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A polyhedron P has the Integer Carathéodory Property if the follow-
ing holds. For any positive integer k and any integer vector w ∈ kP ,
there exist affinely independent integer vectors x1, . . . , xt ∈ P and
positive integers n1, . . . ,nt such that n1 + · · · + nt = k and w =
n1x1 + · · · + nt xt .
In this paper we prove that if P is a (poly)matroid base polytope or
if P is defined by a totally unimodular matrix, then P and projec-
tions of P have the Integer Carathéodory Property. For the matroid
base polytope this answers a question by Cunningham from 1984.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A polyhedron P ⊆ R
n has the integer decomposition property, introduced by Baum and Trotter [1],

if for every positive integer k, every integer vector in kP is the sum of k integer vectors in P . Equiva-
lently, every 1

k -integer vector x ∈ P is a convex combination

x = λ1x1 + · · · + λt xt , xi ∈ P ∩ Z
n, λi ∈ 1

k
Z. (1)

Examples of such polyhedra include: stable set polytopes of perfect graphs, polyhedra defined by
totally unimodular matrices and matroid base polytopes.

It is worth pointing out the relation with Hilbert bases. Recall that a finite set of integer vectors H
is called a Hilbert base if every integer vector in the convex cone generated by H , is an integer sum
of elements from H . Hence if P is an integer polytope and H := {(1

x

) | x ∈ P integer}, then P has the
integer decomposition property, if and only if H is a Hilbert base.

Let P be a polyhedron with the integer decomposition property. It is natural to ask for the smallest
number T , such that we can take t � T in (1) for every k and every 1

k -integer vector x ∈ P . We denote
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this number by cr(P ), the Carathéodory rank of P . Clearly, if P is a polytope, cr(P ) � dim(P )+1 holds,
since P is not contained in the union of the finitely many affine spaces spanned by at most dim(P )

integer vectors in P .
Cook et al. [5] showed that when H is a Hilbert base generating a pointed cone C of dimension

n � 1, every integer vector in C is the integer linear combination of at most 2n − 1 different elements
from H . For n > 1, this bound was improved to 2n − 2 by Sebő [15]. By the above remark, this implies
that cr(P ) � 2 dim(P ) holds for any polytope P of positive dimension.

Bruns et al. [2] gave an example of a Hilbert base H generating a pointed cone C of dimension 6,
together with an integer vector in C that cannot be written as a nonnegative integer combination of
less than 7 elements from H . Their example yields a 0–1 polytope with the integer decomposition
property of dimension 5 but with Carathéodory rank 7, showing that cr(P ) = dim(P ) + 1 does not
always hold. The vertices of the polytope are given by the columns of the matrix⎡

⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 1 0 1

0 1 1 0 0 1 0 0 1 0

0 0 1 1 0 0 1 0 0 1

0 0 0 1 1 1 0 1 0 0

⎤
⎥⎥⎥⎥⎦ . (2)

In this paper we prove that if P is a (poly)matroid base polytope or if P is a polyhedron defined
by a totally unimodular matrix, then P and projections of P satisfy the inequality cr(P ) � dim(P )+ 1.
For matroid base polytopes this answers a question of Cunningham [6] whether a sum of bases in
a matroid can always be written as a sum using at most n bases, where n is the cardinality of the
ground set (see also [15,8]).

In our proof we use the following strengthening of the integer decomposition property, inspired
by Carathéodory’s theorem from convex geometry. We say that a polyhedron P ⊆ R

n has the Integer
Carathéodory Property (notation: ICP) if for every positive integer k and every integer vector w ∈ kP
there exist affinely independent x1, . . . , xt ∈ P ∩Z

n and n1, . . . ,nt ∈ Z�0 such that n1 +· · ·+nt = k and
w = ∑

i ni xi . Equivalently, the vectors xi in (1) can be taken to be affinely independent. In particular,
if P has the ICP, then cr(P ) � dim P + 1.

It is implicit in [5,15] that the stable set polytope of a perfect graph has the ICP since a ‘greedy’
decomposition can be found, where the xi are in the interior of faces of strictly decreasing dimension,
and hence are affinely independent.

The organization of the paper is as follows. In Section 2 we introduce an abstract class of polyhedra
and show that they have the ICP.

In Section 3 we apply this result to show that polyhedra defined by (nearly) totally unimodular
matrices, and their projections, have the ICP.

