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Outline of the talk

1. Four classic results relating polytopes and algebraic geometry:

(A) Toric Geometry
(B) Viro’s Theorem
(C) Bernstein’s Theorem.
(D) The g-theorem.

contents 2



Toric Varieties
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Gröbner Bases of Toric Ideals

• We work over K[x1, . . . , xn] the polynomial ring in n variables over the field
K. Hilbert proved its ideals are finitely generated.

• A Gröbner basis for an ideal I is a set of generators with great computational
abilities!

• Gröbner bases are central for polynomial problems: Ideal membership,
Elimination of variables, Polynomial system solving, etc.

• A monomial order � on the monomials of K[x1, ..., xn] is said to be admissible
if 1 � m1 for all monomial m1 and m1 � m2 implies m1m3 � m2m3 for
all monomials m1,m2, m3 in K[x1, ..., xn]. The lexicographic order is an
important example of admissible monomial order.
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• The leading monomial of a polynomial f in K[x1, ..., xn] with respect to �
will be denoted by in�(f).

For an ideal I in K[x1, .., xn] its initial ideal is the ideal in�(I) generated by
the leading monomials of all polynomials in I. The monomials m 6∈ in�(I)
are called standard.

• THEOREM: A Gröbner basis is a generating set for the ideal I.

• Given any polynomial p and a Gröbner bases G, we can “divide” p by G and
obtain a UNIQUE remainder, its normal form.

• Given input (1) generators of an ideal and (2) a monomial order, a Gröbner
bases can be computed using the famous Buchberger’s algorithm.

Sadly, the degree of GB elements can be doubly exponential on the degrees of
the input generators. The size can explode! In practice things are often better.
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• A Gröbner basis comes with a Division Algorithm that allow us to compute
with residue classes of the quotient ring K[x1, x2, . . . , xn]/I.

In general ideals, there are no bounds for the number of division steps that it
takes to compute the normal form.
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TORIC IDEALS
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Key Definition

K denotes a field, most often C, and K[x1, . . . , xn] the polynomial ring in n
variables. K[x−1

1 , x1, x
−1
2 , x2, . . . , x

−1
n , xn] denotes the Laurent polynomial ring.

Given an integer d × n matrix A consider the kernel of the ring map φA induced
by the columns of A:

φA : K[x−1
1 , x1, . . . , x

−1
n , xn] → K[y−1

1 , y1, . . . , y
−1
d , yd]

xi → y
A[1,i]
1 y

A[2,i]
2 ...y

A[d,i]
d

The kernel this map, denoted IA, is the toric ideal for A.
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EXAMPLE
Use the matrix

A =

[

1 1 1 1

1 2 3 4

]

Some of the elements of the kernel of φA are

x2
2 − x1x3, −x2

3 + x2x4, −x2x3 + x1x4

In fact, they form a set of Generators for the ideal IA.

Theorem The ideal IA has always a generating set given by finitely many
binomials. In fact, for any monomial order, the reduced Gröbner basis for the
toric ideal IA is generated by binomials xu − xv where Au = Av.
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Special Geometric Interpretation

Given any d-vector b, Visualize a Gröbner bases of IA using the lattice points
of the polyhedron P (b) := {x| Ax = b, x ≥ 0, x ∈ Z

n}. The Gröbner bases
binomials are vectors departing from each lattice point u ∈ P (b). The direction
of arrows is given by the term order.

Theorem: The graph of lattice points and arrows is connected for all P (b) if and
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only if the set of binomials generates the ideal IA. It has a unique sink and if an
only if the set of binomials is a Gröbner bases for IA.

Theorem: The Graver bases of a matrix A is a Gröbner bases for the toric ideal
associated to A, in fact, it is a true with respect to ANY monomial order.
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Gröbner bases of Toric ideals ARE just Lattice points in

POLYHEDRA

Lemma[Sturmfels] Let M be equal to (d + 1)(n − d)D(A), where A is a d × n
integral matrix and D(A) is the biggest d × d subdeterminantof A in absolute
value. Any entry of an exponent vector of any reduced Gröbner basis for the toric
ideal IA is less than M .

