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Abstract

We prove three results about colorings of the simplex rem-

iniscent of Sperner’s Lemma, with applications in hardness

of approximation and fair division.

First, we prove a coloring lemma conjectured by [5]: Let

Vk,q = {v ∈ Zk
+ :

∑k
i=1 vi = q} and Ek,q = {{a + e1,a +

e2, . . . ,a + ek} : a ∈ Zk
+,
∑k

i=1 ai = q − 1}. Then for ev-

ery Sperner-admissible labeling (` : Vk,q → [k] such that

v`(v) > 0 for each v ∈ Vk,q), there are at least
(
q+k−3
k−2

)
non-

monochromatic hyperedges in Ek,q. This implies an opti-

mal Unique-Games hardness of (k − 1 − ε)-approximation

for the Hypergraph Labeling with Color Lists problem [2]:

Given a k-uniform hypergraph H = (V,E) with color lists

L(v) ⊆ [k] ∀v ∈ V , find a labeling `(v) ∈ L(v) that min-

imizes the number of non-monochromatic hyperedges. We

also show that a (k − 1)-approximation can be achieved.

Second, we show that in contrast to Sperner’s Lemma, there

is a Sperner-admissible labeling of Vk,q such that every hy-

peredge in Ek,q contains at most 4 colors. We present an

interpretation of this statement in the context of fair divi-

sion: There is a preference function on ∆k,q = {x ∈ Rk
+ :∑k

i=1 xi = q} such that for any division of q units of a re-

source, (x1, x2, . . . , xk) ∈ ∆k,q such that
∑k

i=1bxic = q − 1,

at most 4 players out of k are satisfied.

Third, we prove that there are subdivisions of the simplex

with a fractional labeling (analogous to a fractional solu-

tion for Min-CSP problems) such that every hyperedge in

the subdivision uses only labelings with 1 or 2 colors. This

means that a natural LP cannot distinguish instances of Hy-

pergraph Labeling with Color Lists that can be labeled so that

every hyperedge uses at most 2 colors, and instances that

must have a rainbow hyperedge. We prove that this prob-

lem is indeed NP-hard for k = 3.

1 Introduction

We investigate hypergraph labeling problems of the
following kind.

Hypergraph Labeling with Color Lists: Given a hypergraph
H = (V,E) with weights w(e), e ∈ E and color lists
L(v) ⊆ [k], v ∈ V , find a labeling `(v) ∈ L(v) for
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each v ∈ V that minimizes the total weight of non-
monochromatic hyperedges.

This problem (in an equivalent form with assign-
ment costs, referred to as Hypergraph Labeling) was in-
troduced in [2] as a generalization of Uniform Metric La-
beling [7], to incorporate relationships between multiple
elements. (See Section 5 for a discussion of these prob-
lems and their equivalence in more detail.) Hypergraph
Labeling with Color Lists can be cast in a more general
framework involving submodular functions, as follows.

Submodular Labeling with Color Lists: Given a submod-
ular function f : 2V → R+ and color lists L(v) ⊆
[k], v ∈ V , find a labeling `(v) ∈ L(v) that minimizes∑k
i=1 f(`−1(i)).

Partitioning problems of this type have been in-
vestigated recently in [2, 3, 6, 5]. The main result of
[3] is a 2-approximation for Submodular Multiway Par-
tition, a special case of Submodular Labeling with Color
Lists where the color lists are either singletons (“ter-
minals”) or equal to [k] (unrestricted). This captures
problems such as Hypergraph Multiway Cut and Node-
weighted Multiway Cut (see [3]), where the color lists are
similarly restricted to be singletons or [k]. Without this
restriction, Submodular Labeling with Color Lists does
not admit factors better than log n, by a simple reduc-
tion from Set Cover [2]. An O(k log n)-approximation
for Submodular Labeling with Color Lists (in fact for a
somewhat more general problem) has been given in [5].

For Hypergraph Labeling, [2] gave a ∆-
approximation when all hyperedges have size at
most ∆. This generalizes a 2-approximation for Uni-
form Metric Labeling [7] which corresponds to the ∆ = 2
case. On the hardness side, the strongest negative
result was a hardness of (2−ε)-approximation assuming
the Unique Games Conjecture (for the special case of
Uniform Metric Labeling [8]).

In [5], a statement somewhat reminiscent of
Sperner’s Lemma was conjectured, which would imply
an integrality gap and also a hardness of (k − 1 − ε)-
approximation under the UGC (using [6]), for Hyper-
graph Labeling with Color Lists on k-uniform hypergraphs
with label set [k]. This conjecture gives a lower bound



on the number of non-monochromatic hyperedges for
any feasible labeling of a certain hypergraph Hk,q em-
bedded in the simplex. We give the precise statement
in Section 2. This statement was proved for k = 3
in [5]; it implies a Unique-Games hardness of (2 − ε)-
approximation for Hypergraph Labeling with Color Lists
on 3-uniform hypergraphs with label set [3].

Our contribution. Our first result is a proof of
the simplex coloring lemma conjectured by [5]. This
lemma implies that assuming the Unique Games Con-
jecture, there is no (k− 1− ε)-approximation for Hyper-
graph Labeling with Color Lists on k-uniform hypergraphs
with label set [k]. A ∆-approximation algorithm, where
∆ is the maximum size of a hyperedge, was known for
this problem [2]; we show that the same algorithm also
gives a (k−1)-approximation (for label set [k], indepen-
dent of the hypergraph). Thus, we determine the opti-
mal approximability of Hypergraph Labeling with Color
Lists in terms of the label set size (modulo the UGC).

This result motivates us to consider other color-
ing questions related to Sperner’s Lemma and the con-
jecture of [5]. We prove that in contrast to Sperner’s
Lemma, the hypergraph Hk,q defined in [5] can be la-
beled in such a way that each hyperedge uses at most 4
colors. This implies in particular that the hardness re-
sult for Hypergraph Labeling with Color Lists holds even
for hypergraphs with a feasible labeling such that each
hyperedge uses at most 4 colors.

We also give an interpretation of this result in the
setting of fair division (a well-known application of
Sperner’s Lemma [12]). Our result shows that for a
certain restricted variant of fair division, not only is it
impossible to satisfy all players but in fact all players
except four will be always unsatisfied. We discuss this
in Section 7.

Further, we consider simplicial subdivisions and
ask what fractional labelings (in the sense of [6]) are
possible for subdivisions of the simplex. We show that
for sufficiently fine subdivisions, there is a fractional
(Sperner-admisible) labeling that uses local labelings
using at most 2 colors for each hyperedge (see Section 6
for a precise statement). In contrast, by Sperner’s
Lemma, for any admissible labeling there is a hyperedge
with all k colors. This has consequences for the
following problem.

Hypergraph j-Colors-Avoiding Labeling with Color Lists:
Given a hypergraph H = (V,E) with color lists L(v) ⊆
[k], v ∈ V , find a labeling `(v) ∈ L(v) for each v ∈ V
that minimizes the number of hyperedges containing at
least j distinct colors.

In particular, for j = k we try to avoid hyperedges

containing all k colors; we call this problem Hypergraph
Rainbow-Avoiding Labeling with Color Lists. Our result
implies that a natural LP for this problem cannot
distinguish between instances that can be labeled so
that each hyperedge contains at most 2 colors, and
instances where some hyperedge must contain all k
colors. We prove that it is in fact NP-hard to decide
whether there is a feasible labeling such that every
hyperedge contains at most 2 colors, for k = 3.

Organization. In Section 2, we state the simplex
coloring lemma conjectured by [5]. In Section 3, we
prove the simplex coloring lemma. In Section 4, we
present a labeling of the hypergraph of [5] with at
most 4 colors on each hyperedge. In Section 5, we
discuss the applications of these results to Hypergraph
Labeling with Color Lists and present our improved
(k − 1)-approximation. In Section 6, we describe the
Hypergraph j-Colors-Avoiding Labeling with Color Lists
problem and our hardness result for it. Finally, we
discuss an application to fair division in Section 7.

