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My idea of an agreeable person is a person who agrees with me.
—Benjamin Disraeli [1, p. 29]

1. INTRODUCTION. When is agreement possible? An important aspect of group
decision-making is the question of how a group makes a choice when individual pref-
erences may differ. Clearly, when making a single group choice, people cannot all
have their “ideal” preferences, i.e., the options that they most desire, if those ideal
preferences are different. However, for the sake of agreement, people may be willing
to accept as a group choice an option that is merely “close” to their ideal preferences.

Voting is a situation in which people may behave in this way. The usual starting
model is a one-dimensional political spectrum, with conservative positions on the right
and liberal positions on the left, as in Figure 1. We call each position on the spectrum
a platform that a candidate or voter may choose to adopt. While a voter may represent
her ideal platform by some point x on this line, she might be willing to vote for a
candidate who is positioned at some point “close enough” to x , i.e., in an interval
about x .
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Figure 1. A one-dimensional political spectrum, with a single voter’s interval of approved platforms.

In this article, we ask the following: given such preferences on a political spectrum,
when can we guarantee that some fraction (say, a majority) of the population will
agree on some candidate? By “agree”, we mean in the sense of approval voting, in
which voters declare which candidates they find acceptable.

Approval voting has not yet been adopted for political elections in the United States.
However, many scientific and mathematical societies, such as the Mathematical Asso-
ciation of America and the American Mathematical Society, use approval voting for
their elections. Additionally, countries other than the United States have used approval
voting or an equivalent system; for details, see Brams and Fishburn [3] who discuss
the advantages of approval voting.

Understanding which candidates can get voter approval can be helpful when there
are a large number of candidates. An extreme example is the 2003 California guber-
natorial recall election, which had 135 candidates in the mix [7]. We might imagine
these candidates positioned at 135 points on the line in Figure 1, which we think of as
a subset of R. If each California voter approves of candidates “close enough” to her
ideal platform, we may ask under what conditions there is a candidate that wins the
approval of a majority of the voters.
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In this setting, we may assume that each voter’s set of approved platforms (her ap-
proval set) is a closed interval in R, and that there is a set of candidates who take
up positions at various points along this political spectrum. We shall call this spec-
trum with a collection of candidates and voters, together with voters’ approval sets,
a linear society (a more precise definition will be given soon). We shall say that the
linear society is super-agreeable if for every pair of voters there is some candidate that
they would both approve, i.e., each pair of approval sets contains a candidate in their
intersection. For linear societies this “local” condition guarantees a strong “global”
property, namely, that there is a candidate that every voter approves! As we shall see in
Theorem 5, this can be viewed as a consequence of Helly’s theorem about intersections
of convex sets.

But perhaps this is too strong a conclusion. Is there a weaker local condition that
would guarantee that only a majority (or some other fraction) of the voters would
approve a particular candidate? For instance, we relax the condition above and call a
linear society agreeable if among every three voters, some pair of voters approve the
same candidate. Then it is not hard to show:

Theorem 1. In an agreeable linear society, there is a candidate who has the approval
of at least half the voters.

More generally, call a linear society (k, m)-agreeable if it has at least m voters, and
among every m voters, some subset of k voters approve the same candidate. Then our
main theorem is a generalization of the previous result:

Theorem 2 (The Agreeable Linear Society Theorem). Let 2 ≤ k ≤ m. In a (k, m)-
agreeable linear society of n voters, there is a candidate who has the approval of at
least n(k − 1)/(m − 1) of the voters.

We prove a slightly more general result in Theorem 8 and also briefly study societies
whose approval sets are convex subsets of R

d .
As an example, consider a city with fourteen restaurants along its main boulevard:

A B C D E F G H I J K L M N

and suppose every resident dines only at the five restaurants closest to his/her house (a
set of consecutive restaurants, e.g., DE FG H ). A consequence of Theorem 1 is that
there must be a restaurant that is patronized by at least half the residents. Why? The
pigeonhole principle guarantees that among every 3 residents, each choosing 5 of 14
restaurants, there must be a restaurant approved by at least 2 of them; hence this linear
society is agreeable and Theorem 1 applies. For an example of Theorem 2, see Figure
3, which shows a (2, 4)-agreeable linear society, and indeed there are candidates that
receive at least 1/3 of the votes (in this case �7/3� = 3).