Given an integer d × n matrix A the toric ideal IA is the polynomial ideal
generated by the binomials

BA(M) = {xu − xv|Au = Av and 0 ≤ u, v ≤ M}.

2.B Toric Geometry 12



A-graded ideals

Let A = {a1, . . . , an} ⊂ Z
d be an acyclic integer vector configuration. Let K

be a field. In the polynomial ring K[x1, . . . , xn] we consider the variable ai to
have (multi-)degree ai.

Example: A = {1, . . . , 1} defines the standard grading.

An ideal I ⊂ K[x1, . . . , xn] is said to be A-homogeneous if it can be generated
by polynomials with all its monomials of the same multi-degree.

The prototypical example of an A-homogeneous ideal is the toric ideal IA:

IA = 〈xc − x
d : c, d ∈ Z

n
≥0,

∑

ciai =
∑

diai〉
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Example: A =

(

1 2 3 4
1 1 1 1

)

⊂ Z2.

(

1

1

)

+

(

3

1

)

= 2

(

2

1

)

⇒ x1x3 − x2
2 ∈ IA

(

2

1

)

+

(

4

1

)

= 2

(

3

1

)

⇒ x2x4 − x2
3 ∈ IA

2

(

1

1

)

+

(

4

1

)

= 3

(

2

1

)

⇒ x2
1x4 − x4

2 ∈ IA

Idea: linear relations among the ai’s produce binomials in IA.
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The multi-graded Hilbert function

Every A-homogeneous ideal I decomposes as

I =
⊕

Ib,

where b ∈ A(Zn
≥0) ranges over all possible multidegrees.

The A-graded Hilbert function of I is the map

A(Zn
≥0) → Z≥0

that sends each Ib to its linear dimension over K.

Remark: dimK(Ib) ≤ #A−1(b) = # of monomials of degree b.
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The Sturmfels Correspondence

In 1988, Bayer and Morrison and Mora and Robbiano defined the State
Polytope of an ideal I. Its vertices are in bijection to the different Gröbner bases
of I

In 1991, Sturmfels had proved:

Theorem: The secondary polytope of triangulations of A is a Minkowski
summand of the state polytope of the toric ideal IA).

In particular, there is a well-defined map

initial ideals of IA → regular polyhedral subdivisions of A
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(the map sends monomial initial ideals to regular triangulations, and is surjective).

In 1995, he extended the map to

Φ : A-graded ideals → polyhedral subdivisions of A,

and the map sends monomial ideals to triangulations.

The map is not surjective [Peeva 1995], but its image contains all the
unimodular triangulations of A [Sturmfels 1995] (moreover, each unimodular
triangulation T is the image of a unique monomial A-graded ideal, namely the
Stanley-Reisner ring of T ).
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Semigroups and Cones
• Recall MAGIC SQUARES form a convex polyhedral cones of the form

Ax = 0, x ≥ 0, where A is a matrix with 0, 1,−1 entries.

• EXAMPLE: The cone C of 3 × 3 magic matrices is defined by the system of
equations (i.e, row sums, column sums, and diagonal sums are equal).

The cone C of 3 × 3 magic squares has dimension 3, it is a cone based on a
quadrilateral, thus it has 4 rays.

0
0

0
0

0

01/3

2/3

2/3

2/30
1/3

2/3 1/3

2/3

1/3

1/3

2/3

2/31/3

2/3 1/3

2/3 1/3

1/3 2/3

1/3 2/3

1/3 2/3

1/30

0
0

0
0

Figure 1: The four RAYS the cone of 3 × 3 magic squares.
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• For a cone C (e.g., magic squares) we are interested in SC = C ∩ Z
n, the

semigroup of the cone C. And the associated Rings. We can use Hilbert
bases!!

• With any rational pointed polyhedral cone C = {Ax = 0, x ≥ 0} and a field
k we associate a semigroup ring, RC = k[xa : a ∈ SC], where there is one
monomial in the ring for each element of the semigroup SC.

• RC equals k[x1, x2, . . . , xN ]/IC where IC is an ideal generated by binomials
and N is the number of Hilbert basis elements.

