in p, hence it is strictly concave and continuous in p. Since S is compact
and convex, 1(p) is a single point, and so ¢ is a function. By the maximum principle,
1 is a continuous function (since the parameters z(p) and p move continuously as p
varies).

Hence by Brouwer’s Fixed Point Theorem, ¢ has a fixed point p. By the concave
perturbation lemma, p € S = p- 2(p) < p- 2(p). By Walras Law, p - z(p) = 0, which
implies z(p) < 0. [

Debreu’s [7] proof of Walras equilibrium uses the correspondence 6(z)
= argmaxpes p - 2. As Debreu said, ¢ is motivated by the principle that when there
is excess demand in some commodity, z; > 0, prices should go up, at least where
excess demand is greatest. The only drawback to Debreu’s construction is that v(z)
may be multivalued, thus forcing the use of Kakutani’s Fixed Point Theorem. The
function ¢ (p) is obtained by a slight perturbation of Debreu’s construction.

The best known continuous function for proving Walras equilibrium is obtained by
imitating the Nash [19] fixed point map for matrix games: g;(p) = {p;+[z:(p)]T}/{1+
Zle[zj(p)ﬁ}, where [z]t = max{z,0}, for ¢ = 1,...,L. A simple, but slightly
awkward argument, using Walras law, shows that a fixed point of g is a Walras
equilibrium.

The function ¢(p) is (surprisingly) identical to the map h(p) = Hs(p + 52(p)),
where IIg(z) is the closest point in S to 2.8 By deriving ¢ from the above maximiza-
tion, one can see transparently that a fixed point is a Walrasian equilibrium. On the
other hand, to show that a fixed point of A on the boundary of S is an equilibrium,
the Kuhn—Tucker theorem must be invoked.

4.2 Production with Constant Returns-to-Scale Technologies

We now consider CRS production. A constant returns-to-scale (CRS) technology is a
set Y C RY such that Y is a closed, convex, cone (y € Y implies ty € Y for all ¢ > 0;
in particular, 0 € Y). Furthermore we suppose that Y allows for free disposal; z < y
and y € Y implies z € Y. Finally, we suppose there is some p* € S with p*-Y <0,
ie,p*-y<OforallyeY.

A Walras equilibrium with production for an excess demand function, CRS-
technology pair (z,Y) is a price p € S such that z(p) € Y and pY < 0. Note that by

"By the Kuhn-Tucker theorem, (p) = argmaxyes[p - 2(B) — |lp — B||?] satisfies
(¥(®P) —P) = £2(P) — Ae + A where A > 0 is a diagonal matrix with A;; > 0 only if ¥;([P) = 0.
Similarly by the Kuhn Tucker theorem h(p) = argminpes |[p — [P + 32(P)]||* satisfies the same
equation.
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Walras Law the production plan z(p) chosen makes zero profits, while alternatives
either lose money or do no better.

The central example of a CRS-technology is an activity analysis production tech-
nology given by the matrix B = [—I A] where [ is the L x L identity matrix and A is
an L x n vector of activities. Each column of the B matrix represents an “activity.”
Positive elements correspond to outputs, negative entries in B correspond to inputs.
The first L columns of B represent pure disposal. The activity matrix B determines
the CRS-technology

Y = {Bx|r € RY™}.

Clearly Y is a convex, closed cone allowing for free disposal. If for some vector
W >0, {x € Rfr" : Bx + W > 0} is bounded, then there must be a p* € S with
p*-Y <O0.

Technology Lemma If Y is a CRS-technology and for some vector z € RE, [p € S
and pY <0] = pz <0, then z€Y.

Proof Suppose z ¢ Y. Since Y is closed and convex, by the separating hyperplane
theorem we can strictly separate Y and z, that is find some p € RY such that
p-Y <Pp-z ButY is acone, so p-Y bounded above implies p-Y < 0; also 0 € Y,
so we have p-Y <0 < p-z. By free disposal, p-Y < 0 implies p > 0. Scaling p, we
get p € S and pY <0 < p- 2, contradicting the hypothesis. |

Theorem FEvery excess demand function, CRS-technology pair (z,Y") has a Walras
equilibrium.

Proof Weseekp e Sy ={p €S : p-Y <0} with 2(p) € Y. By the technology
lemma, it suffices to find p € Sy such that p € Sy = p-2(p) <0=p- 2(p).

By hypothesis, Sy is nonempty. Furthermore, Sy = ﬂer{p €S:p-y<0}is
the intersection of closed and convex sets, and so is closed and convex.

Define ¢ : Sy — Sy by

v (p) =argmax [p- 2(p) — lp — plI*]-
pESY
As we argued earlier, 1 is a continuous function. Since Sy is compact and convex,
Brouwer’s Fixed Point Theorem guarantees v has a fixed point p.