We shall begin with some definitions, and explain connections to classical convexity
theorems, graph colorings, and maximal cliques in graphs. Then we prove Theorem 2,
discuss extensions to higher-dimensional spectra, and conclude with some questions
for further study.

2. DEFINITIONS. In this section, we fix terminology and explain the basic concepts
upon which our results rely. Let us suppose that the set of all possible preferences is
modeled by a set X , called the spectrum. Each element of the spectrum is a platform.
Assume that there is a finite set V of voters, and each voter v has an approval set Av

of platforms.
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We define a society S to be a triple (X, V,A) consisting of a spectrum X , a set of
voters V , and a collection A of approval sets for all the voters. Of particular interest to
us will be the case of a linear society, in which X is a closed subset of R and approval
sets in A are of the form X ∩ I where I is either empty or a closed bounded interval
in R. In general, however, X could be any set and the collection A of approval sets
could be any class of subsets of X . In Figure 2 we illustrate a linear society, where
for ease of display we have separated the approval sets vertically so that they can be
distinguished.
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Figure 2. A linear society with infinite spectrum: each interval (shown here displaced above the spectrum)
corresponds to the approval set of a voter. The shaded region indicates platforms with agreement number 4.
This is a (2, 3)-agreeable society.

Our motivation for considering intervals as approval sets arises from imagining
that voters have an “ideal” platform along a linear scale (similar to Coombs’ J -scale
[8]), and that voters are willing to approve “nearby” platforms, yielding approval sets
that are connected intervals. Unlike the Coombs scaling theory, however, we are not
concerned with the order of preference of approved platforms; all platforms within a
voter’s approval set have equivalent status as “approved” by that voter. We also note
that while we model our linear scale as a subset of R, none of our results about linear
societies depends on the metric; we only appeal to the ordinal properties of R.

We have seen that politics provides natural examples of linear societies. For a dif-
ferent example, X could represent a temperature scale, V a set of people that live in a
house, and each Av a range of temperatures that person v finds comfortable. Then one
may ask: at what temperature should the thermostat be set so as to satisfy the largest
number of people?
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Figure 3. A linear society with a spectrum of two candidates (at platforms marked by carats): take the approval
sets of the society of Figure 2 and intersect with these candidates. It is a (2, 4)-agreeable linear society.

Two special cases of linear societies are worth mentioning. When X = R we should
think of X as an infinite spectrum of platforms that potential candidates might adopt.
However, in practice there are normally only finitely many candidates. We model that
situation by letting X be the set of platforms adopted by actual candidates. Thus one
could think of X as either the set of all platforms, or the set of (platforms adopted by)
candidates. See Figures 2 and 3.
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Let 1 ≤ k ≤ m be integers. Call a society (k, m)-agreeable if it has at least m voters,
and for any subset of m voters, there is at least one platform that at least k of them can
agree upon, i.e., there is a point common to at least k of the voters’ approval sets. Thus
to be (2, 3)-agreeable is the same as to be agreeable, and to be (2, 2)-agreeable is the
same as to be super-agreeable, as defined earlier.

One may check that the society of Figure 2 is (2, 3)-agreeable. It is not (3, 4)-
agreeable, however, because among voters 1, 2, 4, 7 no three of them share a common
platform. The same society, after restricting the spectrum to a set of candidates, is the
linear society shown in Figure 3. It is not (2, 3)-agreeable, because among voters 2, 4,
7 there is no pair that can agree on a candidate (in fact, voter 7 does not approve any
candidate). However, one may verify that this linear society is (2, 4)-agreeable.

For a society S, the agreement number of a platform, a(p), is the number of voters
in S who approve of platform p. The agreement number a(S) of a society S is the
maximum agreement number over all platforms in the spectrum, i.e.,

a(S) = max
p∈X

a(p).