• For a graded k-algebra has decomposition

RC =
⊕

RC(i)
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,

each RC(i) collects all elements of degree i and it is a k-vector space (where
RC(0) = k).

• The function H(RC, i) = dimk(RC(i)) is the Hilbert function of RC. Hilbert-

Poincaré series of RC

HRC
(t) =

∞
∑

i=0

H(RC, i)ti.

• Lemma. Let RC be the semigroup ring obtained from the Hilbert basis of

a cone C. The number of elements of the semigroup that have degree s are

equal to the value of the Hilbert function H(RC, s).
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• Example: The number of distinct magic arrays of magic constant s equals the
value of the Hilbert function H(RC, s).

• The Hilbert-Poincaré series can be computed from the knowledge of the
Gröbner bases of the Hilbert bases IC.

Viro’s Theorem
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Hilbert’s sixteenth problem (1900)

“What are the possible (topological) types of non-singular real algebraic curves
of a given degree d?”

Observation: Each connected component is either a pseudo-line or an oval.
A curve contains one or zero pseudo-lines depending in its parity.

A pseudoline. Its complement has one An oval. Its interior

component, homeomorphic to an open is a (topological) circle and

circle. The picture only shows the “affine part”; and its exterior is a

think the two ends as meeting at infinity. Möbius band.
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Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than ⌊d/2⌋

Harnack’s Theorem: A curve of degree d cannot have more than
(

d−1
2

)

+ 1

connected components (recall that
(

d−1
2

)

= genus)

Two configurations are possible in degree 3

3.A Viro 23



Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than ⌊d/2⌋

Harnack’s Theorem: A curve of degree d cannot have more than
(

d−1
2

)

+ 1

connected components (recall that
(

d−1
2

)

= genus)

Six configurations are possible in degree 4. Only the maximal ones are shown.
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Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than ⌊d/2⌋

Harnack’s Theorem: A curve of degree d cannot have more than
(

d−1
2

)

+ 1

connected components (recall that
(

d−1
2

)

= genus)

Eight configurations are possible in degree 5. Only the maximal ones are shown.
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All that was known when Hilbert posed the problem, but the classification
of non-singular real algebraic curves of degree six was not completed until the
1960’s [Gudkov]. There are 56 types degree six curves, three with 11 ovals:

3.A Viro 26



What about dimension 7? It was solved by Viro, in 1984 with a method that
involves triangulations.

A curve of degree 6 constructed using Viro’s method
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Viro’s method:

b

a

a

b

For any given d, construct a topological model of the projective plane by gluing
the triangle (0, 0), (d, 0), (0, d) and its symmetric copies in the other quadrants:
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Viro’s method:

Consider as point set all the integer points in your rhombus (remark: those in
a particular orthant are related to the possible homogeneous monomials of degree
d in three variables).

3.A Viro 29



Viro’s method:

Triangulate the positive orthant arbitrarily . . .
. . . and replicate the triangulation to the other three orthants by reflection on
the axes.
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Viro’s method:

Triangulate the positive quadrant arbitrarily . . .
. . . and replicate the triangulation to the other three quadrants by reflection on
the axes.
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Viro’s method:

Choose arbitrary signs for the points in the first quadrant . . . and replicate
them to the other three quadrants, taking parity of the corresponding coordinate
into account.
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Viro’s method:

Choose arbitrary signs for the points in the first quadrant . . . and replicate
them to the other three quadrants, taking parity of the corresponding coordinate
into account.
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Viro’s method:

+

Finally draw your curve in such a way that it separates positive from negative
points.
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Viro’s Theorem

Theorem (Viro, 1987) If the triangulation T chosen for the first quadrant is
regular then there is a real algebraic non-singular projective curve f of degree d
realizing exactly that topology.

More precisely, let wi,j (0 ≤ i ≤ i + j ≤ d) denote “weights” (↔cost
vector↔lifting function) producing your triangulation and let ci,j be any real
numbers of the sign you’ve given to the point (i, j).