Section 4 deals with applications to (poly)matroid base polytopes and the intersections of two
gammoid base polytopes, showing that these all have the ICP. We conclude by stating two open
problems related to matroid intersection.

2. A class of polyhedra having the ICP

In this section we give a sufficient condition for a polyhedron P ⊆ R
n to have the Integer

Carathéodory Property. This condition is closely related to the middle integral decomposition condition
introduced by McDiarmid in [11]. First we introduce some notation and definitions.

Throughout this paper we set Z̄ := Z ∪ {−∞,+∞}. For a vector x ∈ R
n we denote the i-th entry

of x by x(i). Recall that a polyhedron P is called an integer polyhedron if every face of P contains an
integer vector. The polyhedron P is called box-integer if for every pair of vectors c � d ∈ Z̄

n , the set
{x ∈ P | c � x � d} is an integer polyhedron.

Let P be the set of rational polyhedra P ⊆ R
n (for some n) satisfying the following condition:

For any k ∈ Z�0, r ∈ {0, . . . ,k} and w ∈ Z
n

the intersection r P ∩ (
w − (k − r)P

)
is box-integer. (3)
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Theorem 1. If P ∈ P , then P has the Integer Carathéodory Property.

Before we prove this theorem we first need a few results describing some properties of P .

Lemma 2. Every P ∈ P has the integer decomposition property.

Proof. Let P ⊆ R
n be in P , let k be a positive integer and let w ∈ kP ∩Z

n . Note that P ∩(w −(k−1)P )

is nonempty since it contains 1
k w = w − (k−1)w

k .
Since P ∈ P , the intersection P ∩ (w − (k − 1)P ) is box-integer. Take any integer vector xk ∈ P ∩

(w − (k − 1)P ) and note that w − xk ∈ (k − 1)P ∩ Z
n . So by induction we can write w = (x1 + · · · +

xk−1) + xk with xi ∈ P ∩ Z
n for all i. �

As a consequence of Lemma 2, every P ∈ P is an integer polyhedron. Indeed, let F be a face of P
and x ∈ F a rational vector. Take k ∈ Z�0 such that kx ∈ Z

n . By Lemma 2 we can write kx = ∑k
i=1 xi

with xi ∈ P ∩ Z
n . Clearly, x1, . . . , xk ∈ F , hence F contains an integer vector.

Lemma 3. The collection P is closed under taking faces and intersections with a box.

Proof. First note that if P1 and P2 are two polyhedra and Fi ⊆ Pi are faces, then either F1 ∩ F2 = ∅
or F1 ∩ F2 is a face of P1 ∩ P2.

Now let P ∈ P and let F be a face of P . To see that F satisfies (3), let k ∈ Z�0, r ∈ {0, . . . ,k}
and let w ∈ Z

n . If r F ∩ (w − (k − r)F ) is empty there is nothing to prove. Otherwise, it is a face of
r P ∩ (w − (k − r)P ) and hence box-integer.

To see the second assertion, let c � d ∈ Z̄
n and consider the polyhedron P ′ := {x ∈ P | c � x � d}.

Let w ∈ Z
n , k ∈ Z�0 and r ∈ {0, . . . ,k}. Note that r P ′ ∩ (w − (k − r)P ′) is equal to{

x ∈ r P ∩ (
w − (k − r)P

) ∣∣ rc � x � rd, w − (k − r)d � x � w − (k − r)c
}
. (4)

Hence r P ′ ∩ (w − (k − r)P ′) is the intersection of the box-integer polyhedron r P ∩ (w − (k − r)P ) with
a box, which is again box-integer. �

Note that Lemma 3 together with the observation below Lemma 2 imply the following.

Proposition 4. Every P ∈ P is box-integer.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let P ⊆ R
n be a polyhedron in P . The proof is by induction on dim(P ).