The agreement proportion of S is simply the agreement number of S divided by the
number of voters of S. This concept is useful when we are interested in percentages of
the population rather than the number of voters. The society of Figure 2 has agreement
number 4, which can be seen where the shaded rectangle covers the set of platforms
that have maximum agreement number.

3. HELLY’S THEOREM AND SUPER-AGREEABLE SOCIETIES. Let us say
that a society is R

d -convex if the spectrum is R
d and each approval set is a closed con-

vex subset of R
d . Note that an R

1-convex society is a linear society with spectrum R.
An R

d -convex society can arise when considering a multi-dimensional spectrum, such
as when evaluating political platforms over several axes (e.g., conservative vs. liberal,
pacifist vs. militant, interventionist vs. isolationist). Or, the spectrum might be arrayed
over more personal dimensions: the dating website eHarmony claims to use up to 29 of
them [9]. In such situations, the convexity of approval sets might, for instance, follow
from an independence-of-axes assumption and convexity of approval sets along each
axis.

To find the agreement proportion of an R
d -convex society, we turn to work con-

cerning intersections of convex sets. The most well-known result in this area is Helly’s
theorem. This theorem was proven by Helly in 1913, but the result was not published
until 1921, by Radon [17].

Theorem 3 (Helly). Given n convex sets in R
d where n > d, if every d + 1 of them

intersect at a common point, then they all intersect at a common point.

Helly’s theorem has a nice interpretation for R
d -convex societies:

Corollary 4. For every d ≥ 1, a (d + 1, d + 1)-agreeable R
d -convex society must

contain at least one platform that is approved by all voters.

Notice that for the corollary to hold for d > 1 it is important that the spectrum of an
R

d -convex society be all of R
d . However, for d = 1 that is not necessary, as we now

show.

Theorem 5 (The Super-Agreeable Linear Society Theorem). A super-agreeable
linear society must contain at least one platform that is approved by all voters.
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We provide a simple proof of this theorem, since the result will be needed later.
When the spectrum is all of R, this theorem is just Helly’s theorem for d = 1; a proof
of Helly’s theorem for general d may be found in [15].

Proof. Let X ⊆ R denote the spectrum. Since each voter v agrees on at least one
platform with every other voter, we see that the approval sets Av must be nonempty. Let
Lv = min Av, Rv = max Av, and let x = maxv{Lv} and y = minv{Rv}. The first two
expressions exist because each Av is compact; the last two exist because the number
of voters is finite.

^^ ^ ^
yx

Figure 4. A super-agreeable linear society of 6 voters and 4 candidates, with agreement number 6.

We claim that x ≤ y. Why? Since every pair of approval sets intersect in some
platform, we see that Li ≤ R j for every pair of voters i, j . In particular, let i be the
voter whose Li is maximal and let j be the voter whose R j is minimal. Hence x ≤ y
and every approval set contains all platforms of X that are in the nonempty interval
[x, y], and in particular, the platform x .

The idea of this proof can be easily extended to furnish a proof of Theorem 1.

Proof of Theorem 1. Using the same notations as in the prior proof, if x ≤ y then that
proof shows that every approval set contains the platform x . Otherwise x > y implies
Li > R j so that A j and Ai do not contain a common platform.

We claim that for any other voter v, the approval set Av contains either platform
x or y (or both). After all, the society is agreeable, so some pair of Ai , A j , Av must
contain a common platform; by the remarks above it must be that Av intersects one of
Ai or A j . If Av does not contain x = Li then since Lv ≤ Li (by definition of x), we
must have that Rv < Li and Av ∩ Ai does not contain a platform. Then Av ∩ A j must
contain a platform; hence Lv ≤ R j . Since R j ≤ Rv (by definition of y), the platform
y = R j must be in Av .

Thus every approval set contains either x or y, and by the pigeonhole principle one
of them must be contained in at least half the approval sets.

Proving the more general Theorem 2 will take a little more work.

4. THE AGREEMENT GRAPH OF LINEAR SOCIETIES IS PERFECT. To
understand (k, m)-agreeability, it will be helpful to use a graph to represent the in-
tersection relation on approval sets. Recall that a graph G consists of a finite set V (G)

of vertices and a set E(G) of 2-element subsets of V (G), called edges. If e = {u, v}
is an edge, then we say that u, v are the ends of e, and that u and v are adjacent in G.
We use uv as notation for the edge e.