Then, the polynomial

ft(x, y) =
∑

ci,jx
iyjtw(i,j)

for any positive and sufficiently small t gives the curve you’re looking for.
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Viro’s Theorem

Theorem (Viro, 1987) If the triangulation T chosen for the first quadrant is
regular then there is a real algebraic non-singular projective curve f of degree d
realizing exactly that topology.

More precisely, let wi,j (0 ≤ i ≤ i + j ≤ d) denote “weights” (↔cost
vector↔lifting function) producing your triangulation and let ci,j be any real
numbers of the sign you’ve given to the point (i, j).

Then, the polynomial

ft(x, y) =
∑

ci,jx
iyjzd−i−jtw(i,j)

for any positive and sufficiently small t gives the curve you’re looking for.
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces).

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906!

• What happens if we do the coonstruction with a non-regular triangulation?
Well, then the formula in the theorem cannot be applied (there is no possible
choice of weights). But nobody knows an explicit case in which the curve
given by the combinatorial procedure does not have the type of a curve of the
corresponding degree.
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces).

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906!

• What happens if we do the coonstruction with a non-regular triangulation?
Well, then the formula in the theorem cannot be applied (there is no possible
choice of weights). But nobody knows an explicit case in which the curve
given by the combinatorial procedure does not have the type of a curve of the
corresponding degree.
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces).

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906!

• What happens if we do the construction with a non-regular triangulation?
Well, then the formula in the theorem cannot be applied (there is no possible
choice of weights). But nobody knows an explicit case in which the curve
given by the combinatorial procedure does not have the type of a curve of the
corresponding degree.
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces).

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906!

• What happens if we do the construction with a non-regular triangulation?
Well, then the formula in the theorem cannot be applied (there is no possible
choice of weights). But there is no known example of a curve constructed via
Viro’s method (with a non-regular triangulation) and which is not isotopic to a
real algebraic curve of the corresponding degree. (There are examples of such
curves in toric varieties other than the projective plane [Orevkov-Shustin, 2000]).
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces).

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906!

• What happens if we do the construction with a non-regular triangulation?
Well, then the formula in the theorem cannot be applied (there is no possible
choice of weights).

• Still, the curves constructed with Viro’s method (with non-regular triangulations)
can be realized as pseudo-holomorphic curves in CP

2 [Itenberg-Shustin, 2002].
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Ragsdale’s conjecture

Let d = 2k be even, so that a non-singular curve of degree d consists only of
ovals. An oval is called positive (or even) if it lies inside an even number of other
ovals, and negative (or odd) otherwise.

Harnack’s inequality says that the total number of ovals cannot exceed
2k2±O(k). Virginia Ragsdale conjectured in 1906 (based on empirical evidence)
that the numbers of positive ovals could not exceed 3k2/2 ± O(k).

In the 1930’s, Petrovskii proved that the difference between the two numbers
was bounded by

p − n ≤ 3(k2 − k)/2 + 1,

which implies p ≤ 7k2/4 ± O(k).
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In 1993, Itenberg (using Viro’s method) constructed curves having 13k2/8±
O(k) positive ovals.

This was improved by B. Haas to 10k2/6 ± O(k).
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Curiously enough, using non-regular triangulations, one can construct Viro
curves with 17k2/10 ± O(k) positive ovals [Santos, 1995].

Are these curves realizable algebraically?
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For comparison

Ragsdale’s conjecture: 180 k2/120 ± O(k).

Itenberg construction: 195 k2/120 ± O(k).

Haas construction: 200 k2/120 ± O(k).

Santos construction: 204 k2/120 ± O(k).

Petrovskii inequality: 210 k2/120 ± O(k).

Harnack inequality: 240 k2/120 ± O(k).

Remark: Petrovskii inequality is valid for pseudo-holomorphic curves (hence
for Viro curves too)
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For comparison

Ragsdale’s conjecture: 180 k2/120 ± O(k).

Itenberg construction: 195 k2/120 ± O(k).

Haas construction: 200 k2/120 ± O(k).

Santos construction: 204 k2/120 ± O(k).

Petrovskii inequality: 210 k2/120 ± O(k).

Harnack inequality: 240 k2/120 ± O(k).