2 Preliminaries

A note on vector notation: We denote vectors in
boldface, such as v ∈ Rk. The coordinates of v are
written in italics, such as v = (v1, . . . , vk). By ei, we
denote the canonical basis vectors (0, . . . , 1, . . . , 0).

2.1 The Simplex-Lattice Hypergraph and sub-
divisions of the simplex. Let q ≥ 1 be an integer and
consider the (k − 1)-dimensional simplex defined by

∆k,q =

{
x = (x1, x2, . . . , xk) ∈ Rk : x ≥ 0,

k∑
i=1

xi = q

}
.

The Simplex-Lattice Hypergraph. We consider
a vertex set of all the points in ∆k,q with integer
coordinates:

Vk,q =

{
a = (a1, a2, . . . , ak) ∈ Zk : a ≥ 0,

k∑
i=1

ai = q

}
.

The Simplex-Lattice Hypergraph is a k-uniform hy-
pergraph Hk,q = (Vk,q, Ek,q) whose hyperedges (which
we also call cells due to their geometric interpretation)

are indexed by b ∈ Zk+ such that
∑k
i=1 bi = q − 1: we

have

Ek,q =

{
e(b) : b ∈ Zk,b ≥ 0,

k∑
i=1

bi = q − 1

}

where e(b) = {b + e1,b + e2, . . . ,b + ek} = {(b1 +
1, b2, . . . , bk), (b1, b2 +1, . . . , bk), . . . , (b1, b2, . . . , bk+1)}.
We sometimes omit the indices k, q when there is no



danger of confusion. For each vertex a ∈ Vk,q, we have
a list of admissible colors L(a), which is

L(a) = {i ∈ [k] : ai > 0}.

{1}

{2} {3}

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 3}

{1, 3}

{1, 3}

{1, 3}

{2, 3} {2, 3} {2, 3} {2, 3}

Figure 1: The Simplex Lattice Hypergraph for k =
3, q = 5, with hyperedges shaded in gray. The gray
triangles together with the white triangles form a sim-
plicial subdivision. The lists of admissible colors are
given on the boundary; for internal vertices the lists are
all {1, 2, 3}.

The reader may notice that this is a setup reminis-
cent of Sperner’s Lemma [11]. (See Figure 1.) However,
Sperner’s Lemma concerns subdivisions of the simplex;
Hk,q is not a subdivision of the simplex since its hy-
peredges viewed as geometric cells do not cover the full
volume of ∆k,q.

Simplicial subdivisions. A simplicial subdivision of
∆k,q is a collection of simplices (“cells”) Σ such that
• The union of the cells in Σ is the simplex ∆k,q.
• For any two cells σ1, σ2 ∈ Σ, their intersection is

either empty or a full face of a certain dimension
shared by σ1, σ2.

We describe a concrete subdivision of ∆k,q in Section 6.

2.2 Colorings of simplicial subdivisions. First,
let us recall the statement of Sperner’s Lemma [11].
We call a labeling ` : V → [k] Sperner-admissible if
`(a) ∈ L(a) for each a ∈ V ; i.e. , if `(a) = j then
aj > 0.

Lemma 2.1. (Sperner’s Lemma) For every Sperner-
admissible labeling of the vertices of a simplicial subdi-
vision of ∆k,q, there is a cell whose vertices receive all
k colors.

We remark that this does not say anything about
the Simplex-Lattice Hypergraph: Even if the subdivi-
sion uses the point set Vk,q, the rainbow cell given by
Sperner’s Lemma might not be a member of Ek,q since
Ek,q consists only of scaled copies of ∆k,q without ro-
tation; it is not a full subdivision of the simplex. (See
Figure 2.)
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Figure 2: A Sperner-admissible labeling for k = 3 and
q = 5. The set E of hyperedges consists of the shaded
triangles. The gray triangles are non-monochromatic
hyperedges. At least one triangle (not necessarily in E)
must be 3-colored (rainbow).

Instead of rainbow cells, the statement pro-
posed (and proved for k = 3) in [5] involves non-
monochromatic cells.

Proposition 2.1. (Simplex-Lattice Coloring Lemma)
For any Sperner-admissible labeling ` : Vk,q → [k],

there are at least
(
q+k−3
k−2

)
hyperedges e ∈ Ek,q that are

non-monochromatic under `.

The first-choice labeling. In particular, the
proposition is that a Sperner-admissible labeling min-
imizing the number of non-monochromatic cells is a
“first-choice one” which labels each vertex a by the
smallest coordinate i such that ai > 0. Under this la-
beling, all the hyperedges e(b) such that b1 > 0 are
labeled monochromatically by 1. The only hyperedges
that receive more than 1 color are those where b1 = 0,
and the number of such hyperedges is exactly

(
q+k−3
k−2

)
(see [5]).

3 A proof of the Simplex-Lattice Coloring
Lemma

Here we give a proof of Proposition 2.1.



Proof. Consider the set of hyperedges Ek,q: observe
that it can be written naturally as

Ek,q = {e(b) : b ∈ Vk,q−1}.

I.e., the hyperedges can be identified one-to-one with
the vertices in Vk,q−1. Recall that e(b) = {b + e1,b +
e2, . . . ,b + ek}. Two hyperedges e(b), e(b′) share a
vertex if and only if b′ + ej = b + ei for some pair
i, j ∈ [k]; or in other words if b,b′ are nearest neighbors
in Vk,q−1 (differ by ±1 in exactly two coordinates).

Consider a labeling ` : Vk,q → [k]. For each i ∈ [k],
let Ci denote the set of points in Vk,q−1 representing the
monochromatic hyperedges in color i,

Ci = {b ∈ Vk,q−1 : ∀v ∈ e(b); `(v) = i}.

Define an injective mapping φi : Ci → Vk,q−2 as follows:

φi(b) = b− ei.

The image is indeed in Vk,q−2: if b ∈ Ci, we have bi > 0,
or else e(b) would contain a vertex a such that ai = 0
and hence e(b) could not be monochromatic in color i.
Therefore, b − ei ∈ Zk+ and (b − ei) · 1 = q − 2 which
means b− ei ∈ Vk,q−2.
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Figure 3: The mappings φi : Ci → Vk,q−2. The
hyperedges are represented by the empty circles; Ci is
the subset of them monochromatic in color i. The black
squares represent Vk,q−2; note that each point in Vk,q−2
is the image of at most one monochromatic hyperedge.

Further, we claim that φi[Ci] ∩ φj [Cj ] = ∅ for
every i 6= j. If not, there would be b ∈ Ci and
b′ ∈ Cj such that b − ei = b′ − ej . Then, the
point a = b + ej = b′ + ei would be an element of
both the hyperedge e(b) and the hyperedge e(b′). This
contradicts the assumption that e(b) is monochromatic

in color i and e(b′) is monochromatic in color j. So
the sets φi[Ci] are pairwise disjoint subsets of Vk,q−2.
By the definition of φi, we clearly have |φi[Ci]| = |Ci|.
We conclude that the total number of monochromatic
hyperedges is

k∑
i=1

|Ci| =
k∑
i=1

|φi[Ci]| ≤ |Vk,q−2|.

The total number of hyperedges is |Ek,q| = |Vk,q−1|.
Considering that |Vk,q| =

(
q+k−1
k−1

)
(the number of par-

titions of q into a sum of k nonnegative integers), we
obtain that the number of non-monochromatic hyper-
edges is

|Ek,q| −
k∑
i=1

|Ci| ≥ |Vk,q−1| − |Vk,q−2|

=

(
q + k − 2

k − 1

)
−
(
q + k − 3

k − 1

)
=

(
q + k − 3

k − 2

)
.

4 A labeling of Hk,q with at most 4 colors on
each hyperedge

We recall that Sperner’s lemma states that any Sperner-
admissible labeling of a subdivision of the simplex must
contain a simplex with all k colors. The hypergraph
Hk,q defined in Section 2.1 is not a subdivision since
it covers only a subset of the large simplex. It is easy
to see that the conclusion of Sperner’s lemma does not
hold for Hk,q — for example for k = 3, we can label a
2-dimensional triangulation so that exactly one triangle
has 3 different colors, and this triangle is not in E3,q.
(See Figure 2.) Hence, each triangle in E3,q has at
most 2 colors. By an extension of this argument, we
can label Hk,q so that each hyperedge in Ek,q contains
at most k − 1 colors. The question we ask in this
section is, what is the minimum `∗ such that there is
a Sperner-admissible labeling with at most `∗ colors on
each hyperedge in Ek,q? We prove the following result.

