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ANNALS OF MATHEMATICS 
Vol. 52, No. 1, July, 1950 

SOME APPLICATIONS OF A THEOREM ON CONVEX FUNCTIONS 

By S. KARLIN AND L. S. SHAPLEY 

(Received April 21, 1949) 

?1. Introduction 

This note presents several applications of the theory developed elsewhere by 
the authors and H. F. Bohnenblust [1]. The results established here depend upon 
a fundamental theorem on convex functions, previously used in relation to the 
Theory of Games. Certain extensions of Helly's theorem (?2), approximation and 
fitting results (?3), and covering theorems for the n dimensional unit sphere 
(?4) are obtained. All these are intrinsically connected with one another. The 
authors believe they possess independent interest. 

?2. Convex sets 
For later use, we state the theorem referred to above ([1], Theorem 1): 
THEOREM 1. If A is a convex compact set lying in n dimensional space, and if 

91 = {4fa I is a family of continuous convex functions defined over A, with 

inf sup 4a(X) > 0, 
xeA a 

then there exists a convex combination of at most n + 1 of the functions which is posi- 
tive over A. That is, there exist q5i e 2I and {i > 0, i = 1, n+ ,with 1 
and 

inf E i (P~i(x) > ?. 
i=1 

First, this can be used to give a simple proof of the well known theorem of 
Helly on the intersection of convex sets: 

LEMMA 1. Let ?I be a family of convex closed bounded sets ra in n dimensiona 
Euclidean space En . If every n + 1 members of 2I intersect, then fara is non- 
empty. 

PROOF. It is sufficient to show that any finite number of sets of 2I intersect, 
for then compactness will yield the general result if we restrict ourselves, as we 
may, to a bounded portion of the space. Let { rF, ... , rF} be any finite sub- 
family of ?1, and let A be a convex, compact region containing them. Let Pi (x) 
be the distance from a point x to ri, then Oi is a convex function. If the ri do not 
all intersect, then every point of A is outside some ri , and hence 

inf sup Oi(x) > 0. 
xeA i 

We apply now Theorem 1, and obtain the existence of a convex combination of 
n + 1 functions Oi with Doi(x) > 0 for every x in A. This easily yields a 
contradiction of hypothesis. 

LEMMA 2. If 2I is a family of closed bounded convex sets ra in En , and if every 
n sets intersect, then there exists a line through the origin which intersects every 
member of W. 

148 
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CONVEX FUNCTIONS 149 

PROOF. It is sufficient to prove the lemma for finite number of sets ri. A 
simple compactness argument then yields the conclusion for the general case, 
as follows: Let sa denote the set of points on the projective sphere corresponding 
to the direction of the lines through the origin which intersect ra . If we prove 
that every finite sub-family of the sa intersect, then, the projective space being 
compact, the same conclusion will apply to the entire family. 

We enlarge every convex set ri by describing an e sphere about each point 
of ri and forming the convex closure of the resulting set. Denote the obtained 
sets by ri(e). Thus each set is now n dimensional. It is established now that 
there exists a line through the origin intersecting every ri(e). A direct compact- 
ness argument will then give the same conclusion for ri . 

To this end, consider the unit sphere and for any direction which corresponds 
to a point x or its antipodal point -x, construct the orthogonal linear space L. 
(a hyperplane through the origin whose normal has direction numbers propor- 
tional to x). We project the ri perpendicularly on L.. The resulting convex 
sets satisfy the hypothesis of Lemma 1 in L.. Thus they intersect in a convex 
set C.,. Hence, in terms of the projections of r,(e), the intersection CT(e) must 
be n - 1 dimensional. 