The case dim(P ) = 0 is clear, so we may assume dim(P ) � 1. Let k be a positive integer and let
w ∈ kP ∩ Z

n . We may assume that P is a polytope by replacing P by{
x ∈ P

∣∣∣∣
⌊

1

k
w(i)

⌋
� x(i) �

⌈
1

k
w(i)

⌉
for all i

}
. (5)

If w(i) is a multiple of k for each i = 1, . . . ,n, we write w = k · 1
k w and we are done. We may therefore

assume that k does not divide w(n) and write w(n) = kq + r with q ∈ Z and r ∈ {1, . . . ,k − 1}.
Note that w ∈ k({x ∈ P | q � x(n) � q + 1}). So by Lemmas 2 and 3 we can write w = x1 + · · · + xk

with xi ∈ P ∩Z
n and with q � xi(n) � q + 1 for all i. We may assume that xi(n) = q + 1 for i = 1, . . . , r

and xi(n) = q for i = r + 1, . . . ,k.
We denote P1 := {x ∈ P | x(n) = q + 1} and P2 := {x ∈ P | x(n) = q}. Set w ′ := x1 + · · · + xr . This

gives a decomposition of w into two integer vectors

w ′ ∈ r P1,

w − w ′ = xr+1 + · · · + xk ∈ (k − r)P2. (6)
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Define

Q := r P1 ∩ (
w − (k − r)P2

) = (
r P ∩ (

w − (k − r)P
)) ∩ {

x
∣∣ x(n) = r(q + 1)

}
(7)

and note that Q is nonempty as it contains w ′ . Let y ∈ Q be an integral vertex. Such a y exists
because r P ∩ (w − (k − r)P ) is box-integer by assumption. Let F1 be the inclusionwise minimal face
of r P1 containing y and let F2 be the inclusionwise minimal face of w − (k − r)P2 containing y. Let
Hi = aff.hull(Fi). Then

H1 ∩ H2 = {y}. (8)

Indeed, every supporting hyperplane of r P1 containing y should also contain F1, by minimality of
F1 hence it contains H1. Similarly, every supporting hyperplane of w − (k − r)P2 containing y also
contains H2. Since y is a vertex of Q , it is the intersection of the supporting hyperplanes of the two
polytopes containing y and the claim follows.

Let F ′
i be the face of Pi corresponding to Fi (i = 1,2). That is: F1 = r F ′

1 and F2 = w − (k − r)F ′
2.

Since dim F ′
i � dim Pi � dim P − 1, we inductively obtain integer decompositions

y = m1x1 + · · · + msxs, w − y = n1 y1 + · · · + nt yt, (9)

where x1, . . . , xs ∈ F ′
1 are affinely independent integer vectors, y1, . . . , yt ∈ F ′

2 are affinely independent
integer vectors and m1 + · · · + ms = r, n1 + · · · + nt = k − r.

To complete the proof, we show that x1, . . . , xs, y1, . . . , yt are affinely independent. Suppose there
is an affine dependence

s∑
i=1

λi xi +
t∑

i=1

μi yi = 0,
∑

i

λi +
∑

i

μi = 0. (10)

We need to show that all λi and all μi are zero.
By considering the last coordinate, we see that (q + 1)

∑
i λi + q

∑
i μi = 0 and hence

∑
i λi =∑

i μi = 0.
Since y, rx1, . . . , rxs ∈ F1 and

∑
i

λi
r = 0, it follows from

y +
∑

i

λi xi = y +
∑

i

λi

r
(rxi) (11)

that y + ∑
i λi xi is in the affine hull H1 of F1. Similarly, y + ∑

i λi xi is in the affine hull H2 of F2,
since y, w − (k − r)y1, . . . , w − (k − r)yt ∈ F2 and

y +
∑

i

λi xi = y −
∑

i

μi yi = y +
∑

i

μi

k − r

(
w − (k − r)yi

)
. (12)

It follows by (8) that y + ∑
i λi xi = y. By affine independence of the xi , this implies that λ1 = · · · =

λs = 0. Hence
∑

i μi yi = 0, which implies by affine independence of the yi that μ1 = · · · = μt = 0. �
We end this section by showing that projections of polyhedra in P also have the ICP.

Theorem 5. Let m � n and let π : R
n → R

m be the projection onto the first m coordinates. If P ⊂ R
n and

P ∈ P , then π(P ) has the ICP.

Proof. Define Q := π(P ). Let k be a positive integer and let w ∈ kQ ∩ Z
m . We may assume that P

is bounded. Indeed, taking N ∈ Z�0 large enough such that π−1({w}) ∩ [−kN,kN]n is not empty. We
can replace P by

P ∩ [−N, N]n, (13)

and replace Q by π(P ∩ [−N, N]n).
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Let F ⊆ kP be an inclusionwise minimal face intersecting π−1({w}). Then

π |F is injective. (14)

Indeed, suppose that π(a) = π(b) for distinct a,b ∈ F . Let x ∈ F ∩π−1({w}). Then since F is bounded,
the line x + R(b − a) intersects F in a smaller face, contradicting the minimality of F .