Lemma 4.1. For any k ≥ 4 and q ≥ k2, there is a
Sperner-admissible labeling of Hk,q = (Vk,q, Ek,q) such
that every hyperedge in Ek,q contains at most 4 colors.

Proof. We define a labeling ` : Vk,q → [k] as follows:

• Given a ∈ Vk,q, let π : [k] → [k] be a permutation
such that aπ(1) ≥ aπ(2) ≥ . . . ≥ aπ(k) (and if
aπ(i) = aπ(i+1), we order π so that π(i) < π(i+1)).

• Define t(a) to be the maximum t ∈ [k] such
that ∀1 ≤ j ≤ t, aπ(j) ≥ k − j + 1. We
define the “Top coordinates” of a to be Top(a) =
(π(1), . . . , π(t(a))) (an ordered set).



• We define the color of a to be `(a) = π(t(a)), the
index of the “last Top coordinate”.

First, we verify that this is a well-defined Sperner-
admissible labeling. Since

∑k
i=1 ai = q ≥ k2, we have

aπ(1) = max ai ≥ k and hence 1 ≤ t(a) ≤ k. For each
a ∈ Vk,q, we have: a`(a) = aπ(t(a)) ≥ k − t(a) + 1 > 0,
since t(a) ≤ k. Therefore, ` is Sperner-admissible.

Now, consider a hyperedge e(b) = (b + e1,b +

e2, . . . ,b + ek) where b ≥ 0,
∑k
i=1 bi = q − 1. We

claim that `(b + ei) attains at most 4 different values
for i = 1, . . . , k. Without loss of generality, assume that
b1 ≥ b2 ≥ . . . ≥ bk. Define `∗ to be the color that
would be assigned to b (if b were a vertex in Vk,q; in
fact it is not but we can still apply our definition): `∗ is
the maximum value in [k] such that for all 1 ≤ j ≤ `∗,
bj ≥ k − j + 1. Hence, we have Top(b) = {1, 2, . . . , `∗}.

Let i ∈ [k], a = b+ei, and let π be the permutation
such that aπ(1) ≥ . . . ≥ aπ(k) as above. (Recall that for
b, we assumed that the respective permutation is the
identity.) We consider the following cases:

• If 1 ≤ i < `∗, then we claim that `(a) for a = b+ei
is equal to `(b + ei) = `∗. In the rule for selecting
t(a), one of the first `∗ − 1 coordinates has been
incremented compared to b, which possibly pushes
i forward in the ordering of the Top coordinates.
However, the other coordinates remain unchanged,
the condition aπ(j) ≥ k − j + 1 is still satisfied for
1 ≤ j ≤ `∗, and Top(a) = Top(b). In particular `∗

is still the last coordinate included in Top(a) and
hence `(a) = `∗.

• If i = `∗, then `(a) = `(b + e`∗) is still one of the
coordinates in Top(b), possibly different from `∗

(due to a change in order, although we still have
Top(a) = Top(b)) — let us call this color `∗2.

• If `∗ < i ≤ k, then it is possible that in a = b + ei,
we obtain additional Top coordinates (Top(a) ⊃
Top(b)). First of all, it could be ai = bi + 1 itself
which is now included among the Top coordinates,
and possibly additional coordinates that previously
satisfied the condition bj ≥ k − j + 1 but were not
selected due to the condition being false for b`∗+1.
If this does not happen and we have Top(a) =
Top(b), the color of a is still `(a) = `∗ (because
the ordering of the Top coordinates remains the
same).

Assume now that a has additional Top coordinates
beyond Top(b). Observe the following: by the
definition of `∗, there is no coordinate j > `∗ such
that bj = b`∗ − 1; otherwise j would have been
still chosen in Top(b). The only way Top(b + ei)

can grow beyond Top(b) is that bi = b`∗ − 2 and
ai = bi+1 = b`∗−1. In this case, we have i = π(`∗+
1), because ai is the maximum coordinate among
{aj : j > `∗}, and still smaller than a`∗ . Therefore,
since we have b`∗ ≥ k− `∗+ 1 (by inclusion of `∗ in
Top(b)), we also have ai ≥ k− `∗ ≥ k−π−1(i) + 1;
hence, i will be included in Top(a). Now, Top(a)
may grow further; it will include at least all the
coordinates j such that bj = b`∗ − 2, by the same
argument. However, note that the construction
of Top(a) will proceed in the same way for every
b + ei such that bi = b`∗ − 2. This is because all
the coordinates equal to b`∗ − 2 will be certainly
included in Top(a), and coordinates smaller than
b`∗−2 remain the same in each of these cases (equal
to the coordinates of b). Therefore, the set Top(a)
will be the same in all these cases; let us call this
set Top+.

The color assigned to a = b + ei is the index of
the last coordinate included in Top+. Since Top+
is the same whenever bi = b`∗ − 2, this will be the
coordinate j∗ minimizing bj (and maximizing j to
break ties) among all j ∈ Top+, unless i = j∗ in
which case the last included coordinate might be
another one. This gives potentially two additional
colors, let us call them `∗3, `

∗
4, that are assigned to

a = b+ei for all i > `∗ where bi = b`∗−2. For other
choices of i > `∗, we have Top(b + ei) = Top(b)
and the color assigned to b + ei is `(b + ei) = `∗.

To summarize, all the colors that appear in the labeling
of e(b) are included in {`∗, `∗2, `∗3, `∗4}.

5 Applications to Hypergraph Labeling

In this section, we discuss several labeling problems on
hypergraphs and the consequences that our results have
for them. The basic problem that we study in this paper
is the following.

Hypergraph Labeling with Color Lists. Given a
hypergraph H = (V,E) with weights w(e), e ∈ E and
color lists L(v) ⊆ [k], v ∈ V , find a labeling `(v) ∈ L(v)
for each v ∈ V that minimizes the total weight of non-
monochromatic hyperedges.

A related problem was proposed by Chekuri and
Ene [2] as a generalization of the Uniform Metric
Labeling problem of Kleinberg and Tardos [7].

Hypergraph Labeling. Given a hypergraph H =
(V,E) with edge weights w(e) ≥ 0 and vertex assign-
ment costs c(v, i) ≥ 0, find a labeling ` : V → [k] mini-
mizing the total assignment cost plus the total weight of



hyperedges that receive more than 1 label:∑
v∈V

c(v, `(v)) +
∑

e∈E:|`[e]|>1

w(e).

Clearly, this problem subsumes Hypergraph Labeling
with Color Lists, by considering w(e) = 1 and assignment
costs in {0,∞} (or a huge finite value instead of
∞). In fact, Hypergraph Labeling with Color Lists
is equivalent to Hypergraph Labeling by the following
reduction (attributed to Julia Chuzhoy by [1]): Given
an instance of Hypergraph Labeling, for each v ∈ V and
each i ∈ [k], create a new vertex (v, i) with the color
list L((v, i)) = [k] \ {i}. Place an edge of weight c(v, i)
between (v, i) and v. Vertex v gets the color list L(v) =
[k]. Then it is easy to see that if vertex v is labeled `, the
optimal labeling of the vertices (v, i), i ∈ [k] is such that
we will pay exactly c(v, `) for cutting the edge between
v and (v, `). Hence, Hypergraph Labeling with Color Lists
and Hypergraph Labeling are approximation-equivalent.

A simplex coloring lemma was conjectured in [5]
with the aim of proving hardness of approximation for
Hypergraph Labeling. We prove this lemma in this paper
(Proposition 2.1). In effect, Proposition 2.1 shows an
integrality gap arbitrarily close to k−1 for a certain LP
relaxation of the Hypergraph Labeling problem. Using
the general reduction of [6], we obtain the following
(more details about are given in Section 5.2 below).