Given a society S, we construct the agreement graph G of S by letting the vertices
V (G) be the voters of S and the edges E(G) be all pairs of voters u, v whose approval
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sets intersect each other. Thus u and v are connected by an edge if there is a platform
that both u and v would approve. Note that the agreement graph of a society with
agreement number equal to the number of voters is a complete graph (but the converse
is false in higher dimensions, as we discuss later). Also note that a vertex v is isolated
if Av is empty or disjoint from other approval sets.

65

4 7

21

3

Figure 5. The agreement graph for the society in Figure 2. Note that voters 4, 5, 6, 7 form a maximal clique
that corresponds to the maximal agreement number in Figure 2.

The clique number of G, written ω(G), is the greatest integer q such that G has a
set of q pairwise adjacent vertices, called a clique of size q. By restricting our attention
to members of a clique, and applying the Super-Agreeable Linear Society Theorem,
we see that there is a platform that has the approval of every member of a clique, and
hence:

Fact 1. For the agreement graph of a linear society, the clique number of the graph is
the agreement number of the society.

This fact does not necessarily hold if the society is not linear. For instance, it is easy
to construct an R

2-convex society with three voters such that every two voters agree on
a platform, but all three of them do not. It does, however hold in R

d for box societies,
to be discussed in Section 6.

Now, to get a handle on the clique number, we shall make a connection between
the clique number and colorings of the agreement graph. The chromatic number of
G, written χ(G), is the minimum number of colors necessary to color the vertices
of G such that no two adjacent vertices have the same color. Thus two voters may
have the same color as long as they do not agree on a platform. Note that in all cases,
χ(G) ≥ ω(G).

A graph G is called an interval graph if we can assign to every vertex x a closed
interval or an empty set Ix ⊆ R such that xy ∈ E(G) if and only if Ix ∩ Iy 
= ∅. We
have:

Fact 2. The agreement graph of a linear society is an interval graph.

To see that Fact 2 holds let the linear society be (X, V,A), and let the voter ap-
proval sets be Av = X ∩ Iv, where Iv is a closed bounded interval or empty. We may
assume that each Iv is minimal such that Av = X ∩ Iv; then the collection {Iv : v ∈ V }
provides an interval representation of the agreement graph, as desired.

An induced subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and the
edges of H are the edges of G that have both ends in V (H). If every induced subgraph
H of a graph G satisfies χ(H) = ω(H), then G is called a perfect graph; see, e.g.,
[18]. The following is a standard fact [20] about interval graphs:

Theorem 6. Interval graphs are perfect.
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Proof. Let G be an interval graph, and for v ∈ V (G), let Iv be the interval representing
the vertex v. Since every induced subgraph of an interval graph is an interval graph,
it suffices to show that χ(G) = ω, where ω = ω(G). We proceed by induction on
|V (G)|. The assertion holds for the null graph, and so we may assume that |V (G)| ≥ 1,
and that the statement holds for all smaller graphs. Let us select a vertex v ∈ V (G)

such that Iv is empty or the right end of Iv is as small as possible. It follows that the
elements of N , the set of neighbors of v in V (G), are pairwise adjacent because their
intervals must all contain the right end of Iv, and hence |N | ≤ ω − 1. See Figure 6.
By the inductive hypothesis, the graph G\{v} obtained from G by deleting v can be
colored using ω colors, and since v has at most ω − 1 neighbors, this coloring can be
extended to a coloring of G, as desired.

I

I

v

w

Figure 6. If Iv, Iw intersect and the right end of Iv is smaller than the right end of Iw , then Iw must contain
the right end of Iv .