Now note that F ∩ π−1({w}) is the intersection of F with the box

{
x ∈ R

n
∣∣ x(i) = w(i), i = 1, . . . ,m

}
. (15)

Since P ∈ P , also kP ∈ P and so kP is box-integer by Proposition 4. This in turn implies that F
is box-integer. Hence we can lift w to an integer vector ŵ ∈ F ∩ π−1({w}). By Theorem 1 we can
find affinely independent integer vectors x1, . . . , xt in 1

k F and positive integers n1, . . . ,nt such that
n1 + · · · + nt = k and

ŵ =
t∑

i=1

ni xi . (16)

Since π |F is injective, π(x1), . . . ,π(xt) are also affinely independent. Hence

w =
t∑

i=1

niπ(xi) (17)

is the desired decomposition of w . �
3. Polyhedra defined by totally unimodular matrices

In this section we prove that polyhedra defined by (nearly) totally unimodular matrices have the
ICP. Recall that a matrix A is called totally unimodular (notation: TU) if for each square submatrix C
of A, det(C) ∈ {−1,0,1}. For details on TU matrices we refer to [13].

Theorem 6. Let P := {x ∈ R
n | Ax � b}, where A is an m ×n TU matrix and b ∈ Z

m. Then P ∈ P . In particular,
every projection of P has the ICP.

Proof. Let k ∈ Z�0, r ∈ {0, . . . ,k} and w ∈ Z
n . Define

A′ =
[

A
−A

]
, b′ :=

[
rb

(k − r)b − Aw

]
. (18)

Then r P ∩ (w − (k − r)P ) = {x | A′x � b′}. Since A′ is totally unimodular and b′ is integral, it follows
that {x | A′x � b′} is a box-integer polyhedron (see for example Chapter 19.1 in [13]). It follows that
P ∈ P .

Theorem 5 now implies that every projection of P has the ICP. �
A consequence of Theorem 6 is that co-flow polyhedra, introduced by Cameron and Edmonds

in [3], have the ICP since they are projections of TU polyhedra (see also [16]).
We end this section with an extension of Theorem 6 to so-called nearly totally unimodular matri-

ces. In [10] a matrix A is called nearly totally unimodular (notation: NTU) if there exists a TU matrix
Â a row a of Â and an integer vector c such that A = Â + caT . For an m × n NTU matrix A and an
integer vector b the integer polyhedron P A,b is defined by

P A,b := conv.hull
({

x ∈ Z
n

∣∣ Ax � b
})

. (19)
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Note that

P A,b = conv.hull

( ⋃
s∈Z

{
y

∣∣ Â y � b − sc, aT y = s
})

. (20)

In order to show P A,b has the ICP, we will use the following theorem from [10].

Theorem 7. Let Â be an m × n TU matrix let a be a row of Â, let b, c ∈ Z
m and define A := Â + caT . Let k be

a nonnegative integer and let w ∈ Z
n. Write aT w = qk + r with q, r ∈ Z and with 0 � r � k − 1. Equivalent

are:

(i) w ∈ kP A,b;
(ii) the system

Â y � r(b − (q + 1)c),

Â y � Âw + (k − r)(qc − b),

aT y = r(q + 1) (21)

is feasible.

Theorem 8. Let Â be an m ×n TU matrix let a be a row of Â, let b, c ∈ Z
m and define A := Â + caT . Then P A,b

has the ICP.

Proof. Let k be a positive integer and let w ∈ kP A,b . Write aT w = qk + r with q, r ∈ Z and with
0 � r � k − 1. We may assume that P A,b is bounded. Indeed, by Theorem 7 we can take a solution y
of (21) and let l, u ∈ Z

n be such that rl � y � ru and w − (k − r)u � y � w − (k − r)l. Define the NTU
matrix A′ and the integer vector b′ by

A′ :=
[ A

I
−I

]
, b′ :=

[ b
u
−l

]
. (22)

By Theorem 7 it follows that w ∈ kP A′,b′ . Since P A′,b′ ⊆ P A,b is bounded, we can replace P A,b by
P A′,b′ .