Corollary 5.1. Assuming the Unique Games Conjec-
ture, it is NP-hard to achieve a (k−1−ε)-approximation
for the Hypergraph Labeling problem on k-uniform hy-
pergraphs with label set [k], for any fixed ε > 0.

Chekuri and Ene [2] gave a ∆-approximation for
Hypergraph Labeling with hyperedge size bounded by
∆. The algorithm that achieves this is the Kleinberg-
Tardos algorithm for Metric Labeling [7]. By a more
careful analysis, we show that the same algorithm also
achieves a (k−1)-approximation whenever the label set
is [k] (see Section 5.3).

Theorem 5.1. There is a (k−1)-approximation for the
Hypergraph Labeling problem with label set [k].

Hence, this approximation algorithm is optimal in
terms k and almost tight (up to an additive 1) in terms
of ∆. We remark that we do not expect a (∆ − 1)-
approximation for Hypergraph Labeling: The special
case of ∆ = 2 is the Uniform Metric Labeling problem:
This problem admits a 2-approximation [7] and it is
Unique-Games-hard to achieve a (2− ε)-approximation
[8].

In the following, we give some more details behind
these results.

5.1 LP relaxations of Hypergraph Labeling.
Chekuri and Ene [2] gave a linear-programming relax-
ation called LE-Rel for partitioning problems involving
submodular functions, based on the Lovász extension
of a submodular function. In particular, for Hypergraph
Labeling the resulting LP reads as follows (see [5] for
more discussion).

LE-Rel for Hypergraph Labeling

min
∑
v∈V

k∑
i=1

c(v, i)xv,i +
∑
e∈E

w(e)

(
1−

k∑
i=1

min
v∈e

xv,i

)
k∑
i=1

xv,i = 1 ∀v ∈ V

xv,i ≥ 0 ∀v ∈ V, i ∈ [k]

Formally, this is not in the form of a linear program
but it is easy to see that the expression minv∈e xv,i
can be replaced by a new variable ze,i with constraints
ze,i ≤ xv,i∀v ∈ e. We prefer to keep the form above for
compactness.

This LP is equivalent to the “Local Distribution
LP” for Min-CSP problems considered in [6]. In the
Local Distribution LP, we have xv,i variables as above,
and also ye,α variables for each hyperedge e ∈ E and
each possible assignment α ∈ [k]e. The hyperedge
variables ye,α can be interpreted as a distribution over
labelings of the respective hyperedge e. The hyperedge
variables must be consistent with the vertex variables
in the sense that all assignments such that αv = i
should add up to

∑
α∈[k]e:αv=i

ye,α = xv,i. The Local
Distribution LP reads as follows.

Local Distribution LP

min
∑
v∈V

k∑
i=1

c(v, i)xv,i +
∑

e∈E,α∈[k]e
w(e)ye,αΦe(α)

∑
α∈[k]e,αv=i

ye,α = xv,i ∀v ∈ e ∈ E, i ∈ [k]

k∑
i=1

xv,i = 1 ∀v ∈ V

xv,i, ye,α ≥ 0 ∀v ∈ V, i ∈ [k], e ∈ E,α ∈ [k]e

In particular, the Local Distribution LP for Hyper-
graph Labeling is obtained by using the cost function
Φe(α) = 0 if α = (i, i, . . . , i) for some i ∈ [k], and
Φe(α) = 1 otherwise (which is the hypergraph cut func-
tion for a single hyperedge). We refer the reader to
[5] for a proof that these two LPs are equivalent for
Hypergraph Labeling, in the sense that given a feasible



assignment of the variables xv,i, the optimal assignment
of the variables ye,α in the Local Distribution LP is one
that achieves exactly the objective value of LE-Rel .

5.2 Hardness of approximation of Hypergraph
Labeling. In this section, we explain the connection
between our combinatorial results and hardness of ap-
proximation for hypergraph labeling problems. This
connection is based on a hardness reduction for Min-
CSP recently developed in [6], which in turn builds on
a hardness reduction for Multiway Cut problems dis-
covered in [8]. A Min-CSP instance consists of a hy-
pergraph H = (V,E) with weights we and predicate
cost functions Φe : [k]e → [0, 1] for e ∈ E. The goal
is to find an assignment ` : V → [k] that minimizes∑

(vi1 ,...,vij )=e∈E
weΦe(`(vi1), . . . , `(vij )). Observe that

the hypergraph labeling problems considered in this pa-
per are exactly in this form. (Except for the list-coloring
constraint `(v) ∈ L(v), which can be simulated by a
unary predicate Φ{v}(`) = 0 iff ` ∈ L(v) and Φ{v}(`) = 1
otherwise, with a prohibitively large weight w{v}.)

The hardness reduction of [6] takes any integrality
gap instance for a problem of a certain type and turns
it into a hardness of approximation result for the same
problem. We summarize this reduction in the following
theorem. We denote by NAEk the Not-All-Equal
predicate on k variables, NAEk(x1, . . . , xk) = 0 if
x1 = x2 = . . . = xk and 1 otherwise. We call NAE2 the
Not-Equal predicate.

Theorem 5.2. [6] Suppose I is a Min-CSP instance in-
cluding the Not-Equal predicate NAE2(x1, x2). Assume
the Unique Games Conjecture. If the optimum value of
I is s and the optimum value of its Local Distribution
LP is c where s > c ≥ 0, then for any ε > 0, it is
NP-hard to distinguish between instances whose optimal
value is at least s − ε and those whose optimal value is
at most c+ ε.

Note that the reduction works only for Min-CSP
problems involving the Not-Equal predicate; however,
this is exactly the predicate appearing in problems
where we want to avoid “cutting” edges or hyperedges,
such as the problems considered in this paper. Let us
outline now how our hardness results follow from this
reduction.

The coloring conjecture of [5] was proposed with the
aim of designing an integrality gap instance for Hyper-
graph Labeling. The instance is exactly the hypergraph
with color lists which is the subject of Proposition 2.1.
We interpret the color lists as unary predicates with
cost 0 for an admissible color and ∞ for a forbidden
color. Note that the predicate on each hyperedge is the
Not-All-Equal (NAEk) predicate — equal to 1 unless

all k variables are equal, in which case it is 0. The
intended fractional solution is simply xv = 1

qv. The

LE-Rel relaxation pays a cost of 1/q for each hyper-
edge, for a total cost of c = 1

q

(
q+k−2
k−1

)
. According to

Proposition 2.1, the cost of the optimum solution is
s =

(
q+k−3
k−2

)
. The ratio of these two quantities tends

to k − 1 as q → ∞. Therefore, Theorem 5.2 implies
that it is Unique-Games-hard to achieve a (k − 1 − ε)-
approximation for any constant ε > 0, for Hypergraph
Labeling on hypergraphs with edges of size at most k
and label set [k].

Note that Theorem 5.2 requires the NAE2(x, y)
predicate to be part of the instance. We can include
this predicate, if we allow hyperedges of size 2 to be part
of the hard instance. Alternatively, if we want to ob-
tain a k-uniform hypergraph, we can simulate NAE2 by
NAEk predicates as follows: we add k − 2 dummy ver-
tices d1, . . . , dk−2 for each NAE2(x, y) constraint, and
we replace NAE2(x, y) by NAEk(x, y, d1, . . . , dk−2). It
is easy to see that this does not change the value of the
optimum. This proves Corollary 5.1.

In addition, we observe the following. The hard
instances arising from the hardness reduction of [6] can
be viewed again as instances of Hypergraph Labeling with
Color Lists, with hyperedges of two types. Hyperedges
of the first type (corresponding to the “edge test”)
have the structure of hyperedges of Hk,q. According to
Lemma 4.1, the hypergraph Hk,q Hypergraph Labeling
with Color Lists can be labeled in such a way that
every hyperedge uses at most 4 colors. If we label
the vertices of I in accordance with the labeling of
Hk,q, each hyperedge of the first type will again use
at most 4 colors. Hyperedges of the second type
(corresponding to the “vertex test”) contain only 2
vertices (or are converted into hyperedges of size k using
the construction above). Clearly, these hyperedges use
at most 2 colors. Therefore, the hardness result of
Corollary 5.1 holds even for instances of Hypergraph
Labeling with Color Lists that can be labeled in such a
way that every hyperedges uses at most 4 colors.