The perfect graph property will allow us, in the next section, to make a crucial con-
nection between the (k, m)-agreeability condition and the agreement number of the
society. Given its importance in our setting, it is worth making a few comments about
how perfect graphs appear in other contexts in mathematics, theoretical computer
science, and operations research. The concept was introduced in 1961 by Berge [2],
who was motivated by a question in communication theory, specifically, the determi-
nation of the Shannon capacity of a graph [19]. Chvátal later discovered that a certain
class of linear programs always have an integral solution if and only if the correspond-
ing matrix arises from a perfect graph in a specified way [6, 18, 5]. As pointed out
in [18], algorithms to solve semi-definite programs grew out of the theory of perfect
graphs. It has been proven recently [4] that a graph is perfect if and only if it has no
induced subgraph isomorphic to a cycle of odd length at least five, or a complement of
such a cycle.

5. (k, m)-AGREEABLE LINEAR SOCIETIES. We now use the connection be-
tween perfect graphs, the clique number, and the chromatic number to obtain a lower
bound for the agreement number of a (k, m)-agreeable linear society (Theorem 8). We
first need a lemma that says that in the corresponding agreement graph, the (k, m)-
agreeable condition prevents any coloring of the graph from having too many vertices
of the same color. Thus, there must be many colors and, since the graph is perfect, the
clique number must be large as well.

Lemma 7. Given integers m ≥ k ≥ 2, let positive integers q, ρ be defined by the divi-
sion with remainder: m − 1 = (k − 1)q + ρ, where 0 ≤ ρ ≤ k − 2. Let G be a graph
on n ≥ m vertices with chromatic number χ such that every subset of V (G) of size m
includes a clique of size k. Then n ≤ χq + ρ, or χ ≥ (n − ρ)/q.

Proof. Let the graph be colored using the colors 1, 2, . . . , χ , and for i = 1, 2, . . . , χ

let Ci be the set of vertices of G colored i . We may assume, by permuting the col-
ors, that |C1| ≥ |C2| ≥ · · · ≥ |Cχ |. Since C1 ∪ C2 ∪ · · · ∪ Ck−1 is colored using k − 1
colors, it includes no clique of size k, and hence, |C1 ∪ C2 ∪ · · · ∪ Ck−1| ≤ m − 1.
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It follows that |Ck−1| ≤ q, for otherwise |C1 ∪ C2 ∪ · · · ∪ Ck−1| ≥ (k − 1)(q + 1) ≥
(k − 1)q + ρ + 1 = m, a contradiction. Thus |Ci | ≤ q for each i ≥ k and

n =
k−1∑
i=1

|Ci | +
χ∑

i=k

|Ci | ≤ m − 1 + (χ − k + 1)q

= (k − 1)q + ρ + (χ − k + 1)q = χq + ρ,

as desired.

Theorem 8. Let 2 ≤ k ≤ m. If G is the agreement graph of a (k, m)-agreeable linear
society and q, ρ are defined by the division with remainder: m − 1 = (k − 1)q + ρ,
ρ ≤ k − 2, then the clique number satisfies:

ω(G) ≥
⌈

n − ρ

q

⌉
,

and this bound is best possible. It follows that this is also a lower bound on the agree-
ment number, and hence every linear (k, m)-agreeable society has agreement propor-
tion at least (k − 1)/(m − 1).

Proof. By Fact 2 and Theorem 6 the graph G is perfect. Thus the chromatic number
of G is equal to ω(G), and hence ω(G) ≥ �(n − ρ)/q� by Lemma 7, as desired.

The second assertion follows from Fact 1 and noting that (n − ρ)(m − 1) = n(k −
1)q + nρ − ρ(m − 1) = n(k − 1)q + ρ(n − m + 1) ≥ n(k − 1)q, from which we see
that (n − ρ)/q ≥ n(k − 1)/(m − 1).

Let us observe that the bound �(n − ρ)/q� in Theorem 8 is best possible. Indeed,
let I1, I2, . . . , Iq be disjoint intervals, for i = q + 1, q + 2, . . . , n − ρ let Ii = Ii−q ,
and let In−ρ+1, In−ρ+2, . . . , In be pairwise disjoint and disjoint from all the previous
intervals, e.g., see Figure 7. Then the society with approval sets I1, I2, . . . , In is (k, m)-
agreeable and its agreement graph has clique number �(n − ρ)/q�.

Figure 7. A linear (4, 15)-society with n = 21 voters. Here q = 4 and ρ = 2, so the clique number is at least
�(n − ρ)/q� = 5.