Define polyhedra Pi ⊆ P A,b by

P1 := {
y ∈ R

n
∣∣ Â y � b − (q + 1)c, aT y = q + 1

}
,

P2 := {
y ∈ R

n
∣∣ Â y � b − qc, aT y = q

}
. (23)

If r = 0 then w ∈ kP2 and then the claim follows directly from Theorem 6. So we may assume
r > 0.

Note that the polyhedron defined by (21) is equal to r P1 ∩ (w − (k − r)P2) and is nonempty by
Theorem 7. Let y be a vertex of r P1 ∩ (w − (k − r)P2). Then y is an integral vector because (21) is
defined by a TU matrix. Let F1 ⊆ r P1 and F2 ⊆ w − (k − r)P2 be the inclusionwise minimal faces
containing y.

So we now have a decomposition of w = y + (w − y) with y ∈ F1 and w − y ∈ w − F2. Since P1
and P2 are polytopes defined by TU matrices, Theorem 6 implies that we can find a positive integer
decomposition of y into affinely independent integer vectors x1, . . . , xt from 1

r F1 and of w − y into
affinely independent integer vectors y1, . . . , ys from 1

k−r (w − F2).
Completely similar to the proof of Theorem 1 it follows that x1, . . . , xt , y1, . . . , ys are affinely in-

dependent. Hence combining the decompositions for y and w − y gives the desired decomposition
for w . �
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Interestingly enough, not every polytope defined by an NTU matrix is contained in P . Consider
the following example. Let P := {x ∈ R

2 | x � 0, x1 + 2x2 � 2}. This is an integer polytope, but not
box-integer (take intersection with x1 � 1). But P is defined by an NTU matrix. Namely, define

A :=
[−1 0

0 −1
1 2

]
, b :=

[0
0
2

]
, (24)

then P = P A,b .
This shows that there exist polytopes having the ICP, which are not projections of polytopes in P ,

as box-integrality is maintained under projections.

4. The (poly)matroid base polytope

In his paper on testing membership in matroid polyhedra, Cunningham [6] asked for an upper
bound on the number of different bases needed in a representation of a vector as a nonnegative
integer sum of bases. It follows from Edmonds’ matroid partitioning theorem [7] that the incidence
vectors of matroid bases form a Hilbert base for the pointed cone they generate. Hence denoting by n
the size of the ground set of the matroid, the upper bound of 2n − 2 applies by Sebő [15]. This bound
was improved by de Pina and Soares [12] to n + r − 1, where r is the rank of the matroid. Chaourar
[4] showed that an upper bound of n holds for a certain minor closed class of matroids.

In this section we show that the (poly)matroid base polytope has the ICP. This in particularly
implies that the upper bound of n holds for all matroids. Furthermore, we show that the intersection
of any two gammoid base polytopes has the ICP.

First we introduce the basic notions concerning submodular functions. For background and more
details, we refer the reader to [9,14].

Let E be a finite set and denote its power set by 2E . For any x : E → R, and any U ⊆ E we write
x(U ) := ∑

i∈U x(i).
A function f : 2E → Z is called submodular if for any A, B ⊆ E the inequality f (A) + f (B) �

f (A ∪ B) + f (A ∩ B) holds. A function g : 2E → Z is called supermodular if −g is submodular.
Consider the following polyhedra

E P f := {
x ∈ R

E
∣∣ x(U ) � f (U ) for all U ⊆ E

}
,

P f := {
x ∈ E P f

∣∣ x(U ) � 0 for all U ⊆ E
}
,

B f := {
x ∈ E P f

∣∣ x(E) = f (E)
}
. (25)

The polyhedron E P f is called the extended polymatroid associated to f , P f is called the polymatroid
associated to f and B f is called the base polytope of f . Observe that B f is indeed a polytope, since for
x ∈ B f and e ∈ E , the inequalities f (E) − f (E − e) � x(e) � f ({e}) hold, showing that B f is bounded.

A submodular function f : 2E → Z is the rank function of a matroid M on E if and only if f is
nonnegative, nondecreasing and f (U ) � |U | for every set U ⊆ E . In that case, B f is the convex hull
of the incidence vectors of the bases of M .

Our main tool for proving that E P f has the ICP is the following result from [14], which is similar
to Edmonds’ polymatroid intersection theorem [7].

Theorem 9. Let f , g : 2E → Z be two set functions. If f is submodular and g is supermodular, then{
x ∈ R

E
∣∣ g(U ) � x(U ) � f (U ), for all U ⊆ E

}
(26)

is box-integer.