Now, if C(e) contains the origin 0, the line through 0 and x will intersect 
each of the ri(e) and the lemma is established. Suppose this not to be the case 
for any x. It is shown now that the closest point of C,(e) to 0 varies continuously 
with x. Indeed, let x, converge to xo . For each C.,(e) consider the closest point 
a. to the origin and project back perpendicularly. Each direction x, through a. 
intersects every ri(e) and hence the limiting direction xo intersects all ri(e). 
Let ao denote the point where this line pierces Lo. If ao were not the closest 
point of C.O(e) to the origin, then there exists a point bo at least v closer to the 
origin. Since COO (e) is n - 1 dimensional, choose a point on the interios of CO(e) 
a distance of f from bo. Projecting back along the direction xo, this line must 
pierce every ri(e) in an interior point. This follows directly because of the fact 
that ri (e) are n dimensional and convex. Consequently by varying the direction 
sufficiently little from xo every line must pierce each ri(c). Thus, the projections 
in these respective hyperplanes L. where x is near xo possess a point in C.(e) 
such that the distance from the origin is the distance bo from origin is at most. 
Here v can be arbitrarily small with a. But this contradicts the fact that the xn 
directions had the closest points different from ao as small as one wishes. This 
contradiction shows that ao is the closest point. Hence the function mapping 
the direction x into the closest point of C,(e) from the origin is a closed mapping 
and hence continuous. 

Let f(x) denote the closest point of C,(e) to the origin, projected radially onto 
the unit sphere. This defines a continuous function of the unit sphere into itself, 
with the properties, for all x, 

(a) (J(x), x) = 0, 

(b) f(X) = f(-x). 
But (a) and (b) are inconsistent. The former implies thatf is a map of odd degree, 
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150 S. KARLIN AND L. S. SHAPLEY 

since an obvious deformation takes it into the indentity map. The latter implies 
that the degree of f is even, since, if A and A' are symmetrically defined chains 
on a hemisphere and its complement (so that A + A' is the oriented unit sphere), 
then 

f(A + A') = 2f(A) or 0 

according as n is even or odd. (Actually (a) is possible only for n even.) This 
inconsistency confirms the lemma. 

The last remarks are essentially a proof of the theorem that there is no non- 
vanishing tangential vector field on a sphere, of any dimension, such that the 
vectors at antipodal points are parallel (with the same sense). 

THEOREM 2. Let 2t be a family of closed bounded convex sets in E. . Let L be an 
n - r dimensional linear manifold. If the intersection of every r members of W1 
is non-empty, then there exists an n - r + 1 dimensional linear manifold in E. 
containing L and intersecting every member of W. 

This theorem was obtained by Horn in 1948 ([2]). 
PROOF. Choose an origin in L and project E, on the (r dimensional) orthogonal 

complement of L. Then apply Lemma 2. 
It is to be remarked that neither Lemma 1 nor Theorem 2 remains valid for 

closed convex sets that are not bounded. 

?3. A fitting theorem 
Suppose that m points in the plane: (xi, yi), i = 1, ... , m, are given. We 

shall determine conditions on fitting the points by functions of the form 
n 

(1) y = +y(x) = aj 0i 

where oj(x) are arbitrary functions. We say that 4 approximates (xi, yi) within 
aif I O(xi) - yi 6. 

LEmMA 3. If every n + 1 points of { (xi, yi) } can be approximated within a by a 
function of the form (1) then there exists a function of that form which approximates 
within 5 all the points. 

PROOF. The set a = (al, ***, an, - 1) form an n dimensional subset L 
of E.+,. Each point (xi, yi) generates a linear function gi defined over L as 
follows: 

n 
gi(a) = E 4j(xi)aj + (-l)yi. 

The hypothesis states that every n + 1 such linear functions possess a common 
"root" a in the sense that I gi(a) I < a for these functions. 

It is clear, since there are only a finite number of points, that we may assume 
that all these functions and their linear combinations possess roots a with 
I as I < M for some uniform bound M. Let A be the n dimensional convex 
bounded set of all points a with I aj i < M, and let j be the totality of all gi 
and -gi arising from the given points (xi, yu). Being linear, they are trivially 
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CONVEX FUNCTIONS 151 

convex. If they do not all possess a common root in the sense described above, 
then for every point a E A we may find a function fa e 8 with fa(a) > 8. By 
Theorem 1 there exists a convex combination of n + 1 functions which is greater 
than 8 for all a. This contradicts the hypothesis and establishes the result. 

It is to be remarked that the lemma can also be proved by a reduction to 
Helly's Theorem. 