The Agreeable Linear Society Theorem (Theorem 2) now follows as a corollary of
Theorem 8.

6. R
d-CONVEX AND d-BOX SOCIETIES. In this section we prove a higher-

dimensional analogue of Theorem 8 by giving a lower bound on the agreement
proportion of a (k, m)-agreeable R

d -convex society. We need a different method than
our method for d = 1, because for d ≥ 2, neither Fact 1 nor Fact 2 holds.

Also, we remark that, unlike our results on linear societies, our results in this section
about the agreement proportion for platforms will not necessarily hold when restricting
the spectrum to a finite set of candidates in R

d .
We shall use the following generalization of Helly’s theorem, due to Kalai [11].
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Theorem 9 (The Fractional Helly’s Theorem). Let d ≥ 1 and n ≥ d + 1 be inte-
gers, let α ∈ [0, 1] be a real number, and let β = 1 − (1 − α)1/(d+1). Let F1, F2, . . . , Fn

be convex sets in R
d and assume that for at least α

( n
d+1

)
of the (d + 1)-element index

sets I ⊆ {1, 2, . . . , n} we have
⋂

i∈I Fi 
= ∅. Then there exists a point in R
d contained

in at least βn of the sets F1, F2, . . . , Fn.

The following is the promised analogue of Theorem 8.

Theorem 10. Let d ≥ 1, k ≥ 2, and m ≥ k be integers, where m > d. Then every
(k, m)-agreeable R

d -convex society has agreement proportion at least

1 −
(

1 −
(

k

d + 1

)/(
m

d + 1

))1/(d+1)

.

Proof. Let S be a (k, m)-agreeable R
d -convex society, and let A1, A2, . . . , An be

its voter approval sets. Let us call a set I ⊆ {1, 2, . . . , n} good if |I | = d + 1 and⋂
i∈I Ai 
= ∅. By Theorem 9 it suffices to show that there are at least

( k
d+1

)( n
d+1

)/( m
d+1

)
good sets. We will do this by counting in two different ways the number N of all
pairs (I, J ), where I ⊆ J ⊆ {1, 2, . . . , n}, I is good, and |J | = m. Let g be the num-
ber of good sets. Since every good set is of size d + 1 and extends to an m-element
subset of {1, 2, . . . , n} in

(n−d−1
m−d−1

)
ways, we have N = g

(n−d−1
m−d−1

)
. On the other hand,

every m-element set J ⊆ {1, 2, . . . , n} includes at least one k-element set K with⋂
i∈K Ai 
= ∅ (because S is (k, m)-agreeable), and K in turn includes

( k
d+1

)
good sets.

Thus N ≥ ( k
d+1

)(n
m

)
, and hence g ≥ ( k

d+1

)( n
d+1

)/( m
d+1

)
, as desired.

For d = 1, Theorem 10 gives a worse bound than Theorem 8, and hence for d ≥ 2,
the bound is most likely not best possible. However, a possible improvement must use
a different method, because the bound in Theorem 9 is best possible.

A box in R
d is the Cartesian product of d closed intervals, and we say that a so-

ciety is a d-box society if each of its approval sets is a box in R
d . By projection

onto each axis, it follows from Theorem 5 that d-box societies satisfy the conclusion
of Fact 1 (namely, that the clique number equals the agreement number), and hence
their agreement graphs capture all the essential information about the society. Unfor-
tunately, agreement graphs of d-box societies are, in general, not perfect. For instance,
there is a 2-box society (Figure 8) whose agreement graph is the cycle on five vertices;
hence its chromatic number is 3 but its clique number is 2.

For k ≤ m ≤ 2k − 2, the following theorem will resolve the agreement propor-
tion problem for all (k, m)-agreeable societies satisfying the conclusion of Fact 1, and
hence for all (k, m)-agreeable d-box societies where d ≥ 1 (Theorem 13).

Theorem 11. Let m, k ≥ 2 be integers with k ≤ m ≤ 2k − 2, and let G be a graph on
n ≥ m vertices such that every subset of V (G) of size m includes a clique of size k.
Then ω(G) ≥ n − m + k.