Theorem 9 implies that the extended polymatroid is an element of P and hence has the ICP.

Theorem 10. Let E be a finite set and let f : 2E → Z be a submodular function, then E P f , P f , B f ∈ P . In
particular, each of these polyhedra and their projections have the ICP.
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Proof. By Theorem 5, it suffices to prove the first part of the theorem. Furthermore, since B f is a face
of E P f and P f is the intersection of E P f with a box, it suffices by Lemma 3 to prove that E P f ∈ P .

Let k ∈ Z�0, r ∈ {0, . . . , r} and w ∈ Z
E . First note that rE P f = E Prf , with r f submodular again.

Secondly, let g := −(k − r) f + w and note that g is supermodular. Observe that for x ∈ R
E we have

x ∈ w − (k − r)E P f if and only if x(U ) � g(U ) for all U ⊆ E . Hence rE P f ∩ (w − (k − r)E P f ) is
box-integer by Theorem 9. So indeed, E P f ∈ P . �

Note that Theorem 10 implies that generalized polymatroid base polytopes also have the ICP, as
they are projections of base polytopes of polymatroids. See [9] for more details on generalized poly-
matroids.

Below we show that if P is the intersection of two base polytopes of gammoids, then P has the
ICP.

Given a digraph D = (V , A) and subsets U , S of V , one can define a matroid on the set S as
follows. A subset I ⊆ S is independent if there exists I ′ ⊆ U with |I| = |I ′| and if there are |I| vertex-
disjoint (directed) paths from I ′ to I . A matroid isomorphic to a matroid defined in this way is called
a gammoid. Equivalently, gammoids are restrictions of duals of transversal matroids. See [14] for more
details on gammoids. We have the following theorem.

Theorem 11. Let P1 and P2 be the base polytopes of two gammoids M1 and M2 of rank k defined on the same
ground set S. Let P := P1 ∩ P2 , then P has the ICP.

Proof. For i = 1,2, let Mi be associated to digraph Di = (V i, Ai) induced by sets Ui , Si . We may
assume that V 1 and V 2 are disjoint. We may further assume that S = S1 and denote by ϕ : S1 → S2
the bijection corresponding to the identification of S2 and S .

We define a new digraph by glueing D1 to the reverse of D2 using the bijection ϕ and splitting
each node v into a source node vout and a sink node v in. More precisely, define the digraph D =
(V , A) as follows.

V := {
v in, vout

∣∣ v ∈ V 1 ∪ V 2
}
,

A := {(
v in, vout) ∣∣ v ∈ V 1 ∪ V 2

} ∪ {(
sout,ϕ(s)in) ∣∣ s ∈ S

}
∪ {(

uout, v in) ∣∣ (u, v) ∈ A1
} ∪ {(

uout, v in) ∣∣ (v, u) ∈ A2
}
. (27)

Identifying each element s ∈ S with the corresponding arc (sout,ϕ(s)in), we have

I ⊂ S is a common base of M1 and M2 if and only if there
exists k arc disjoint paths from U in

1 to U out
2 in D passing through I. (28)

Extend D with two extra vertices r (source) and s (sink), and arcs (r, uin) for each u ∈ U1, arcs
(uout, s) for each u ∈ U2 and finally the arc (s, r). Let X be the incidence matrix of the resulting
digraph D ′ = (V ′, A′). Define the flow polytope

Q := {
f ∈ R

A′ ∣∣ X f = 0, 0 � f (a) � 1, ∀a ∈ A′ \ {
(s, r)

}
, f

(
(s, r)

) = k
}
. (29)

Since X is totally unimodular and P is closed under intersection with a box, Q belongs to P by
Theorem 6. As P = P1 ∩ P2 is the projection of Q onto the coordinates indexed by S , we conclude
that P has the ICP. �

We end this section with some (open) questions concerning possible extensions of Theorem 11.
Gammoids form a subclass of so-called strongly base orderable matroids. It is known that for

any two strongly base orderable matroids, the common base polytope has the integer decomposition
property (see [14]).

Question 1. Does the intersection of two base polytopes of strongly base orderable matroids have the
ICP?
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In [15] Sebő asks whether the Carathéodory rank of the r-arborescence polytope can be bounded
by the cardinality of the ground set. An r-arborescence is a common base of a partition matroid and
a graphic matroid.

Question 2. Does the r-arborescence polytope have the ICP?
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