The same result can be concluded for an infinite number of points (xi, yi), 
provided we assume that the convex set, A, of those a which approximate some 
pair of points, say (xl, yi) and (x2, y2), is bounded. (This condition will be 
satisfied in most applications.) For, by Lemma 3, we can fit any finite number 
of points within 8. Moreover, every finite set containing the two points (xi, yi) 
and (x2, y2) can be approximated by an a lying in the bounded region A. By 
compactness, the infinite set can also be so approximated. Thus, under the 
assumption of the existence of two points having the property stated above, 
we have shown: 

THEOREM 3. If every n + 1 of an infinite collection { (x , ya) } of points in the 
plane can be approximated within 8 by a function of the form (1), then there exists 
a function of the same form which approximates simultaneously within 8 all the 
points (xa, ya). 

In the following examples all the hypotheses are easily seen to be fulfilled: 
EXAMPLE 1. (Take 4j(x) = xA.) If every n + 1 points (xa, ya) of a pre- 

scribed collection can be fitted within 8 by a polynomial of degree n - 1, then 
the entire set { (xa, y.) } can be fitted by a polynomial of the same degree. 

EXAMPLE 2. (Take42k+l(x) = coskx, 4,u(x) = sin kx, wherek = 0, 1, * * *, r.) 
If every 2r + 2 points of a given collection { (x. , ya) } can be approached within 8 
by a trigonometric polynomial of degree r, then the same can be accomplished 
for all (xa, ya). 

Finally, we remark that the requirement that the points lie in two dimensional 
space is not essential. Any finite dimension can be considered for x, with y 
serving as the dependent variable (i.e., the approximation being measured in 
the y direction). However, the analogous theorem, which uses the geometric 
distance from point to curve (or hypersurface) as the measure of approximation, 
does not hold. For example, consider a regular polygon of 2r sides inscribed 
in a circle of unit radius. There is a line whose distance to all but one of the 
vertices is at most 8 = (1 + cos 7r/r)/2. However, no line passes that close to 
all the vertices. 

It is to be emphasized that the result imposes no restriction whatever on 
the component functions 4j(x). 

?4. A covering theorem 
In this section, we present a result on coverings of the surface of a n-sphere 

by closed hemispheres. Despite its intimate connection with the foregoing, it 
is more convenient to give an independent proof. We reproduce the following 
lemma from [1], [3]: 

LEMMA4. Let A be a convex set in En spanned by points pi, i = 1, inm. 
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152 S. KARLIN AND L. S. SHAPLEY 

Every point in A can be represented as a convex combination of at most n + 1 
points pi. 

PROOF. We consider only the case m > n + 1. Take a simplex Sm in Em-._ 
and let T be a linear transformation mapping it on the given convex A in an 
obvious manner. The inverse transformation takes a given point of A into a 
plane of dimension at least m - n - 1. This plane intersects Sm and therefore 
must intersect some face of dimension n or less. The vertices of this face corre- 
spond to the desired subset of { pi }. 

THEOREM 4. Let the surface of a sphere in En be covered by a compact family of 
closed hemispheres, then there exists n + 1 members of the family which cover 
the surface. 

REMARK. A family of hemispheres is compact if the unit vectors normal to 
the hyperplanes bounding the hemispheres (directed into the hemispheres) con- 
stitute a compact family. 

PROOF. Let la denote the unit normal to the hemisphere Ha in the sense 
described in the remark. A point x on the surface of the sphere is covered by Ha 
if and only if (la, x) _ 0. We consider a countable set {Il} dense in {la}. Let 
ri be the convex set spanned within the unit sphere by 11, * * *, li. We wish to 
show that, for m sufficiently large rm is arbitrarily close to the origin, 0. If the 
contrary, then for some e the distance p(0, Fi) exceeds e for all i. By the choice 
of {liI this implies that p(0, r) _ e, where r is the convex spanned byall the la . 
Take a plane through the origin which does not pass within e of r, and let xo 
denote its unit normal, directed away from r. Then (la, xo) _ -e for all 1, 
and hence xo is not covered by {Ha,,. This contradiction implies that for any k 
there exists a m(k) with p(o, rF(k)) < 1/k. Let x(k) be a point of rF(k) of dis- 
tance less than 1/k from the origin. By Lemma 4, we have a convex 
representation: 

n+1 
(k) -= 0 E ( k) 

i-i 

Since n + 1 is fixed and 1 k) and t k) are drawn from compact sets, we may pass 
to the limit and obtain a representation: 

n+1 

e =E Ails 
i-1 

It is clear that Eli = 1 and that all {i are non-negative. The hemispheres Hi 
corresponding to the li of this representation, i = 1, 2, * , n + 1, must cover 
the full sphere. 