Before we embark on a proof let us make a few comments. First of all, the bound
n − m + k is best possible, as shown by the graph consisting of a clique of size
n − m + k and m − k isolated vertices. Second, the conclusion ω(G) ≥ n − m + k
implies that every subset of V (G) of size m includes a clique of size k, and so the two
statements are equivalent under the hypothesis that k ≤ m ≤ 2k − 2. Finally, this hy-
pothesis is necessary, because if m ≥ 2k − 1, then for n ≥ 2(m − k + 1), the disjoint
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Figure 8. A 2-box society whose agreement graph is a 5-cycle.

union of cliques of sizes n/2� and �n/2� satisfies the hypothesis of Theorem 11, but
not its conclusion.

A vertex cover of a graph G is a set Z ⊆ V (G) such that every edge of G has at
least one end in Z . We say a set S ⊆ V (G) is stable if no edge of G has both ends in
S. We deduce Theorem 11 from the following lemma.

Lemma 12. Let G be a graph with vertex cover of size z and none of size z − 1 such
that G\{v} has a vertex cover of size at most z − 1 for all v ∈ V (G). Then |V (G)| ≤
2z.

Proof. Let Z be a vertex cover of G of size z. For every v ∈ V (G) − Z let Zv be a
vertex cover of G\{v} of size z − 1, and let Xv = Z − Zv . Then Xv is a stable set. For
X ⊆ Z let N (X) denote the set of neighbors of X outside Z . We have v ∈ N (Xv) and
N (Xv) − {v} ⊆ Zv − Z , and so

|Xv| = |Z − Zv| = |Z | − |Z ∩ Zv| = |Zv| + 1 − |Z ∩ Zv| = |Zv − Z | + 1

≥ |N (Xv)|.
On the other hand, if X ⊆ Z is stable, then |N (X)| ≥ |X |, for otherwise (Z − X) ∪
N (X) is a vertex cover of G of size at most z − 1, a contradiction. We have

|Z | ≥
∣∣∣⋃ Xv

∣∣∣ ≥
∣∣∣⋃ N (Xv)

∣∣∣ ≥ |V (G)| − |Z |, (1)

where both unions are over all v ∈ V (G) − Z , and hence |V (G)| ≤ 2z, as required.
To see that the second inequality holds let u, v ∈ V (G) − Z . Then

|Xu ∪ Xv| = |Xu| + |Xv| − |Xu ∩ Xv| ≥ |N (Xu)| + |N (Xv)| − |N (Xu ∩ Xv)|
≥ |N (Xu)| + |N (Xv)| − |N (Xu) ∩ N (Xv)| = |N (Xu) ∪ N (Xv)|,

and, in general, the second inequality of (1) follows by induction on |V (G) − Z |.

Proof of Theorem 11. We proceed by induction on n. If n = m, then the conclusion
certainly holds, and so we may assume that n ≥ m + 1 and that the theorem holds
for graphs on fewer than n vertices. We may assume that m > k, for otherwise the
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hypothesis implies that G is the complete graph. We may also assume that G has
two nonadjacent vertices, say x and y, for otherwise the conclusion holds. Then in G,
every clique contains at most one of x, y, so in the graph G\{x, y} every set of vertices
of size m − 2 includes a clique of size k − 1. Since k − 1 ≤ m − 2 ≤ 2(k − 1) − 2
we deduce by the inductive hypothesis that ω(G) ≥ ω(G\{x, y}) ≥ n − 2 − (m −
2) + k − 1 = n − m + k − 1. We may assume in the last statement that equality holds
throughout, because otherwise G satisfies the conclusion of the theorem. Let Ḡ denote
the complement of G; that is, the graph with vertex set V (G) and edge set consisting
of precisely those pairs of distinct vertices of G that are not adjacent in G. Let us
notice that a set Q is a clique in G if and only if V (G) − Q is a vertex cover in Ḡ.
Thus Ḡ has a vertex cover of size m − k + 1 and none of size m − k. Let t be the least
integer such that t ≥ m and Ḡ has an induced subgraph H on t vertices with no vertex
cover of size m − k. We claim that t = m. Indeed, if t > m, then the minimality of t
implies that H\{v} has a vertex cover of size at most m − k for every v ∈ V (H). Thus
by Lemma 12, t = |V (H)| ≤ 2(m − k + 1) ≤ m < t , a contradiction. Thus t = m.
By hypothesis, the graph H̄ has a clique Q of size k, but V (H) − Q is a vertex cover
of H of size m − k, a contradiction.