5.3 (k − 1)-approximation for Hypergraph Label-
ing. Chekuri and Ene [2] presented a ∆-approximation
algorithm for Hypergraph Labeling, where ∆ is the max-
imum size of a hyperedge. This algorithm solves the
LE-Rel relaxation and then rounds the fractional solu-
tion to an integral one, using the randomized rounding
technique of Kleinberg and Tardos [7].

We show here that this rounding technique also
achieves a (k−1)-approximation for Hypergraph Labeling
where [k] is the label set and k ≥ 3, thus proving
Theorem 5.1. (For k = 2, the problem can be solved
exactly as a special case of submodular minimization.)



Algorithm 1 Kleinberg-Tardos-Rounding(xv : v ∈ V )

S1, . . . , Sk ← ∅
while

⋃k
i=1 Si 6= V do

pick i ∈ [k] uniformly at random
pick λ ∈ [0, 1] uniformly at random

for all v ∈ V \
⋃k
i=1 Si do

if xv,i > λ then
Si ← Si ∪ {v}

end if
end for

end while
return ` : V → [k] where `(v) = i whenever v ∈ Si

We analyze the Kleinberg-Tardos rounding procedure in
a sequence of claims (building upon the analysis of [2]).

Lemma 5.1. The expected assignment cost of vertex
v ∈ V is exactly

∑k
i=1 c(v, i)xv,i.

Proof. It is known that the probability that vertex v
is labeled `(v) = i by Kleinberg-Tardos rounding is
exactly xv,i [7]. Hence the expected assignment cost

is
∑k
i=1 c(v, i)xv,i.

Definition 5.1. For a hyperedge e ∈ E, we say that a
• Capturee(i) event happens if i is the index chosen

by the algorithm and λ < minv∈e xv,i.
• Cute(i) event happens if i is the index chosen by

the algorithm and minv∈e xv,i ≤ λ < maxv∈e xv,i.
• Touche(i) event happens if i is the index chosen by

the algorithm and λ < maxv∈e xv,i;
Touche(i) = Capturee(i) ∨ Cute(i).

Lemma 5.2. A hyperedge e ∈ E ends up monochro-
matic, unless the first event that happens for e is Cute(i)
for some i ∈ [k], and the second event that happens is
not Capturee(i).

Proof. If the first event that happens for e is
Capturee(i) for some i ∈ [k], then e becomes imme-
diately monochromatic in color i. If the first event is
Cute(i) , then some vertices of e are labeled i but not all.
There must happen at least one more event for e before
the algorithm terminates. If this event is Capturee(i)
then e becomes monochromatic in color i. Therefore
the only way to become non-monochromatic is that the
second event is not Capturee(i).

We note that considering the first event for each hy-
peredge would be sufficient to derive a k-approximation
for Hypergraph Labeling. However, to get the (optimal)
(k − 1)-approximation we have to be more careful and
that is the reason for considering the second event.

Lemma 5.3. The probability that the first event for e ∈
E is Cute(i) is

Pr[Cute(i) |
k∨
j=1

Touche(j)] =
maxv∈e xv,i −minv∈e xv,i∑k

j=1 maxv∈e xv,j
.

Proof. The successive rounds are independent. There-
fore, we can analyze the first event for e ∈ E by condi-
tioning on the event

∨k
j=1 Touche(j). This event hap-

pens iff the chosen threshold is below maxv∈e xv,j , where
j ∈ [k] is random; hence

Pr[

k∨
j=1

Touche(j)] =
1

k

k∑
j=1

max
v∈e

xv,j .

The event Cute(i) happens iff the chosen coordinate is i
and minv∈e xv,i ≤ λ < maxv∈e xv,i. This happens with
probability

Pr[Cute(i)] =
1

k
(max
v∈e

xv,i −min
v∈e

xv,i).

Since this is a sub-event of
∨k
j=1 Touche(j), we obtain

the lemma.

Lemma 5.4. Conditioned on the first event for e ∈ E
being Cute(i), the probability that the second event is
Capturee(i) is

Pr[Capturee(i) |
k∨
j=1

Touche(j)] =
minv∈e xv,i∑k
j=1 maxv∈e xv,j

.

Proof. If the first event was Cute(i) then another
event must still happen because not all vertices of e
have been labeled. The next event is independent of
what happened before and again we can condition on∨k
j=1 Touche(j) as above. The event Capturee(i) hap-

pens iff the chosen coordinate is i and λ < minv∈e xv,i.
This happens with probability

Pr[Capturee(i)] =
1

k
min
v∈e

xv,i.

Since this is a sub-event of
∨k
j=1 Touche(j) and

Pr[
∨k
j=1 Touche(j)] = 1

k

∑k
j=1 maxv∈e xv,j , we obtain

the lemma.

Lemma 5.5. The probability that a hyperedge e ends up
non-monochromatic is at most

k∑
i=1

maxv∈e xv,i −minv∈e xv,i∑k
j=1 maxv∈e xv,j

(
1− minv∈e xv,i∑k

j=1 maxv∈e xv,j

)
.



Proof. We combine the previous three lemmas: The
probability of the first event being Cute(i) is
maxv∈e xv,i−minv∈e xv,i∑k

j=1 maxv∈e xv,j
, and conditioned on that, the

probability of the second event not being Capturee(i) is

1− minv∈e xv,i∑k
j=1 maxv∈e xv,j

. In other cases, the hyperedge ends

up monochromatic.

Lemma 5.6. Let k ≥ 3 and cost(e) = 1 −∑k
j=1 minv∈e xv,j. Then the probability that e ends up

non-monochromatic is at most (k − 1)cost(e).

Proof. Let us analyze the maximum possible value
that the bound provided by Lemma 5.5 could achieve.
Observe that

∑k
i=1 maxv∈e xv,i ≥ 1 because for any

fixed vertex,
∑k
i=1 xv,i = 1. Let κ ≥ 0 be such that∑k

i=1 maxv∈e xv,i = 1+κ ·cost(e). By Lemma 5.5 (after
discarding some factors smaller than 1), the probability
of e becoming non-monochromatic is at most

k∑
i=1

(max
v∈e

xv,i −min
v∈e

xv,i)

= (

k∑
i=1

max
v∈e

xv,i − 1) + (1−
k∑
i=1

min
v∈e

xv,i)

= κ · cost(e) + cost(e) = (κ+ 1)cost(e).

Observe that maxv∈e xv,i−minv∈e xv,i ≤ cost(e) for ev-

ery i ∈ [k], because cost(e) =
∑k
j=1(xw,j −minv∈e xv,j)

for the vertex w achieving maxv∈e xv,i. Therefore,
κ ≤ k− 1. On the other hand, if κ ≤ k− 2, then we are
done because the bound above is at most (k−1)cost(e).
So we can assume κ ∈ (k − 2, k − 1].

Assume without loss of generality that the coordi-
nates are ordered so that

max
v∈e

xv,1 −min
v∈e

xv,1 ≥ . . . ≥ max
v∈e

xv,k −min
v∈e

xv,k.

Recall that
∑k
i=1 minv∈e xv,i = 1−cost(e). Considering

how this sum could be distributed among the k terms,
the worst case for the bound of Lemma 5.5 is that
minv∈e xv,i = 0 for all i < k, and minv∈e xv,k =

1 − cost(e). Similarly, we have
∑k
i=1(maxv∈e xv,i −

minv∈e xv,i) = (κ + 1)cost(e), and the worst case is
that the first k− 1 terms are as large as possible, which
is cost(e), while the last term is (κ + 1)cost(e) − (k −
1)cost(e) = (κ − k + 2)cost(e). In this case, the bound
of Lemma 5.5 would become

cost(e)
1+κcost(e)

(
(k − 1) + (κ− k + 2)

(
1− 1−cost(e)

1+κcost(e)

))
= cost(e)

1+κcost(e)

(
(k − 1) + (κ− k + 2) (κ+1)cost(e)

1+κcost(e)

)
.