We remark that the theorem is not true if the compactness requirement is 
removed. For example, consider the family of hemispheres on a sphere in E2 
described by the angles 7r, 1, 1/2, 1/3, * - i, 1//m, * . - . 

It is interesting to observe that the finite covering given by Theorem 4 may 
be made to contain one hemisphere specified at pleasure. The following is an 
equivalent statement of this stronger result:. 
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CONVEX FUNCTIONS 153 

COROLLARY. Let a given hemisphere H on the surface of a sphere in En be covered 
by a compact family of closed hemispheres. Then there exist n members of the family 
which cover H. 

PROOF. The given family, together with the closed complement Ho of H, 
cover the sphere. Theorem 4 provides an n + 1-member sub-family of the 
augmented family which also covers the sphere. If this sub-family does not 
include Ho, consider the convex C spanned within the unit sphere by the unit 
normals li to the sub-family. C contains the origin 0. Let lo denote the unit 
normal to Ho, and yo the intersection of the radius [0, - lo] with the boundary 
of C. Then Yo is a convex combination of n (or fewer) of the li, and 0 is a con- 
vex combination of lo and yo . (If yo and 0 happen to coincide, then lo will appear 
vacuously.) It follows that an n + 1-member sub-family containing Ho and 
covering the sphere can always be found. The closed complement of Ho-which 
is the hemisphere originally given-is necessarily covered by the other n mem- 
bers of any such sub-family. 

The direct relation between this section and the earlier sections becomes im- 
mediately clear when we write Theorem 4 in its contrapositive form: "If every 
n + 1-member sub-family fails to cover, then the full family does not cover." 
Theorem 1 could not be applied directly because the spherical distance to a 
spherical convex set is not a convex function. 

THE RAND CORPORATION 

BIBLIOGRAPHY 

1. H. F. BOHNENBLUST, S. KARLIN, L. S. SHAPLEY, Games with continuous, convex pay-off. 
Annals of Mathematics Studies, Princeton University Press, 1950. 

2. A. HORN, Some generalizations of Helly's theorem on convex sets (abstract), Bull. Amer. 
Math. Soc. Vol. 55, (1949), No. 1, Pt. 1, p. 70. 

3. C. CAROTHfODORY, Uber den Variabilitaetsbereich der Fourier'schen Konstanten von 
Positiven Harmonischen Functionen, Rend. Circ. Mat. Palermo 32 (1911), pp. 
198-201. 

This content downloaded from 128.101.10.117 on Sat, 24 Jan 2015 17:18:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 148
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153

	Issue Table of Contents
	Annals of Mathematics, Second Series, Vol. 52, No. 1 (Jul., 1950), pp. i-iv+1-244
	Front Matter [pp. ]
	Volume Information [pp. ]
	Obstructions to Extensions and Homotopies [pp. 1-50]
	A Certain Exact Sequence [pp. 51-110]
	A Connection between The Baker-Hausdorff Formula and a Problem of Burnside [pp. 111-126]
	A Topology for Free Groups and Related Groups [pp. 127-139]
	Theorie Ergodique Pour Des Classes D'Operations Non Completement Continues [pp. 140-147]
	Some Applications of a Theorem on Convex Functions [pp. 148-153]
	On the Torsional Rigidity of Multiply Connected Cross-Sections [pp. 154-163]
	On Existence Theorems of Potential Theory and Conformal Mapping [pp. 164-187]
	On Entire Functions with Algebraic Derivatives at Certain Algebraic Points [pp. 188-198]
	On the Frustrum of a Sphere [pp. 199-216]
	On Primes in Arithmetic Progressions (I) [pp. 217-230]
	On Primes in Arithmetic Progressions (II) [pp. 231-243]
	Back Matter [pp. ]