Theorem 13. Let d ≥ 1 and m, k ≥ 2 be integers with k ≤ m ≤ 2k − 2, and let S be
a (k, m)-agreeable d-box society with n voters. Then the agreement number of S is at
least n − m + k, and this bound is best possible.

Proof. The agreement graph G of S satisfies the hypothesis of Theorem 11, and hence
it has a clique of size at least n − m + k by that theorem. Since d-box societies satisfy
the conclusion of Fact 1, the first assertion follows. The bound is best possible, because
the graph consisting of a clique of size n − m + k and m − k isolated vertices is an
interval graph.

7. DISCUSSION. As we have seen, set intersection theorems can provide a useful
framework to model and understand the relationships between sets of preferences in
voting, and this context leads to new mathematical questions. We suggest several di-
rections which the reader may wish to explore.

Recent results in discrete geometry have social interpretations. The piercing number
[12] of approval sets can be interpreted as the minimum number of platforms that are
necessary such that everyone has some platform of which he or she approves. Set
intersection theorems on other spaces (such as trees and cycles) are derived in [16]
as an extension of both Helly’s theorem and the KKM lemma [13]; as an application
the authors show that in a super-agreeable society with a circular political spectrum,
there must be a platform that has the approval of a strict majority of voters (in contrast
with Theorem 5). Chris Hardin [10] has recently provided a generalization to (k, m)-
agreeable societies with a circular political spectrum.

What results can be obtained for other spectra? The most natural problem seems to
be to determine the agreement proportion for R

d -convex and d-box (k, m)-agreeable
societies. The smallest case where we do not know the answer is d = 2, k = 2,
and m = 3. Rajneesh Hegde (private communication) found an example of a (2, 3)-
agreeable 2-box society with agreement proportion 3/8. There may very well be a
nice formula, because for every fixed integer d the agreement number of a d-box so-
ciety can be computed in polynomial time. This is because the clique number of the
corresponding agreement graph (also known as a graph of boxicity at most d) can be
determined by an easy polynomial-time algorithm. On the other hand, for every d ≥ 2
it is NP-hard to decide whether an input graph has boxicity at most d [14, 21]. (For
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d = 1 this is the same as testing whether a graph is an interval graph, and that can be
done efficiently.)

Passing from results about platforms in societies to results about a finite set of can-
didates appears to be tricky in dimensions greater than 1. Are there techniques or
additional hypotheses that would give useful results about the existence of candidates
who have strong approval in societies with multi-dimensional spectra?

We may also question our assumptions. While convexity seems to be a rational
assumption for approval sets in the linear case, in multiple dimensions additional con-
siderations may become important. One might also explore the possibility of discon-
nected approval sets: what is the agreement proportion of a (k, m)-agreeable society
in which every approval set has at most two components?

One might also consider varying levels of agreement. For instance, in a d-box so-
ciety, two voters might not agree on every axis, so their approval sets do not intersect,
but it might be the case that many of the projections of their approval sets do. In this
case, one may wish to consider an agreement graph with weighted edges.

Finally, we might wonder about the agreement parameters k and m for various real-
world issues. For instance, a society considering outlawing murder would probably be
much more agreeable than that same society considering tax reform. Currently, we can
empirically measure these parameters only by surveying large numbers of people about
their preferences. It is interesting to speculate about methods for estimating suitable k
and m from limited data.

This article grew out of the observation that Helly’s theorem, a classical result in
convex geometry, has an interesting voting interpretation. This led to the development
of mathematical questions and theorems whose interpretations yield desirable conclu-
sions in the voting context, e.g., Theorems 2, 8, 10, and 13. It is nice to see that when
classical theorems have interesting social interpretations, the social context can also
motivate the study of new mathematical questions.
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