We assumed that k ≥ 3 and κ ∈ (k − 2, k − 1].
Using this, κ − k + 2 ∈ (0, 1] and (κ + 1)cost(e) ≤

2κcost(e) ≤ κ(k − 1)cost(e). So the above bound is
at most (k − 1)cost(e).

This completes the proof of Theorem 5.1.

6 Rainbow-avoiding Hypergraph Labeling

Further, we consider the following extension of Hyper-
graph Labeling with Color Lists.

Hypergraph j-Colors-Avoiding Labeling with Color
Lists. Given a hypergraph H = (V,E) with color lists
L(v) ⊆ [k], v ∈ V , and a parameter j ≥ 2, find a labeling
`(v) ∈ L(v) minimizing the number of hyperedges that
receive at least j distinct labels.

In particular, Hypergraph Labeling with Color Lists
is the case of j = 2. If j = k then the goal is to
minimize the number of rainbow hyperedges, containing
all k colors. We call this problem Hypergraph Rainbow-
Avoiding Labeling with Color Lists.

6.1 LP relaxation of Hypergraph j-Colors-
Avoiding Labeling with Color Lists. It is natural to use
the Local Distribution LP with the appropriate predi-

cate Φ
(j)
e (α) = 1 if α ∈ [k]e uses at least j distinct labels,

and 0 otherwise. However, we show that this LP per-
forms very poorly and subsequently we prove a hardness
result for this problem. Sperner’s Lemma plays a role
in this result.

Lemma 6.1. For any k ≥ j = 3, there are instances of
Hypergraph j-Colors-Avoiding Labeling with Color Lists
such that the value of the Local Distribution LP is 0 but
there is a rainbow hyperedge (containing all k colors) for
any feasible labeling.

In particular, as prove in Lemma 6.3, there are in-
stances of Hypergraph j-Colors-Avoiding Labeling with
Color Lists corresponding to a subdivision of a simplex,
with a fractional labeling using locally at most 2 colors
for each hyperedge. This fractional labeling corresponds
to a fractional solution of zero cost for the Local Dis-
tribution LP for Hypergraph j-Colors-Avoiding Labeling
with Color Lists. On the other hand, for any Sperner-
admissible labeling of a simplicial subdivision, there
must be a hyperedge using all k colors (by Sperner’s
Lemma). This will prove Lemma 6.1. Hence, the Lo-
cal Distribution LP is unable to distinguish between in-
stances that can be labeled so that each hyperedge con-
tains at most 2 colors, and instances that must contain
a rainbow hyperedge.

Fractional labelings of a subdivision of the sim-
plex. To be more precise, we clarify what we mean
by “fractional labelings” of a hypergraph H in the
sense of the Local Distribution LP. A fractional label-
ing consists of a probability distribution for each ver-



tex v ∈ V over colors, (xv1, . . . , xvk) where xvi ≥ 0

and
∑k
i=1 xvi = 1. In addition, each hyperedge e ∈ E

receives a distribution over labelings (yeα : α ∈ [k]e),
yeα ≥ 0,

∑
α∈[k]e yeα = 1. This distribution must be

consistent with the vertex-based distributions in the
sense that the probability of a vertex receiving a cer-
tain color should be the same under both distributions:∑
α:αv=j

yeα = xvj .
In this section, we are concerned with subdivisions

of the simplex, i.e. hypergraphs that form a simplicial
complex covering the full volume of the simplex. The
hypergraph Hk,q = (Vk,q, Ek,q) introduced in Section 2
does not induce a subdivision since the respective cells
do not cover the entire simplex. In the following, we
describe a concrete subdivision of the simplex ∆k,q

whose vertex set is Vk,q (following a construction of [9],
see also [4]).

A regular simplicial subdivision of ∆k,q. Consider
first a simplex parameterized as follows:

Rk,q = {y ∈ Rk−1+ : 0 ≤ y1 ≤ y2 ≤ . . . ≤ yk−1 ≤ q}.

We will describe a subdivision of Rk,q with vertex set
Wk,q = {v ∈ Zk−1+ : 0 ≤ v1 ≤ . . . ≤ vk−1 ≤ q}. Once
we complete this construction, we map the simplicial
subdivision back to ∆k,q by the following mapping:
φ(y) = x ∈ Rk where xi = yi − yi−1 for i ∈ [k],
under the convention that y0 = 0 and yk = q. It is
easy to verify that φ maps Rk,q bijectively to ∆k,q, and
φ[Wk,q] = Vk,q.

A cell of the subdivision of Rk,q is indexed by a
vertex w ∈ Wk,q−1 and a permutation π : [k − 1] →
[k − 1]. The permutation π should be consistent with
w in the sense that whenever wi = wi+1, we have
π(i) < π(i+1). For any such pair (w, π), the respective
cell is defined as

σ(w, π) = {y ∈ Rk−1+ : 0 ≤ (y −w)π(1) ≤ (y −w)π(2)

≤ . . . ≤ (y −w)π(k−1) ≤ 1}.

Let us verify that this is a simplicial subdivision: First,
for any π consistent with w, we get that y ∈ σ(w, π)
must have coordinates ordered increasingly: either wi <
wi+1 which means that yi ≤ wi + 1 ≤ wi+1 ≤ yi+1, or
wi = wi+1 which means yi ≤ yi+1 by the consistent
ordering property. Also, it is easy to verify that
y ∈ [0, q]k−1, since w ∈ {0, 1, . . . , q − 1}k−1. Hence
σ(w, π) ⊂ Rk,q.

For any point y ∈ Rk,q, we have 0 ≤ y1 ≤ y2 ≤
. . . ≤ yk−1 ≤ q. This point is contained in a cell σ(w, π)
given by wi = byic and π describing the ordering of the
coordinates of y − w. Note that if wi = wi+1, the
ordering is consistent with that of the coordinates of yi;
hence, this is a valid cell σ(w, π). The coordinates of

y − w are between [0, 1] and ordered according to π,
so we have indeed y ∈ σ(w, π). On the other hand,
the cell containing y is uniquely defined, except when
some coordinates of y − w are equal (which allows
several consistent permutations) or when y has integer
coordinates (which allows the choice of wi = yi−1). The
subsets satisfying these conditions form faces of various
dimensions that are shared between cells.

Note that the cells σ(w, π) are congruent (obtained
by translation and rotation of the same shape). How-
ever, when we map them from Rk,q to ∆k,q using the
linear map φ, various shapes arise; the cells φ[σ(w, π)]
are no longer congruent. In fact we are not aware of
any subdivision of ∆k,q using the vertex set Vk,q and
congruent cells.

What is important in the following is not the
particular form of our subdivision, but the properties
spelled out in the following lemma.

Lemma 6.2. For any k ≥ 2, q ≥ 1, there is a subdivi-
sion of the simplex ∆k,q with a set of simplicial cells
Σk,q such that

• the vertex set of the subdivision is Vk,q,

• the number of cells in Σk,q is qk−1,

• each cell σ ∈ Σk,q has the same volume, µ(σ) =
q−(k−1)µ(∆k,q),

• ∀x,x′ ∈ σ ∈ Σk,q; ‖x− x′‖∞ ≤ 2.

Proof. The properties above are satisfied by the sub-
division described above. The vertex set is clearly
φ[Wk,q] = Vk,q. Each cell σ(w, π) has the same shape
and volume: the volume is 1/(k−1)!, since (k−1)! such
cells fill up a unit cube [0, 1]k−1. Since φ is a linear map,
the cells φ[σ(w, π)] still have equal volume (although
not the same shape). The cells σ(w, π) fill up the sim-
plex Rk,q, whose volume is qk−1/(k−1)!. Therefore, the
number of cells is qk−1. Finally, each cell σ(w, π) is con-
tained in a translation of a unit cube [0, 1]k−1. The map
φ transforms coordinates by xi = (φ(y))i = yi − yi−1.
Therefore, two points in the same cell φ[σ(w, π)] can
differ by at most 2 in each coordinate.