From the concave perturbation lemma, at the fixed point D, p € Sy = p- 2(p) <
p-2z(p)=0. [ |

The idea that Brouwer’s theorem alone can be used to prove the existence of
Walras equilibrium with production is due to McKenzie [17] who also used the set
Sy. His mapping is much more elaborate than 1, but it allows for excess demand
correspondences. McKenzie [17] showed that one could always reduce convex tech-
nologies to CRS-technologies by adding F' auxiliary commodities, representing the
contributions of the owners to each firm. The fixed point map must then be carried
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out in a simplex of dimension L+ F' —1. In the above proof the domain is the original
L — 1 dimensional simplex.

Todd [24] suggested the map h(p) = g, [p + 2(p)]. (A similar map is in Kehoe
[12].) He showed by the Kuhn-Tucker theorem that a fixed point of h must be a
Walras equilibrium, when Y is given by an activity analysis technology. The map
is identical, its only advantage being a perhaps more transparent proof that a fixed
point is a Walras equilibrium (and the incorporation of general CRS Y).

4.3 Unbounded Consumption Sets, Monotonic Preferences and
Boundary Behavior

In Sections 4.1 and 4.2 we assumed that the excess demand function z is continuous
on all of S| including at p € S where some prices p; may be zero. This will be true
whenever utilities u” are strictly concave, and consumption sets X” are compact, as
we indicated in Section 3.1. Some authors prefer to skip the step where we bound the
consumption sets, preferring for aesthetic reasons not to invoke Assumption (8) (see
Section 3.1). In its place they make the substantive assumption of strict monotonicity.
I show now that the method of proof indicated in Section 4.2 still applies. To that
end, let SO be the interior of S, and AS be its boundary. For every ¢ > 0, let
Se={p € S :p>el} be the trimmed simplex, and 95 its boundary, where
1=(1,..,1).

We say that (z,Y) is an excess demand function, CRS-technology pair with proper
boundary behavior whenever z : S% — R’ is a continuous function satisfying Walras
Law for all p € S°, and such that 3 > 0 and Jp* € S, satisfying

P Y <0. (1)
pe IS =p"-z(p) >0, (2)

When preferences are strictly monotonic, p — 95 = some z;(p) — oo. Since
excess demand is bounded from below by the aggregate endowment of goods, strict
monotonicity implies that for any p* > 0, p* - z(p) > 0 if p is close enough to
the boundary. Thus proper boundary behavior is automatically satisfied by excess
demand functions derived from strictly monotonic preferences, provided we can find
some strictly positive prices p* at which p* - Y < 0. This latter condition is trivially
verified if for example there is some indispensable input like labor that is never
produced.?

Theorem FEvery monotonic excess demand function, CRS-technology pair with proper
boundary behavior has a Walras equilibrium.

Proof 5°is compact and convex. Hence S5 = S°N Sy is also compact and convex.
Define ¢ : S5, — S5 by

¢(p) =argmax [p- 2(p) — |lp — p|I*] -
pESY

9For a refinement of this boundary condition, see Neuefeind [19].
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As before, 1 is a continuous function, hence it has a fixed point p. Again by the
familiar argument, p € S5 = p- 2(p) <p-2(p) = 0.

If some p; = ¢, then by proper boundary behavior, p* - z(p) > 0, a contradiction,
since p* € S5,. Hence p > 1. But then by concavity of the maximand, p € Sy =
p-z(p) < 0. By the technology lemma, z(p) € Y, so p is a Walras equilibrium. 1

5 The Satisficing Principle and Quasi-Concave Games

5.1 The Satisficing Principle

Recall that the famous Maximum Principle asserts that the best response correspon-
dence is upper semi-continuous (USC). The USC property is the crucial hypothesis
in Kakutani’s fixed point theorem for correspondences. Kakutani’s theorem is used
instead of Brouwer precisely because the best response correspondence may not be
lower semi-continuous (LSC). What I show below is that if we replace maximization
with almost maximization (satisficing), then the satisficing correspondence is LSC
and USC.

Let A C R™ and X C R”, and let ¢ : A = X be a correspondence associating
with each a € A a subset (o) C X. We say that 1 is upper semi-continuous (USC)
if

Qp —
Ty — T =z € Y(a)
Tn € Y(an)

for any {x,, } C X, {an, a} C A. We say that 1 is lower semi-continuous (LSC) iff

Qy — Q dz, — x
ve w<a>} - {x € v(an)
for any {ay,, a} C Aand z € X.

We say that 1 is USC or LSC at a point @ € A if the above conditions hold when
a =a. Clearly ¢ is USC or LSC if it is USC or LSC at each point @ € A.

Let w: 8 — R, where 3 C R™. We say that u is locally nonsatiated in (3 if for any
pair z,y € ( with u(x) < u(y), there is a sequence {z(n)}*, C B with z(n) — x
and u(z(n)) > u(z) for all n.

If B is convex and u is quasi-concave, then it follows immediately that « is locally
nonsatiated in (.