Remark: Petrovskii inequality is valid for pseudo-holomorphic curves (hence
for Viro curves too)
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The interaction between polyhedral geometry and algebraic geometry is a
classical topic (Newton,. . . ), but it got a big boost in the 1970’s, with two
results that used it in both directions:

• The Bernstein Theorem on the number of roots of a zero-dimensional system
of sparse polynomials, via mixed subdivisions of their Newton polytopes.

• The Stanley proof of the g-theorem on the numbers of faces of simplicial
polytopes, via cohomology of toric varieties.
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Bernstein’s Theorem
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Newton polytopes

• To every monomial xa1
1 . . . xan

n we associate its exponent vector (a1, . . . , an).

• To a polynomial f(x1, . . . , xn) =
∑

ci x
ai we associate the corresponding

integer point set. Its convex hull is the Newton polytope of f , N(f).

2

3 4

1

1 2
The Newton polytope for the polynomial x2 + xy + x3y + x4y + x2y3 + x4y3
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn).

+ =

Mixed area of a triangle and a rectangle.
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn).

+ =

Mixed area of a triangle and a rectangle.
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn).

+ =

Mixed area of a triangle and a rectangle.
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn).

+ =

Mixed area of a triangle and a rectangle.
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn). . .
and it equals the mixed volume if the coefficients are sufficiently generic (for fixed
polytopes).
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Bernstein’s Theorem

Theorem (Bernstein, 1975) Let f1, . . . , fn be n polynomials in n variables.
The number of common zeroes of them in (C∗)n is either infinite or bounded
above by the mixed volume of the n polytopes N(f1), . . . , N(fn). . .
and it equals the mixed volume if the coefficients are sufficiently generic (for fixed
polytopes).

What is the mixed volume?
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Mixed volume

Definition 1: Let Q1, Q2, . . . , Qn be n polytopes in Rn. Their mixed volume
µ(Q1, . . . , Qn) equals

∑

I⊂{1,2,...,n}

(−1)|I| vol





∑

j∈I

Qi



 .
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Mixed volume

Definition 2: Let Q1, Q2, . . . , Qn be n polytopes in Rn. Their mixed volume
µ(Q1, . . . , Qn) equals

the coefficient of λ1λ2 · · ·λn in the homogeneous polynomial vol(λ1Q1 + · · · +
λnQn).
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Mixed volume

Definition 3: Let Q1, Q2, . . . , Qn be n polytopes in Rn. Their mixed volume
µ(Q1, . . . , Qn) equals

the sum of the volumes of the mixed cells in any fine mixed subdivision of
Q1 + · · · + Qn.
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Mixed volume

Definition 3: Let Q1, Q2, . . . , Qn be n polytopes in Rn. Their mixed volume
µ(Q1, . . . , Qn) equals

the sum of the volumes of the mixed cells in any fine mixed subdivision of
Q1 + · · · + Qn.

In particular, to compute the number of zeroes of a sparse system of
polynomials f1, . . . , fn one only needs to compute a “fine mixed subdivision”
of N(f1) + · · · + N(fn).
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A cooking recipe for fine mixed subdivisions:

1/ 9
−1 / 3 0

0 0

0

01/ 9

+ =

0

0

Choose sufficiently generic (e.g. random) numbers wa ∈ R, one for each a in
each of the Qi’s
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A cooking recipe for fine mixed subdivisions:

−1 / 3 0

0 0

0

01/ 9

+ =

1/ 9

−1 / 3

0

0

01/ 9

0

0

1/ 9 0

−2/ 9 −1 / 3
Use the numbers to lift the points of Q1 + · · · + Qn and compute the lower

envelope of the lifted point configuration.
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A cooking recipe for fine mixed subdivisions:

0

0

0

0

+ =

0

10 / 9

−1

10 / 9

10 / 9 0

0

−1

−100

10 / 9

0

0

−1

Use the numbers to lift the points of Q1 + · · · + Qn and compute the lower
envelope of the lifted point configuration.
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The polyhedral Cayley Trick

. . . as it turns out, for every family of polytopes Q1, . . . , Qn in Rd there is
another polytope C(Q1, . . . , Qn) in R

n+d−1 such that

mixed subdivisions of Q1, . . . , Qn ↔ subdivisions of C(Q1, . . . , Qn)

fine mixed subdivisions of Q1, . . . , Qn ↔ triangulations of C(Q1, . . . , Qn)

That is to say, the number of roots of a sparse system of polynomials
can be computed via triangulations.
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How to compute the roots

• From (the proof of) Bernstein’s theorem one gets more than the number of
roots.