Constructing a fractional labeling. We recall that
Sperner’s lemma states that for any Sperner-admissible
labeling of Vk,q, there must be a rainbow cell in Σk,q:
one whose vertices are labeled with all k colors. The
question we ask here is — is this still true for fractional
labelings, in the sense that for any fractional labeling
there must be a simplex e ∈ Σk,q which contains a
rainbow labeling with at least some nonzero weight?
The answer is negative in a strong sense: For sufficiently



large q, there are fractional labelings such that every cell
uses a combination of labelings using at most 2 colors
each.

Lemma 6.3. For every k ≥ 2 and q ≥ 2k3, there is a
subdivision Σk,q of the simplex ∆k,q using the vertex set
Vk,q, and a fractional labeling (xvj , yeα) of (Vk,q,Σk,q)
such that yeα = 0 whenever α uses more than 2 colors.

Proof. Consider a subdivision (Vk,q,Σk,q) as given by
Lemma 6.2. We define the fractional labeling of each
vertex v ∈ Vk,q according to its coordinates: xv,j = 1

q vj .

We have xv,j ≥ 0 and
∑k
j=1 xv,j = 1 as desired.

Consider a cell e ∈ Σk,q with vertices v1, . . . ,vk.
Let us write these vertices as vi = x + yi where
xj = min1≤i≤k vij and yi ≥ 0. Since the coordinates
of each vi sum up to q, the coordinates of each yi have
the same sum as well; let us denote it q̃. By Lemma 6.2,
we have yi ∈ [0, 2]k. Hence, q̃ ≤ 2k. We define q̃-tuples
of labels in [k] as follows: for 1 ≤ i ≤ k, βi ∈ [k]q̃ is
chosen so that

yi =
(
|{j ∈ [q̃] : βij = 1}|, . . . , |{j ∈ [q̃] : βij = k}|

)
.

This is possible since each yi is a vector with nonnega-
tive integer coordinates summing up to q̃. Similarly, we
define γ ∈ [k]q−q̃ such that

x =
(
|{j ∈ [q−q̃] : γj = 1}|, . . . , |{j ∈ [q−q̃] : γj = k}|

)
.

Since q ≥ 2k3, there is a coordinate in x of value
xr ≥ 2k2 > (k − 1)q̃. This means there is label r which
appears at least (k − 1)q̃ times in γ. Let us extend γ
to a q-tuple γ̃ ∈ ([k] ∪ {∗})q by adding q̃ coordinates
labeled ’∗’. Since we have (k− 1)q̃ appearances of label
r and q̃ appearances of label ∗ in γ̃, we can interleave the
appearances of r and ∗ as follows: We define q-tuples
γ̃1, . . . , γ̃k ∈ ([k]∪{∗})q that are permutations of γ̃ such
that in each position j ∈ [q], the labels γ̃1j , . . . , γ̃

k
j are

either all equal, or they are equal to r except for one
which is equal to ∗, as shown here (for q̃ = 2):

γ̃1 = (.......... ∗ r r r r r r r ∗ r r r r r r r)
γ̃2 = (.......... r ∗ r r r r r r r ∗ r r r r r r)
γ̃3 = (.......... r r ∗ r r r r r r r ∗ r r r r r)
γ̃4 = (.......... r r r ∗ r r r r r r r ∗ r r r r)
γ̃5 = (.......... r r r r ∗ r r r r r r r ∗ r r r)
γ̃6 = (.......... r r r r r ∗ r r r r r r r ∗ r r)
γ̃7 = (.......... r r r r r r ∗ r r r r r r r ∗ r)
γ̃8 = (.......... r r r r r r r ∗ r r r r r r r ∗)

Finally, we replace the ∗ symbols by βij as follows:
each γ̃i has q̃ appearances of ∗, and we replace these
by the q̃ coordinates of βi, in an arbitrary order. We

call the resulting q-tuples α1, . . . , αk. Note that each
k-tuple (α1

j , . . . , α
k
j ) uses at most 2 labels. Also, the

number of appearances of each label ` in αi is the sum
of its appearances in βi and γ, and hence equals the
`-coordinate of x + yi = vi.

Now we define the fractional labeling of a cell e: for
each 1 ≤ j ≤ q, we set ye,(α1

j ,...,α
k
j )

= 1
q . For all other

α ∈ [k]k, yeα = 0. By construction, we have∑
j∈[q]:αi

j=`

ye,(α1
j ,...,α

k
j )

=
1

q
|{j ∈ [q] : αij = `}|

=
1

q
(x + yi)` =

1

q
(vi)` = xv,`

so the distributions are consistent. This proves
Lemma 6.3.

6.2 Hardness of Hypergraph Rainbow-Avoiding
Labeling with Color Lists. Since the Local Distribution
LP cannot distinguish between instances where each
hyperedge can be labeled with at most 2 colors, and
instances where a rainbow hyperedge must exist, one
can ask whether it is indeed computationally hard
to distinguish between these two cases. Considering
the general reduction for Min-CSP problems given by
[6], one can formulate a hardness result assuming the
Unique Games Conjecture. However, this hardness
result is not entirely satisfactory, not only because of the
UGC assumption, but also because of the lack of perfect
completeness inherent in the UGC: We would obtain
that it is UG-hard to distinguish between instances
that must contain “many” rainbow hyperedges and
instances that have a labeling with only “few” rainbow
hyperedges. Instead, we prove by a direct reduction
that it is NP-hard to distinguish between instances that
must contain a rainbow hyperedge and instances that do
not contain any, for k = 3. We conjecture that for any
k ≥ 3, it is NP-hard to distinguish between instances
that must contain a rainbow hyperedge, and instances
where each hyperedge can be labeled with at most 2
colors.

Theorem 6.1. It is NP-hard to decide for an instance
of Hypergraph Rainbow-Avoiding Labeling with Color
Lists (for k = 3) whether there is a labeling without any
rainbow hyperedges.

Proof. We recall the Monotone NAE-3SAT problem:
Given a 3-CNF formula without negations, decide
whether there is an assignment such that every clause
has both a true variable and a false variable. This prob-
lem is NP-complete by [10].

Given an instance I of Monotone NAE-3SAT, we
produce an instance I ′ of Hypergraph Rainbow-Avoiding



Labeling with Color Lists as follows. For each variable xi,
we generate a gadget based on Sperner’s triangle: We

have 6 vertices Vi = {v(1)i , v
(2)
i , v

(3)
i , v

(1,2)
i , v

(1,3)
i , v

(2,3)
i }.

The color list for each vertex is given naturally by the
superscript. In addition, we generate 3 hyperedges:

e
(1)
i = {v(1)i , v

(1,2)
i , v

(1,3)
i }, e(2)i = {v(2)i , v

(1,2)
i , v

(2,3)
i },

e
(3)
i = {v(3)i , v

(1,3)
i , v

(2,3)
i }. Note that a fourth hyper-

edge, e∗i = {v(1,2)i , v
(2,3)
i , v

(1,3)
i }, would complete a tri-

angulation of the triangle {v(1)i , v
(2)
i , v

(3)
i }; however, e∗i

is not part of the instance we generate. (See Figure
4.) Instead, for each clause xi ∨ xj ∨ xk, we generate

a hyperedge e∗ijk = {v(1,2)i , v
(2,3)
j , v

(1,3)
k }. We claim that

I is satisfiable if and only if I ′ has an optimum of 0
as an instance of Hypergraph Rainbow-Avoiding Labeling
with Color Lists (i.e., there is a labeling with no rainbow
hyperedges).

v
(1)
i

v
(1,2)
i v

(1,3)
i

v
(2)
i v

(3)
iv

(2,3)
i

e
(1)
i

e
(2)
i e

(3)
i

e∗i

Figure 4: The gadget for variable xi.