Satisficing Principle Letu : X xA — R be a continuous function, where X x A C
R™ x R™. Let 8 : A= X be a nonempty, USC and LSC correspondence. For each
fixed a € A, let u( ,a) be locally nonsatiated in B(«). Let v : A — RU {oco} be the
maximum value function defined by v(«) = sup,eg(q) w(z, @). Finally, let w : A — R
be continuous and satisfy w(a) < v(a) for all « € A. Then the correspondence
W . A= X defined by

W(a) ={x € f(a) : u(z,a) > w(a)}
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is USC and LSC, and nonempty valued.
If in addition () = B for all a € A, and u(x,a) = u(z) for all (r,a) € X x A,
then the same conclusion holds even with a weak inequality w(a) < v(a) = v for all

ae A

Proof Thenonemptiness of W is evident. USC follows as in the maximum principle,
and does not depend on the strict inequality w(a) < v(a). Simply note that if
{zy, € W(a,) for all n, and oy, — a and =, — z}, then by USC of 3, x € f(a). By
hypothesis, u(y, @) > w(ay,). Passing to the limit, and recalling the continuity of
w and w, u(x, ) > w(a), so z € W(a).

To prove LSC of W, let ay, — a. Suppose z € W(a) and u(Z,a) > w(a). From
the LSC of 3, we can find T,, € 5(ay,), T, — T. From the continuity of v and w, for
large n, say, n > N, u(Zy,a,) > w(ay,). Thus T can be approached by Z,, in W (ay,)
if u(Z,) > w(a). It remains to verify that any & € W(«a) with u(Z,a) = w(a)
can be approached. If v(a) > w(a), there is some T € [(a) with w(Z,a) > w(a).
By local nonsatiation, we can take a sequence of (k) € 3(«) converging to &, with
u(z(k),a) > w(a). Since each Z(k) can be approached in W(ay,), so can Z.

If u(#,a) = w(a) = v(a), then we must be in the additional case where 3 and u are
independent of «. In that case, & € W(a,) for all ay,, so Z is trivially approachable.
[ |

The application of the satisficing principle to the Walrasian better than corre-
spondence D4 (p) = {x € X" : u(z) > w(p)}, where w(p) = max{u"(z) : z € X",
p-x < I"(p)}, is particularly simple, since then neither u” nor 3(p) = X" depends
on p.

Corollary (Continuous Correspondence Lemma) Let X C R™ be convex, and
let A CR™. Let g;:X xA— R be continuous, and convexr on X for each fixed
a € A, for all i = 1,...,k. Suppose that for each a € A, there is x(a) € X with
gi(x(a)) <0 for all i =1,...,k. Then the correspondence B : A = X defined by

B(a) ={r € X : gj(x,a) <0, for every i =1,..., k}

is USC and LSC.

Proof Define u : X x A — R by u(z,a) = minj<;<x[—g;i(z, @)]. As the minimum
of concave functions, u is concave on X for each fixed «, as well as continuous
on X x A. Since B(«) is convex, u, is nonsatiated on B(«). Furthermore, v(a) =
sup{u(z,a) : x € X} > u(z(a)) > 0, for all a € A. Hence by the satisficing principle,
B(a) ={zr € X : u(z,a) > 0} is USC and LSC.

5.2 Quasi-Concave Games

In our definition of games given in Section 1, we can weaken the hypothesis that w,
is concave in o, to the hypothesis of quasi-concavity: w, (0,5 p) > wn(Gp, 0 p)
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implies u,(Aogy, + (1 — N)Tp,0—pn) > Un(Gpn,0-_p) for all 0 < A < 1. The result is
called a quasi-concave game. We now use Brouwer’s fixed point theorem to prove the
existence of Nash equilibrium for all quasi-concave games.

Theorem FEvery quasi-concave game has a Nash equilibrium.

Proof Let v,(G_y) = maxy, ey, Un(0n, G—y) define a continuous function from ¥_,,
to R, called the “indirect utility function.” Let 6,(6) = vp(G_p) — un(F), and let
6(0) = maxpen O,(7). Clearly 7 is a Nash equilibrium if and only if §(5) = 0. Let
d=mingex; 6(0). Let wy(d_p) = vn(d_p) — %Q, and let

Wo(G_pn) ={0n € Zp 1 up(0n, 0_1n) > wp(G_p)}.

Suppose G has no Nash equilibrium. Then 6 > 0 and for all & € X and each n,
W (G _p) < v,(d_4). By the Satisficing Principle (which applies since u,, is quasi-
concave, and thus locally non-satiated in any convex budget set), W, is nonempty,
USC, LSC, and convex-valued. Moreover, for all ¢ there is some player n with
Up(F) < wy(G_p), 80 0y & Wy(G_y). Define ¢, : ¥, X ¥, — X, by

: ~ 2
0y.,0_ = 0, — 0O .
OOy ) L R |on — Gul|

Clearly ¢,, is a function, since W,, is convex-valued. Furthermore, if W, is USC
and LSC, then by the Maximum Principle, ¢,, is a continuous function. Let ¢ =
(@1, @) If G has no Nash equilibrium, then ¢ is a continuous function with no
fixed point, a contradiction. |
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