• Also, a germ at t = 0 of an algebraic curve (x(t)) such that (x(1)) is a root
(roots are in bijection to the mixed cells in the mixed subdivision, counted with
their volume; the germs are given by the slopes of mixed cells in the lifting
that was used to construct the mixed subdivision).

• Using the germ, one can follow the curve numerically until reaching the solution

These are the so-called homotopy methods or numerical continuation methods.
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The g-theorem
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Face numbers of polytopes

A polytope P of dimension d has faces of dimensions −1 to d. The f -vector
of P is the vector f = (f−1, f0, . . . , fd) ∈ Nd+2 where fi is the number of faces
of dimension i of P .

Some f -vectors:

segment: (1, 2, 1) n-gon: (1, n, n, 1)

cube: (1, 8, 12, 6, 1) octahedron: (1, 6, 12, 8, 1)

dodecahedron: (1, 20, 30, 12, 1) icosahedron: (1, 12, 30, 20, 1)

d-simplex:
(

1, d + 1,
(

d+1
2

)

, . . . ,
(

d+1
2

)

, d + 1, 1
)

.
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Big question:

What are the possible f -vectors of polytopes?
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Big question:

What are the possible f -vectors of polytopes?

The g-theorem gives the complete answer for simplicial polytopes.
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Big question:

What are the possible f -vectors of polytopes?

The g-theorem gives the complete answer for simplicial polytopes.

Definition: Let P be a polytope with f -vector (f−1, f0, . . . , fd). For each
k = 0, . . . , d let

hk =

k
∑

i=0

(−1)k−i

(

d − i

d − k

)

fi−1.

and gk = hk − hk−1 for k = 1, . . . , d/2. (g0 := h0 = 1).

These are called the h-vector and the g-vector of P .
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g-theorem

Theorem [Billera-Lee 1981, Stanley 1980] A vector f of positive integer
entries is the f -vector of a simplicial polytope if and only if the h-vector and
g-vector obtained from it satisfy:

1. h is symmetric (“Dehn-Sommerville relations”).

2. g is non-negative (“lower bound theorem”).

3. g is an M -sequence (M is for Macaulay).
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Comments

The sufficiency part of the g-theorem was proved by Billera and Lee via an
explicit construction of a simplicial polytope with given f -vector.

The Dehn-Sommerville equations are a generalization of Euler’s formula in
two senses:
• hd = h0 is Euler’s formula.

• The equations follow from applying Euler’s formula to links of different
dimensions in the complex (hence, the equations are valid for all homology
simplicial spheres; this was the original proof by Sommerville).

From the algebraic point of view, Dehn-Sommerville is Poincaré duality: the
h-vector of P is the vector of (even) Betti numbers of the toric variety VP . If P
is simplicial, VP is (almost) non-singular, and the Betti numbers are symmetric.
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Comments

In this same setting, the lower bound theorem is equivalent to the “hard
Lefschetz Theorem” for the intersection homology of the toric variety VP .

To prove the third condition in the g-theorem (the M -sequence part) Stanley
(1980) used Cohen-Macaulayness of the cohomology ring of VP (more precisely,
the fact that the ring is generated by classes ofdegree one).

This cohomology ring can be directly described from the combinatorics of
the polytope [Danilov 1978]: it equals a certain quotient of the “Stanley-Reisner
ring” of the simplicial complex ∂P .
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4. Summing up

(quick regular triangulations reminder)
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T h A n, k S

Start with a point set A, with n elements

and rank k.

Then, every vector of heights h : A → R,

defines a regular subdivision S.

If h is generic, S is actually a triangulation.
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