First, observe that by Sperner’s Lemma, for
any feasible labeling of Vi, one of the hyperedges

e
(1)
i , e

(2)
i , e

(3)
i , e∗i must contain all 3 colors. Thus, the

only way that a labeling of I ′ can be rainbow-free is
that e∗i contains all 3 colors. There are only two fea-

sible rainbow labelings of e∗i = {v(1,2)i , v
(2,3)
i , v

(1,3)
i }. In

this order, the two labelings are (1, 2, 3) and (2, 3, 1).
We associate these two labelings with the variable xi
being True or False, respectively: an assignment of the
variables xi defines a labeling, and a labeling where no

hyperedge e
(j)
i is rainbow defines an assignment to the

variables xi. We claim that this assignment is satisfying
if and only if the labeling is rainbow-avoiding.

In one direction, if there is an all-true clause, then
the respective hyperedge e∗ijk is labeled (1, 2, 3). If there
is an all-false clause, then the respective hyperedge is
labeled (2, 3, 1). Therefore, a rainbow-avoiding labeling
implies a satisfying assignment. Conversely, no other
rainbow labeling of e∗ijk is possible, given the color lists
in I ′: therefore, a satisfying assignment to I implies a
rainbow-avoiding labeling of I ′.

7 Application to fair division

One of the classical applications of Sperner’s Lemma is
fair division [12]: Suppose we have some divisible re-
source that should be allocated to k players in a way
that satisfies each of them. Formally, a division of the
resource is represented by a vector (x1, x2, . . . , xk) ∈
∆k = {x ≥ 0 :

∑k
i=1 xi = 1}. Each player has a prefer-

ence function pi : ∆k → [k] that describes which one is
her preferred piece under division (x1, x2, . . . , xk). We
assume that preference functions satisfy the following
condition.

Definition 7.1. A preference function p : ∆k → [k] is
greedy, if x` > 0 whenever p(x1, . . . , xk) = `.

In other words, a player always prefers a non-empty
piece. Apart from that, the preferences might depend
on all k pieces in any way. Sperner’s Lemma implies that
under this assumption, there is a division such that each
player prefers a different piece; more precisely, there is a
point x ∈ ∆k and a permutation π : [k]→ [k] such that
for each i ∈ [k], x is in the closure of the set Ci,π(i) where
player i prefers π(i): Ci,π(i) = {y ∈ ∆k : pi(y) = π(i)}
(see [12]).

Our goal here is to provide an interpretation of our
Lemma 4.1 in the context of fair division. Suppose
that the resource is not quite continuously divisible, but
instead comes in q discrete pieces, for some large integer
q. If we try to find an allocation (a1, a2, . . . , ak) where
the ai’s are integers adding up to q, it can obviously fail:
The preference functions pi could be all the same and
then each player prefers the same piece. Instead, we can
try to find a division (a1, a2, . . . , ak) such that ai ∈ Z+

and
∑k
i=1 ai = q − 1, we leave 1 unit of the resource

unallocated and we consider a player nearly satisfied if
the remaining unit is divisible so that the player prefers
her own piece.

Definition 7.2. A player i is nearly satisfied with the
j-th piece in an integral division (a1, . . . , ak),

∑k
i=1 ai =

q − 1, if there is a division (x1, . . . , xk) where bxic =

ai,
∑k
i=1 xi = q and pi(x1, . . . , xk) = j.

Our result shows that even this is impossible, in a
strong sense: For any k, there is a preference function
such that for any such division, at least k − 4 players
are not even nearly satisfied. A possible interpretation
of this is that one should be careful when applying the
fair division theorem in a discrete setting.

Corollary 7.1. Let ∆k,q = {x ∈ Rk+ :
∑k
i=1 xi = q}.

For any k ≥ 4 and q ≥ k2, there exists a greedy
preference function p : ∆k,q → [k] such that for any

integral division (a1, . . . , ak),
∑k
i=1 ai = q − 1, at most

4 players are nearly satisfied.



Proof. Consider Vk,q = {x ∈ Zk+ :
∑k
i=1 xi = q} and

the labeling ` : Vk,q → [k] provided by Lemma 4.1.
We extend this to a preference function p : ∆k,q → [k]
by considering the Voronoi tiling of ∆k,q determined
by Vk,q. I.e., we label each point x ∈ ∆k,q by the
color of its nearest neighbor in Vk,q: We let p(x) =
`(argminv∈Vk,q

‖x − v‖1). (If ties arise, then let’s say
we take the color of the lexicographically minimum
nearest vertex; this does not affect the statement of the
corollary.) Observe that if xi = 0, then the nearest
vertex v ∈ Vk,q cannot have vi ≥ 1; in that case we
could decrease vi by 1, increase another coordinate such
that vj < xj by 1 and obtain a closer vertex in Vk,q.
Therefore, the color of v cannot be i. In other words, p
is a greedy preference function.

Suppose x = (x1, . . . , xk) such that bxic = ai and∑k
i=1 ai = q − 1. Let v ∈ Vk,q be the vertex closest to

x. Clearly, we must have vi ∈ {ai, ai+1}; if vi ≥ ai+2,
there must be another coordinate such that vj < xj .
Then we can define v′i = vi−1, v′j = vj+1, and we obtain
a new vertex v′ closer to x. Similarly we can deal with
the case where vi ≤ ai − 1. Therefore, vi ∈ {ai, ai + 1}
and since

∑k
i=1 ai = q − 1, we get that exactly one of

the coordinates of v is equal to vi = ai+1 and the other
coordinates are vj = aj . In other words, p(x) = `(v)
where v is a vertex of the hyperedge e(a).

Consider now the setting where all k players have
the same preference function p as defined above. For
any integral division (a1, . . . , ak), each player is nearly
satisfied only with a piece ` such that p(x) = ` for
some point x such that bxic = ai. By the discussion
above, p(x) = `(v) for some vertex v ∈ e(a); however,
this hyperedge contains only 4 colors. Therefore, only 4
players can be nearly satisfied with their allocated piece.

We remark that the specific preference function
arising from the proof of Lemma 4.1 is not entirely
unnatural — it can be viewed as “picking the smallest of
the large pieces”, perhaps with the purpose of obtaining
a large piece while still appearing modest. We showed
that under this preference function and the division
approach outlined above, almost all the players are
necessarily going to be disappointed.

8 Conclusions and open questions

We have proved several results about colorings of a dis-
cretization of the simplex. Our first result (Proposi-
tion 2.1) can be viewed as being at the opposite end
of the spectrum from Sperner’s Lemma: Instead of the
existence of a rainbow cell, we prove a lower bound on
the number of non-monochromatic cells. Due to the
motivating Hypergraph Labeling problem, we consider
a special hypergraph embedded in the simplex rather

than a full subdivision. A natural question is whether
an analogous statement holds for simplicial subdivi-
sions. More generally, we might “interpolate” between
Sperner’s Lemma and our result, and ask: How many
cells must contain at least j colors? It is clear that these
questions depend on the structure of the subdivision,
and some assumption of regularity would be needed to
obtain a general result. More specifically, we can ask
these questions about the concrete subdivision defined
in Section 6.

• For a Sperner-admissible labeling of a “regular
simplicial subdivision” (e.g., the one defined in
Section 6), what is the minimum possible number
of non-monochromatic cells? What is the minimum
possible number of cells containing at least j colors?

We conjecture that for constant j ≤ k and q →∞, the
number of cells containing at least j colors is Ω(qk−j).
(For j = k−1, this can be shown by an argument similar
to the proof of Sperner’s Lemma.) We remark that
while obtaining a bound of Ω(qk−2) would be relatively
easy in the case of Proposition 2.1, it is crucial for our
application that we get the tight multiplicative constant
as well.

Another question is, what is the minimum number
of colors per hyperedge for labelings of the Simplex-
Lattice Hypergraph Hk,q (defined in Section 2). We
have proved that 4 colors suffice but it is possible that
2 colors are enough.

• Is there a Sperner-admissible labeling of the hyper-
graph Hk,q, for sufficiently large q, such that each
hyperedge uses at most 2 colors?

This would have a consequence for fair division as in
Section 7. We remark that such a labeling can be
designed for k = 4 and a sufficiently large q (we omit
the proof).
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